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The matched pairs sign test using bivariate ranked set sampling (BVRSS) is introduced and investigated. We show that 
this test is asymptotically more efficient than its counterpart sign test based on a bivariate simple random sample 
(BVSRS). The asymptotic null distribution and the efficiency of the test are derived. The Pitman asymptotic relative 
efficiency is used to compare the asymptotic performance of the matched pairs sign test using BVRSS versus using 
BVSRS. For small sample sizes,  the bootstrap method is used to estimate P-values. Numerical comparisons are used 
to gain insight about the efficiency of the BVRSS sign test compared to the BVSRS sign test. Our numerical and 
theoretical results indicate that using BVRSS for the matched pairs sign test is substantially more efficient than using 
BVSRS.  Illustration using palm trees data from sultanate of Oman is provided. 
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INTRODUCTION 
 
In many environmental, agricultural and epidemiological studies, 
some times, it is necessary to use matched pairs when you 
comparing two cohorts of a study subjects, based on some lurking 
and confounding factors, in order to control the effects of those 
factors on the findings. “Matching as a technique for the control of 
confounding has great intuitive appeal and has been widely used 
over the years. Unlike randomization and restriction, which used to 
control confounding in the design stage of a study, matching is a 
strategy that must include elements of both design and analysis” 
(Hennekens and Buring 1987). For example, a two-year 
prospective study could be conducted to compare the effect of 
adding calcium supplements in manufactured milk for newborns to 
that in natural mother milk on baby’s heights. A large group of new  
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born identical twins could be considered: in one of the twins, milk 
with added calcium is provided; for the other twin, mothers are 
encouraged with some incentives to breast feed their babies for 
two years. After the two years, a matched pair’s random sample 
could be drawn from the twins’ population of babies; their heights 
would be measured along with other factors of interest. These 
types of studies produce data consisting of observations in a 
bivariate random sample: 

{( ,  ),  1,  2,  ...,   }i iX Y i n= , where there are n pairs of 

observations. Within each pair ( ,  )i iX Y  a comparison is made, 

and the pair is classified as “+” if 
i iX Y< , “ − ” if 

i iX Y>  or “0” if 

i iX Y= . Here the measurement scale needs only to be ordinal. 
Other needed assumptions are (1) The bivariate 
variables ( ,  )i iX Y , i=1, 2,…, n, are mutually independent. (2) The  
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pairs ( ,  )i iX Y are internally consistent, in that if P(+)>P( − ) for 

one pair ( ,  )i iX Y , then P(+)>P( − ) for all pairs. The same is true 
for P(+)<P( − ) and P(+)=P( − ). 
 

The types of null hypotheses that can be tested using the 
matched pairs sign test are:  
 

 (1)  1
:  ( ) ( )

2oH P P+ = − = .  

 
(2) :  ( ) ( ),  for all o i iH E X E Y i= , which is interpreted as 

 and i iX Y have the same location parameter. 
 
(3) :  The median of  equals the median of  for all  o i iH X Y i (
Conover 1980.) 
 
The matched pairs sign test statistic, which denoted by BVSRST , for 
testing the above hypotheses, equals the number of  “+” pairs, that 
is    
 

1

( )
n

BVSRS i i
i

T I X Y
=

= <�                                                                                      

(1.1) 
 

where 
1                 if  

( )
 0      otherwise .            

i i
i i

X Y
I X Y

<�
< = �

�
 

 
First, discard all tied pairs and let n equal the number of the 
remaining pairs. Depending on whether the alternative hypotheses 

is one-tailed or two-tailed, and if 20n ≤ , then use the Binomial 
distribution with the values n and p=1/2 for finding the critical region 
of approximately size α . For n larger than 20 and under the null 
hypothesis, 

2 4( ,  )n nT N∼ . Therefore, the critical region can be 
defined based on the normal distribution. It had been argued that 

BVSRST is unbiased and consistent test statistic when 

testing :  ( ) ( )oH P P+ = − .  However, for testing 
                                         

:  ( ) ( ),  for all o i iH E X E Y i= and 
 

:  The median of  equals the median of  for all o i iH X Y i  

 
 
 
 

BVSRST is neither unbiased nor consistent (Conover 1980.)  
In most statistical applications the data used is assumed to 

consist of a simple random sample (SRS). Recently, it becomes 
obvious in many studies such as, agricultural, environmental and 
epidemiological studies; that quantification of sampling units with 
respect to the variable of interest is costly as compared with the 
physical acquisition of the unit. Cost savings of quantifying 
sampling units can be achieved by using ranked set sampling 
(RSS) methods which was introduced first by McIntyre (1952) 
without any mathematical prove, to  estimate the population mean, 
and later called RSS by Halls and Dell (1966).  

The RSS procedure can be described as follows: Randomly 
sample a group of sampling units from the target population. Then, 
randomly partition the group into disjoint subsets each having a 
pre-assigned size r. In most practical situations, the size r will be 2, 
3 or 4. Rank the elements in each subset by a suitable method of 
ranking such as prior information, visual inspection or by the 
subject-matter experimenter himself etc.  Then the i-th order 
statistic from the i-th subset, Xi(i), i = 1, …, r, will be quantified 
(actual measurement). Therefore, 1 1 2 2( ) ( ) r(r)X , X ,..., X  consti-

tutes the RSS. This represents one cycle. The whole procedure 
can be repeated m-times as needed, to get a RSS of size n = mr 
for the theoretical aspects of RSS (Takahasi and Wakimoto, 1968; 
Dell and Clutter, 1972).  

Stokes and Sager (1988) used RSS to estimate the cumulative 
distribution functions (cdf) using the empirical distribution function 
(edf) based on RSS (F*). The procedure based on ranked set 
samples quantiles with applications was investigated by Chen 
(2000), Samawi (2001), Samawi and Al-Saleh (2004). An optimal 
ranked set sample scheme (ORSS) for inference on population 
quantiles was suggested by Chen (2001).  Other authors have 
used the RSS sampling method to improve parametric and non-
parametric statistical inference. For non-parametric methods, RSS 
was considered by Bohn and Wolfe (1992, 1994), Kvam and 
Samaniego (1994) and Hettmansperger (1995). Koti and Babu 
(1996) showed that the RSS sign test it provides a more powerful 
test than the SRS sign test. Barabesi (1998) provided a simpler 
and faster method for computing the exact distribution of the RSS 
sign test.    

The optimality of the RSS sign test has been established by 
several researchers in the literature via Pitman asymptotic efficacy. 
It was shown that the median ranked set sample (MRSS) is the 
best among all possible sampling schemes in the ranked set 
sampling environment for the sign test procedure; for example see 
O z t u r k&& && (1999)and O z t u r k&& && and Wolfe 

(2000). However, to our knowledge, the optimality of the MRSS for 
the sign test has only been shown asymptotically. Samawi and  



 
 
 
 
Abu- Dayyeh (2002) investigated the exact power and distribution 
function for finite sample sizes of the MRSS sign test. For more 
about univariate RSS and its variations, Kaur et al. (1995) and Patil 
et al. (1999).   

Estimation of bivariate characteristics using bivariate ranked set 
sampling (BVRSS) was introduced by Al-Saleh and Zheng (2002). 
They indicated that this BVRSS procedure can be easily extended 
to multivariate RSS. Based on their description, a BVRSS can be 
obtained as follows: 
 
Suppose (X, Y) is a bivariate random vector with the joint 
probability density function (p.d.f.) f(x, y). 
 

1. A random sample of size 4r is identified from the population and 

randomly allocated into 
2r pools each of size 

2r , where each pool 
is a square matrix with r rows and r columns. 
 
2. In the first pool, identify the minimum value by judgment w.r.t. 
the first characteristic X, for each of the r rows.  
 
3. For the r minima obtained in Step 2, choose the pair that 
corresponds to the minimum value of the second characteristic Y, 
identified by judgment, for actual quantification. This pair, which 
resembles the label (1, 1), is the first element of the BVRSS 
sample. 
 
4. Repeat Steps 2 and 3 for the second pool, but in step 3, the pair 
that corresponds to the second minimum value w.r.t. the second 
characteristic, Y, is chosen for actual quantification.  This pair 
resembles the label (1, 2). 
 
5. The process continues until the label (r, r) is resembled from the 

2r -th (last) pool. 
 
This will produce a BVRSS of size 2r . The procedure can be 
repeated m times to obtain a sample of size n = m 2r . Although, 
the BVRSS procedure can be extended to multivariate RSS 
(MVRSS). Our proceeding discussion will only be applied to the 
bivariate case (BVRSS) in order to simplify the presentation of the 
method. Moreover, Samawi et al. (2006) utilized BVRSS in sign 
test for one-sample bivariate location model. They show that 
BVRSS is more powerful procedure than BVSRS for this sign test. 

In this paper we introduce the matched pairs sign test using 
BVRSS. Numerical comparisons between the performance of the 
BVRSS sign test and the performance of the BVSRS sign test via 
Pitman’s asymptotic efficacy and asymptotic power are investiga-
ted. The exact distribution and the asymptotic null distribution and 
power  of  the  BVRSS  sign  test  are  derived. It will be shown that   
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BVRSS substantially improves the efficiency and the power of the 
sign test in the case of a matched pairs sample. We also introduce 
a bootstrap method for finding the P-value of the matched pairs test 
for small sample sizes. Illustration using real data is provided.    
 
 
Characteristics of BVRSS and some useful results 
 
Let  
 

2 [( , ), 1, 2, ...,  , 1, 2, ...,  , 1, 2, ...,   & 1,..., ]z z
ijk ijkX Y i r j r k m z r= = = =  

 be 4mr  i.i.d ordered pairs from a bivariate probability density 
function, say f(x, y); (x, y) 2 R∈ . Following the Al-Saleh and 
Zheng (2002) definition of  BVRSS let  
 

[ ]( ) ( )[ ]
 ( , ), 1, 2, ..., ;  1, 2, ..., ;  ( -1)   1, 2, ..., z z

i j k i j k
X Y i r j r z j r i and k m� �= = = + =� �	 


 

 
denotes such a sample from f(x, y). Let

, 
[ ]( ) ( )[ ]

 ( ,  )z zX Y
i j i j

f x y be 

the joint p.d.f. of  
 

[ ]( ) ( )[ ] ( ,  )z z
i j k i j kX Y , k=1, 2, …, m. Then as in Al-Saleh and 

Zheng (2002), 
 

|( )

( )[ ]
[ ]( ) ( )[ ] [ ]

( ) ( | )
( ,  ) ( ), ( )

X Y Xj
z z YX Y i j

Yi j i j j

f x f y x
f x y f y

f y
=                             

(1.2) 
 
where 

( )jXf  is the density of the thj  order statistic for a SRS of 

size r  with marginal density of Xf and 
[j]

 ( )Yf y be the density of 

the corresponding Y − value given by  
    

 
( ) |[j]

 ( ) ( ) ( | )
jY X Y Xf y f x f y x dx

∞

−∞

= � , 

 
while 

(i)[j]
( )Yf y   is the density of the thi order statistic of an i.i.d.  

 
sample of size r from 

[j]
 ( )f yY , i.e. 
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(i)[j]
( )Yf y  = 1

[j] [j] [j]
 c(F ( )) (1 F ( )) ( )i r i

Y Y Yy y f y− −−  

 

where 
[ ]

( )
jYF y = |( )

( ( ) ( | ) )
y

X Y Xj
f x f w x dx dw

∞

−∞ −∞
� � and 

!
( 1)! ( )!

r
c

i r i
=

− −
. 

 
Putting these together, (1.2) can be written for any z ( the z 

notation will be dropped for simplicity) as  
 
        

[ ] [ ]

1 1
1, 

[ ]( ) ( )[ ]

( , ) ( ( )) (1 ( )) ( ( )) (1 ( )) ( , )
j j

i r i j r j
Y Y X XX Y

i j i j

f x y c F y F y F x F x f x y− − − −= − −  

(1.3) 
 
where 

1

! !
( 1)! ( - )! ( 1)! ( - )!

r r
c

i r i j r j
=

− −
. 

                                                      
Again from Al-Saleh and Zheng (2002) we have the following 
results:   
 

 (1)  Y2 [ ]( ) ( )[ ]
1 1

1
( ,  ) ( ,  ), 

r r

X i j i j
j i

f x y f x y
r = =

=�� ,            (1.4) 

 

 (2)  2 [ ]( )
1 1

1
( ) ( )

r r

X Xi j
j i

f x f x
r = =

=�� ,            (1.5) 

(3) 2 ( )[ ]
1 1

1
( ) ( )

r r

Y Yi j
j i

f y f y
r = =

=�� .    (1.6) 

 
 
Matched pairs sign test using   BVRSS 
 
Using the BVRSS sample,   
 

[ ]( )  ( )[ ]
 ( ,  ),  1,  2,  ...,  ;   1,  2,  ...,  ;   and 1,  2,  ...,  i j k i j k

X Y i r j r k m� �= = =� �	 

, drawn from a 
 
population with p.d.f f(x,y), the BVRSS sign test statistic can be 
defined as: 

 
 
 
 

[ ]( ) ( )[ ] the number of "+"; or; = #( ) for all ,  BV RSS i j k i j kT X Y i j k= <
, that is 
  

[ ]( ) ( )[ ]
1 1 1 1 1

( )=  
r r m r r

BVRSS i j k i j k ij
i j k i j

T I X Y T
= = = = =

= <��� ��                     

(2.1) 

where [ ]( ) ( )[ ]
1

( )
m

ij i j k i j k
k

T I X Y
=

= <� . Clearly, 

, , 1,  2,  ...,   ijT i j r= are stochastically independent and each 

ijT has a binomial distribution with parameters m and 

[ ]( ) ( )[ ]( ).ij i j k i j kp P X Y= <  Thus the exact distribution of 

BVRSST is given by  
 

1 1

( ) (1 )ij ij

xy

r r
l m l

BVRSS ij ij
L iji j

m
P T t p p

l
−

= =

� 

= = −� �

� �
�∏∏                        (2.2) 

 
for  t=0, 1, 2, …, mr2 ; where  
 

1 1

{( :  , 1,  2,  ...,  ) :  ;  0 ,  , 1,  2,  ...,  .
r r

xy ij ij ij
i j

L l i j r l t l m i j r
= =

= = = ≤ ≤ =��  

 
Unfortunately, the exact distribution in (2.2) depends on the given 
underlying bivariate distribution function even under the null 
hypothesis. Thus, finding the exact critical value and the P-value of 
the test requires knowledge of the underlying distribution function. 
Therefore, we will introduce a simple bootstrap algorithm for finding 
the P-value in the case of sample size n<20. For larger n, an 
asymptotic test procedure is introduced. 
 

Theorem 2.1: Assuming no tied pairs 
                                             

[ ]( ) ( )[ ]( ) for all ,  and i j k i j kX Y i j k= , under the null hypothesis 

 
1

:  ( ) ( )
2oH P P+ = − =  and for fixed r and large m then  

 

2 2
2

1 1

2  has approximately (0,  1)
1 1

( )
2

BVRSS

BVRSS r r

ij
i j

n
T

Z N

r m p
r = =

� 
−� �
� �=

− ��

,  



 
 
 
 
where n=mr2 ,  
 

2 2
2

1 1

1 1
( )

2

r r

o ij
i j

V r m p
r = =

= − ��  and  [ ]( ) ( )[ ]( ).ij i j k i j kp P X Y= <  

 
Proof: Discard all tied pairs and let n equal the number of pairs that 
are not ties. Then  
 

We can write BVRSST  as a sum of i.i.d variables as follows: 

1

m

BVRSS ij
k

T T
=

=� , where [ ]( ) ( )[ ]
1 1

( ).
r r

ij i j i j
i j

T I X Y
= =

= <��  Note  

 
that  
 

[ ]( ) ( )[ ] [ ]( ) ( )[ ] Y[ ]( ) ( )[ ]
1 1 1 1

( ) [ ( )] ( ) ( , )  , 
r r r r

ij i j i j i j i j X i j i j
i j i j

E T E I X Y I X Y f x y dxdy
= = = =

= < = <�� ����  

 
And by   using (1.4),                
 

2
2( ) ( ) ( ,  ) . (  is fixed).

2ij

r
E T r I x y f x y dxdy r= < = < ∞�� . 

 
Also,  
 

2 2
[ ]( ) ( )[ ] [ ]( ) ( )[ ] [ ]( ) ( )[ ]

1 1 1 1

2 2
2

1 1

( ) [ ( )] { [ ( )]-( [ ( )]) }

Thus, by using (1.4) again, 

1 1
( ) ( ) (  is fixed).

2

r r r r

ij i j i j i j i j i j i j
i j i j

r r

ij ij
i j

Var T Var I X Y E I X Y E I X Y

Var T r p r
r

= = = =

= =

= < = < <

= − <∞

�� ��

��

 

 
Therefore, by using The Central Limit Theorem,  
 

2 2
2

1 1

2  has approximately (0,  1)
1 1

( )
2

BVRSS

BVRSS r r

ij
i j

n
T

Z N

r m p
r = =

� 
−� �
� �=

− ��
 

 
A consistent estimator for V is given by 
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2 2
2

1 1

1 1ˆ ˆ( ) ( ),
2

r r

o BVRSS ij
i j

V Var T r m p
r = =

= = − �� where 

 

[ ]( ) ( )[ ]
1

( )
ˆ .

m

i j k i j k
k

ij

I X Y
p

m
=

<
=
�

   

  
Depending on the alternative hypothesis whether it is one-tailed or 
two-tailed and if 20n ≥ , then the asymptotic test procedure is to 
reject the null hypothesis :  ( ) ( )oH P P+ = −  in favor of the 

alternative {e.g. :  ( ) ( )aH P P+ > − } if 2

ˆ

n
BVRSS

o

o

T
Z z

V
α

−= > , 

where z α is the 100(1-α )% quantile of the standard normal 
distribution.  
 
 
The asymptotic relative efficiency and power 
 
The performance of the matched pairs sign test using BVRSS will 
be compared with the matched pairs sign test using BVSRS based 
on the criterion of Pitman’s asymptotic relative efficiency (ARE). 
The Pitman’s regularity conditions are satisfied for both BVRSST and 

BVSRST because all moments of the tests are in terms of 
probabilities, and hence are bounded above by 1. The   Pitman’s 
ARE of BVRSST  versus BVSRST is defined as 

 

     

2

2

( )
( , )

( )
BVRSS

BVRSS BVSRS
BVSRS

e T
ARE T T

e T
= ,   ( 3.1)                                        

 
where the efficiency of a test statistics T is given by e (T) and 
 

( )

( ) l i m  .
 v a r ( )

o

n

H

E T

e T
n T

θ
∞

∂
∂= u u ur  

  
Using the above definition and noting that 

(0) ( ) ( 0) ( 0)DF P X Y P X Y P D= < = − < = < , the  efficiency 
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Table 1. Pitman’s asymptotic relative efficiency 

( , )BVRSS BVSRSARE T T . The results for negative correlation 

coefficients are in bold and parenthesis.   
  

r 0.5ρ = ±  0.9ρ = ±  

2 1.15 
(1.43) 

1.04 
(1.59) 

3 1.29 
(1.77) 

1.09 
(2.38) 

 
 
 

of  BVRSST  and BVSRST are obtained as  
 

  
2

2
1 1

2 (0)
( )

2(1 )
o

D
BVRSS r r

ij
i j H

f
e T

p
r = =

=
− ��

  (3.2) 

 
and  
      
 ( ) 2 (0)BV SRS De T f=      (3.3) 
 
respectively. Note that θ  could be the central parameter of D or 
the shifted parameter such that ( ) 0.5P X Y θ< + =  under the 
null hypothesis. 
 
Therefore, by (3.1), (3.2) and (3.3)  
 

2
2

1 1

1
( , ) 1

22(1 )
o

BVRSS BVSRS r r

ij
i j H

ARE T T
p

r = =

= ≥
− ��

 

 
Moreover, by Theorem 2.1, the asymptotic power of testing the 
hypothesis :  ( ) ( )oH P P+ = −  versus the alternative {without loss 

of generality consider :  ( ) ( )aH P P+ > − } for BVRSST and BVSRST  are 

defined by: 201 [( ( )) / ]n
BVRSS az V nP X Y Vαβ = − Φ + − < , 

where 0V ( as in Theorem 2.1) and aV  are  the  variance of BVRSST   

 
 
 
 
under the null and the alternative hypotheses respectively and  
 

4 21 [( ( ))/ ( )(1 ( ))]n n
BVSRS z nP X Y nP X Y P X Yαβ = −Φ + − < < − <

 
Therefore, under the null hypothesis 1 ( )BVRSS z αβ α= − Φ =  and  
 

1 ( )BVSRS z αβ α= − Φ = . Note that  
 

2 2
2

1 1

1
( | ) ( ( ) ).

a

r r

a BVRSS H ij
i j

V Var T r m P X Y p
r = =

= = < − ��  

 
 
Numerical comparisons  
 
Assuming that the bivariate random variable (X, Y) has a bivariate 
normal distribution, ( , )BVRSS BVSRSARE T T  for {r = 2 and 3, and 

correlation coefficient ( 0.5,  and 0.9ρ = ± ± )} is computed. Also, 
the asymptotic power for {(r = 2, m = 5), (r = 2, m = 6), and (r = 3, m 
= 3)}, shifted parameter of center of the two marginal distributions 
( 0,0.1,  0.5,  and 1θ = ), level of significance { 0.05α = } and 

correlation coefficient ( 0.2,  0.5,  and 0.9ρ = ± ± ± )} is 
computed.  

Table 1 shows Pitman’s asymptotic relative efficiency 
( , )BVRSS BVSRSARE T T and Table 2 and 3 show that asymptotic 

power of BVSRST  and BVRSST respectively. 
Assuming a bivariate normal underlying distribution function, Table 
1 shows that the performance of BVRSST  is superior to BVSRST via 

Pitman’s asymptotic relative efficiency ( , )BVRSS BVSRSARE T T .  

Also, it is clear that the ( , )BVRSS BVSRSARE T T increases as r 

increases. It is clear that ( , )BVRSS BVSRSARE T T is higher when the 
correlation coefficient ρ  is negative and increases as ρ  
negatively decreases away from 0. In practice this slight draw back 
in efficiency, when the correlation is positive, is not a draw back of 
using the test, because BVRSS sign test still more efficient than 
BVSRS sign test. 

Table 2 gives evidence towards BVSRST being unbiased and 
consistent in this case although such evidence is not a conclusive 
proof. The power of BVSRST  increases as the sample size increa-
ses and the shift parameter on the variable Y increases away from 
0.
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Table 2. Asymptotic power for BVSRST when 0.05α = . The results for negative correlation  

coefficients are in bold and are in parenthesis.    
 

n=r2 m θ  0.2ρ = ±  0.5ρ = ±  0.9ρ = ±  

0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 
0.1 0.0867 (0.0786) 0.0983 (0.0748) 0.1917 (0.0712) 
0.5 0.3893 (0.2993) 0.5273 (0.2604) 0.9925 (0.2245) 

 
n=20 
 

1 0.8644 (0.7200) 0.9726 (0.6326) 1.0000 (0.5468) 
0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 

0.1 0.0911 (0.0819) 0.1044 (0.0776) 0.2133 (0.0735) 
0.5 0.4431 (0.3394) 0.5968 (0.2938) 0.9981 (0.2517) 

 
n=24 
(r=2, m=6) 

1 0.9187 (0.7932) 0.9898 (0.7073) 1.0000 (0.6177) 
0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 

0.1 0.0942 (0.0843) 0.1087 (0.0796) 0.2290 (0.0752) 
0.5 0.4813 (0.3684) 0.6435 (0.3182) 0.9994 (0.2716) 

 
n=27 
(r=3, m=3) 

1 0.9455 (0.8367) 0.9953 (0.7548) 1.000 (0.6649) 
 
 
 

Table 3. Asymptotic power for BVRSST when 0.05α = . The results for negative 

correlation coefficients are in bold and are in parenthesis.  
   

n=r2 m θ  0.2ρ = ±  0.5ρ = ±  0.9ρ = ±  

0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 
0.1 0.0921 (0.0843) 0.1130 (0.0808) 0.2185 (0.0774) 
0.5 0.4521 (0.3675) 0.5809 (0.3321) 0.9940 (0.3028) 

 
n=20 
(r=2, m=5) 

1 0.9212 (0.8288) 0.9855 (0.7733) 1.0000 (0.7272) 
0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 

0.1 0.0972 (0.0884) 0.1199 (0.0843) 0.2289 (0.0805) 
0.5 0.5127 (0.4169) 0.6528 (0.3762) 0.9988 (0.3425) 

 
n=24 
(r=2, m=6) 

1 0.9586 (0.8879) 0.9954 (0.8396) 1.0000 (0.7968) 
0 0.0500 (0.0500) 0.0500 (0.0500) 0.0500 (0.0500) 

0.1 0.1060 (0.0936) 0.1513 (0.0910) 0.2357 (0.0908) 
0.5 0.6095 (0.5101) 0.6734 (0.5009) 1.0000 (0.4566) 

 
n=27 
(r=3, m=3) 

1 0.9871 (0.9000) 1.0000 (0.9121) 1.0000 (0.9013) 
 
 
 

Table 3 shows that BVRSST  is more powerful than BVSRST for all 
studied sample sizes and shifted parameter values. The superiority 
of  BVRSST over BVSRST is clear for all values ρ  and all values of 

the set size r. There is evidence towards BVRSST being unbiased 
and consistent in this case; such evidence is again not a conclusive  

proof. From Theorem 2.1 BVRSST has a similar asymptotic distri-

bution as BVSRST but with smaller asymptotic variance. Therefore, it 

is safe to say that BVRSST has similar asymptotic properties as 

BVSRST  for testing :  ( ) ( )oH P P+ = − , i.e. BVRSST is also unbiased  



008      Afr. J. Environ. Sci. Technol. 
 
 
 
and a consistent test procedure. However, BVRSST is more efficient 

and more powerful than BVSRST .     
Moreover, Table 3 shows that the asymptotic power of 

BVRSST increases when set and sample sizes increase. Also, the 

asymptotic power of 
BVRSST increases when ρ >0 increases for all 

nonzero values of the shifted parameter θ  and increases when 
ρ <0 increases in absolute value for θ >0.1. However, it decreases 

slightly when ρ <0 increases in absolute value for 0.1θ = − . 
 
 
Bootstrap algorithm for estimating the p-value of the test 
 
The distribution of our nonparametric test, 

BVRSST , in (2.2) depends 
on the underlying bivariate distribution function. Thus, the exact P-
value calculation for sample size n<20 is not feasible without 
knowing the underlying distribution. In this section we introduce a  
simple bootstrap method for calculating the P-value of the sign test 
for any given bivariate data. For general description of the 
bootstrap method of estimation see Efron and Tibshirani (1993).  
Suppose that a bivariate random sample of size n<20 is drawn 
from a population using the BVRSS or BVSRS sampling method.  

This implies that {( ,  ),  1,  2,  ...,   }i iX Y i n= is a random sam-
ple. The bootstrap algorithm for approximating the bootstrap P-
value of the test for testing the hypothesis :  ( ) ( )oH P P+ = −  

versus the alternative {e.g. :  ( ) ( )aH P P+ > − } is : 

 

1. Calculate the sample test statistic (say 
1

( )
n

i i
i

T I X Y
=

= <� ) from 

the original sample. 
 
2. Estimate θ  from the data; say θ̂ . Shift ˆ to i iY Y θ− , I=1, 2, …, n. 

 
3. Define ˆ ( , )F x y  by placing a mass probability 1

ip
n

=  

on ( ,  ),  1,  2,  ...,  i iX Y i n= . 

 
4. Generate a resample * *( ,  ),  1,  2,  ...,  i iX Y i n=  from 

ˆ ( , )F x y . 

 
 
 
 

5. Find  * * *

1

( )
n

b i i
i

T I X Y
=

= <� . 

 
6. Repeat steps 3 and 4 B times.  

Then the bootstrap P-value, * * ˆ( | ( , ))P P T T F x y= ≥ , can be 

approximated by * *

1

1
( ).

B

b
b

P I T T
B =

= ≥�  

 
However, when the data is BVRSS, slight modification of the above 
algorithm is needed as follows: 
 
1- Divide the sample into r mutually exclusive strata each contains 
m i.i.d order pairs label. 
2- Independently from each stratum generate a resample with 

replacement of size m by placing a mass probability ( 1
m

) on each 

original observation in that stratum.  
3- Combine all r resamples and do similar steps like in (5) and (6) 
above. 
 
 
Illustration on date palm tree and final comments 
 
Date palm is considered the most important fruit crop in the 
Sultanate of Oman and occupying nearly 50% of the cultivated land 
in Oman. It is estimated that 35,000 hectares of land are planted 
with date palms and 28,000 hectares with other crops, including 
11,000 hectares planted with rotation crops. These statistics reflect 
the importance of date palm tree to the Omani people who have 
lived with this tree for centuries. The date palm has retained its 
value for the dwellers of the desert because of its adaptive charac-
teristics to the environment and the wide range of its benefits. It 
provides the family with many of the life necessities. 

Different literature at different times has cited variable estimation 
of the number of palm trees and yield quantity. The total number of 
date palm trees currently is estimated to be around seven million 
with a wide range of varieties. FAO (1982) report indicated that the 
estimated annual production of Omani dates 50,000 tons and the 
number of date palm trees was 1 million for the period 1961 to 
1978. Currently the date palm trees are estimated to be higher than 
before due to the introduction of new and easier production 
practices along with new cultivar, which has increased the large 
scale farming of date palms. The number has risen to seven million 
trees. 

Due to the variety of different types of palm trees in each farm, 
we would to test if there a significant difference on average 
between two types (Khalas and Khosab) of palm tree’s production.
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Table 4. Oman palm trees data (2003). 
 

RSS Sample (r=2, m=2) n=4 
Type of the tree Khalas Khosab 

Diameter (m) Amount of date (X kg) Diameter(m) Amount of date (Y kg) 
1.80 84.00 1.82 118.00 
2.00 99.00 2.00 160.00 
2.25 204.00 2.25 130.00 

 

2.30 30.00 2.25 150.00 
SRS Sample n=4 

1.80 65.00 1.82 118.00 
2.00 120.00 2.00 106.00 
2.25 140.00 2.25 150.00 

 

2.30 135.00 2.25 132.00 
 
 
 

Note that 3 and  2.BVRSS BVSRST T= =   The Bootstrap P-value of 
the tests using BVRSS and BVSRS are respectively 0.00048 
(variance = 0.00023) and 0.00054 (variance = 0.00029). It is clear 
that we reject the null hypothesis using BVRSS and BVSRS 
samples. Therefore, Khalas trees on average produce significantly 
less date than Khosab trees. 

In conclusion, whenever BVRSS can be obtained, it is recom-
mended to be used instead of BVSRS for the bivariate matched 
pairs sign test.    
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