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Conventional water treatment technologies for the removal of fluoride ion may not be feasible for 
developing countries due to their high investment and operational costs. The aim of this study was 
therefore, to investigate the fluoride biosorption potential of the seeds of the cabbage tree (Moringa 
stenopetala). The influence of Moringa dosage, pH, contact time, and initial concentration of fluoride ion 
was investigated. The maximum fluoride sorption capacity was found to be 1.32 mg.g

-1 
of dry weight of 

Moringa seeds at a biomass dosage of 2 g L
-1

, pH 7.00, initial fluoride ion concentration of 10 mg.L
-1

 and 
a contact time of 60 min. The fluoride level was reduced from 10 to 3.4 mg L

-1
. The adsorption of fluoride 

ion onto Moringa powder was best described by the pseudo-second-order kinetic model (R
2 
= 0.99). The 

adsorption equilibrium data have been fitted well to Langmuir as well as Freundlich adsorption models 
(R

2
≥0.97 for both models). The distribution constant (Kd) and maximum adsorption capacity (Bmax) 

were significantly influenced by the amount of Moringa and equilibrium fluoride ion concentration 
(p<0.05). The desorption tests indicated that only 20% of the initially bound fluoride ion was 
regenerated, while the remaining 80% were bounded with the Moringa powder. This suggests that 
chemisorption was the possible mechanism of fluoride removal.  
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INTRODUCTION 
 
Fluoride related health hazards are a major 
environmental problem in many regions of the world. 
Studies revealed that Ethiopia is among the 25 nations 
around the globe, where health problem occurs due to 
the consumption of fluoride contaminated water (Ayoob 
and Gupta, 2006). Out of 10 million people living in Rift 
Valley region of Ethiopia, 8.5 million people are exposed 
for high fluoride contamination. In the Ethiopian Rift 

Valley, ground and surface water fluoride concentration 
varies from 0.5 to 264 mg.L

-1
 (up to 26 mg.L

-1
 in drinking 

water sources) (Tekle-Haimanot, 2006). As a result, over 
80% of the children in the rift valley areas have 
developed varying degrees of dental fluorosis (Kebede et 
al., 2016). The public health and economic importance of 
fluorosis is significant in many endemic areas in view of 
the occurrence of debilitating skeletal fluorosis in humans 
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and more recently, the discovery of pathology in cattle, 
sheep and other livestock. Crippling skeletal fluorosis is 
confined to tropical and sub tropical areas (WHO, 1984). 
Human sufferings due to dental and skeletal fluorosis, 
medical expenses to treat fluorosis, and untimely 
retirement of the productive members of the society can 
be prevented by defluoridating drinking water.  

It is evident that there are different techniques available 
which have been found to be successful in defluoridation 
of drinking water containing excess fluoride. It is the only 
practicable option to overcome the problem of excessive 
fluoride in drinking water, where alternate sources are not 
available, and extensive research has been done on 
various methods for its removal. These methods are 
based on the principle of adsorption (Cengeloglu et al., 
2002; Fan et al., 2003), ion-exchange (Wang et al., 
2013), precipitation-coagulation (Roy and Dass, 2013), 
electrolytic defluoridation (Mameri et al., 2001) and 
electrodialysis (Hichour et al., 2000). However, 
conventional defluoridation technologies have high 
operational and maintenance costs, low fluoride removal 
capacity, a lack of selectivity for fluoride, undesirable 
effects on water quality, the generation of large amounts 
of sludge and complicated procedures involved in the 
treatment. Moreover, most defluoridation methods are 
unproven and unreliable under field condition in 
developing countries (Kloos and Tekle-haimanot, 1995; 
Kebede et al., 2016). In view of these serious drawbacks, 
there is a great need to develop an effective, efficient and 
eco-friendly adsorbent for the removal of fluoride from 
water.  

To this end, a wide range of non-living biomass such as 
freshwater macrophytes  such as Eichhornia crassipes 
(Sinha et al., 2003; Karmakar et al., 2016), fungi (Amin et 
al., 2015), algae (Mohan et al., 2007), yeast (Ramanaiah 
et al., 2007) and Moringa olifera (Bazanella et al., 2012; 
da Conceição et al., 2015) have been investigated as 
biosorbents. In the present work, seeds from the cabbage 
tree (Moringa stenopetala) were employed to remove 
fluoride ions from drinking water. M. stenopetala belongs 
to the family of the Moringaceae which is represented by 
a single genus, called Moringa. The water soluble 
Moringa seed proteins possess coagulating properties 
similar to those of aluminum sulphate and synthetic 
cationic polymers. Moringa seeds contain cationic 
polypeptides with various functional groups, particularly 
low molecular weight amino acids (Jose et al 1999). 
These amino acids are deprotonated to carboxylate 
ligands at pH range of 4 to 8, simultaneously protonating 
the amino group which facilitates the binding of 
negatively charged ions with the amino group.  

A batch experiment conducted by Sahilu (2010) 
revealed that a 2 g.L

-1
 of M. stenopetala seed powder 

reduced 9 mg/L of fluoride ion from ground water to 2.2 
mg/L. In addition studies have shown that the seeds of 
the cabbage tree (M. stenopetala) removes heavy metals  

 
 
 
 
such as hexavalent chromium (Degefu and Dawit, 2013); 
cadmium (Mataka et al., 2010) and lead (Mataka et al., 
2006) from water in batch experiments. The main 
objective of this study was to determine the fluoride 
sorption potential of seeds of M. stenopetala from 
aqueous solution. The influence of biomass dosage, 
initial fluoride ion concentration, pH and contact time 
were investigated. 

 
 
MATERIALS AND METHODS 

 
Preparation of biosorbent  

 
M. stenopetala seeds were collected from the Chefe area, South 
Wello zone, Ethiopia. Seeds were de-shelled by hand and the de-
shelled seeds were dried in an oven at 105°C for 72 h. The dried 
seeds were ground in a mortar and sieved through 1 mm mesh. No 
other chemical or physical treatments were used prior to the 
biosorption experiments. 

 
 
Preparation of fluoride solutions 

 
A stock solution of fluoride was prepared by dissolving 2.21 g 
anhydrous sodium fluoride in one litre of distilled water. The sodium 
fluoride was previously dried at 105°C to a constant weight and 
stored in a dessicator. The fluoride concentration in this stock 
solution was 1000 mg.L-1. Other concentrations were prepared from 
this stock solution by dilution and varied between 1 and 40 mg F.L-

1. Fresh dilutions were prepared for each experiment. All the 
chemicals used were of analytical grade. Total Ionic Strength 
Adjustment Buffer (TISAB) solution was prepared from 58 g of 
sodium chloride, 4 g CDTA, and 57 mL of glacial acetic acid for 
adjusting the pH. The TISAB solution regulates the ionic strength of 
samples and standard solutions and adjusts the pH and also avoids 
interferences by polyvalent cations.  

 
 
Biosorption test 

 
Sorption studies were carried out in batch experiments as a 
function of biomass dosage (2 to 20 g), contact time (5 to 120 min), 
pH (2 to 13) and fluoride ion concentration (1 to 40 mg.L-1) at a 
water temperature of 20±1°C. The required amount of fluoride 
solution was taken in an Erlenmeyer flask, diluted to 250 ml with 
distilled water and the pH was adjusted to the desired value. Then, 
a known quantity of Moringa powder was added. These 
suspensions were placed on a shaker during a certain time. After 
shaking, the suspension was allowed to settle for 15 minutes. The 
suspension was filtered by using white band Whatman filter paper. 
The filtrate was collected and analyzed for Fluoride ion by means of 
Fluoride Ion Selective Electrode METTLER TOLEDO model. The 
fluoride ion concentrations before and after sorption were recorded. 
Percent removal by sorption to the sorbent was computed using the 
equation:  
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where Co is the initial fluoride ion concentration in the solution and 
Ce is the final fluoride ion concentration in the solution. 



 

 

 
 
 
 
Adsorption kinetics 
 
In order to evaluate the kinetic parameters, pseudo first-order and 
second-order models were tested to analyze the adsorption 
kinetics. Kinetic studies are important in determining the optimal 
contact time required to reach equilibrium (Ghorai and Pant, 2005).  

The pseudo-first-order equation is expressed as: 
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The pseudo-second-order equation is expressed as: 
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where qe and qt are the amounts of fluoride adsorbed (mg/g) at 
equilibrium and at any time t (min), respectively. Where qe and qt 
are the amounts of fluoride adsorbed (mg/g) at equilibrium and at 
any time, t (min), respectively. K1 is the pseudo first-order reaction 
rate constant of adsorption (min-1) and K2 the pseudo-second-order 
rate constant of adsorption (mg/g, min). The value of K1 and qe 
were calculated from the slope and intercept of the plot of log(qe-qt) 
versus t, while the value of K2 and qe were calculated from the 
intercept and slope of a plot of t/qt versus t, respectively (Ghorai 
and Pant, 2005).  

 
 
Intra-particle diffusion of fluoride  
 
Weber–Morris model was used to understand the possible 
contribution of intra-particle diffusion for the removal of fluoride on 
an adsorbent. The linear form of intra particle diffusion model given 
by Weber–Morris is: 

 

5.0tkq pt   

 
where qt is the amount of fluoride adsorbed per unit mass of 
adsorbent (mg/g) at a given time t, kp is the rate constant of intra-
particle diffusion (min-1/2) and t is contact time (min). The uptake is 
proportional to the square root of contact time during the course of 
adsorption: 

 

tkq pt   

 
where qt is the amount adsorbed at equilibrium (mg/g), kp is the rate 
constant of intra-particle transport (mg g-1 min-1/2). The intra-particle 
diffusion rate constant (kp) value estimated from the slope of plot of 
qt versus square root of time (Weber and Morris, 1963). 

 
 
Adsorption isotherms 
 
The adsorption of fluoride ion was tested with 2 g Moringa and 
varying fluoride ion concentrations (from 1 to 40 mg. L-1) at pH ±7.0. 
The contact time was 60 min. The volume of test solution was 250 
ml. The biosorption equilibrium uptake capacity for each sample 
was calculated based on a mass balance. 
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where  V is the sample volume (L), C0 is the initial fluoride ion 
concentration (mg.L -1), Ce is the final fluoride ion concentration 
(mg.L-1), M is the amount of biomass (g dry matter), S  is the 
amount of fluoride ion sorbed to the Moringa (mg.g-1). 
 
 
Freundlich isotherm 
 
The Freundlich isotherm can be described as follows: 
 
S= Kf .Ce1/n  
 
where  Ce is the equilibrium fluoride ion concentration (mg.L-1), S 
is the amount of fluoride ion sorbed to the Moringa (mg.g-1), Kf is 
the Freundlich constant denoting the adsorption capacity (mg.g-1), n 
is the empirical constant, indicating adsorption intensity (L.g-1). Kf 
and n denote, respectively the adsorption capacity (mg.g-1) and 
adsorption intensity (L.g-1) of the Moringa. 

The logarithmic form of the equation is given as follows:  
 
log S = log Kf + 1/n log Ce  
 
 
The Langmuir model  
 
The Langmuir model can be described as follows: 
 
Ce/S=1/ (k.b) +Ce/k 
 
where Ce is the equilibrium fluoride ion concentration (mg.L-1), S is 
the amount of fluoride ion sorbed to the Moringa (mg.g-1), K is the 
adsorption maximum (mg.g-1), b is the constant (L.g-1). The 
constant b represents the binding strength of the adsorption place 
for the ion.   
 
 
Ligand binding model 
 
The adsorption of fluoride ion to the biomass was fitted to a ligand 
binding model with one site saturation. This can be described as 
follows: 
 
S = Bmax × Ce/(Kd + Ce) 
 
where S is the amount of fluoride sorbed to the Moringa (mg.kg-1), 
Bmax is the maximum binding capacity (mg.g-1), Ce is the 
equilibrium fluoride concentration (mg.L-1), and Kd is the equilibrium 
distribution constant. 
 
 
Desorption and reusability studies 
 
In order to determine the reusability of the biosorbent, adsorption-
desorption experiment were performed. A 250 ml test solution 
containing 20 mg.L-1 of fluoride ion was transferred into 250 ml 
Erlenmeyer flask. The pH of the solution was adjusted at around 7 
using 0.2 M HCl or 0.2 M NaOH. After addition of 10 g of Moringa 
powder the mixture was shaken on a mechanically for 2 h. The 
suspension was filtered using Whatman filter paper and the residue 
left after filtration was subjected to desorption. Fluoride ion 
concentrations present in the filtrate  were  determined.  Desorption  
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Figure 1. Sorption of Fluoride ion as a function of contact time initial F- concentration 
of 20 mg.L-1, Moringa dosage of  2 g, volume of test solution 250 ml, pH ±7 and 
contact time  5 to 120 min. 

 
 
 
of fluoride ions was performed by 0.02 M KCl solution. Biomass 
loaded with fluoride ions was placed in the desorption medium (250 
ml 0.02 M KCl solution) and shake mechanically for 120 min. Then, 
the suspension was filtered by means of a Buchner filter. Fluoride 

Ion Selective Electrode METTLER TOLEDO model was used to 
determine the fluoride ion concentration. The desorption efficiency 
of fluoride ion was calculated from the following equation:  

 

100
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pH of M. stenopetala  
 
The pH of M. stenopetala in 1M KCl solution and water was 
determined using pH electrode.   
 
 
Data analysis  
 
The obtained data were fitted by means of Sigma Plot version 13 
onto a ligand binding model with one site saturation. The binding 
rate coefficient of Fluoride ion on half of the binding sites of Moringa 
biomass (Kd) and the maximum adsorption capacity (Bmax) was 
obtained from the curve. Significance was considered at p<0.05. 

 
 
RESULTS 
 
Effect of contact time on fluoride biosorption 
 
The amount fluoride ion sorbed increases  with  time  and 

reached its steady state in 60 min at which maximum 
sorption capacity (1.26 mg.g

-1
) were achieved (Figure 1). 

This is due to the fact that initially a large number of 
vacant surface sites are available for adsorption. With 
increasing time, the remaining vacant surface sites may 
be difficult to occupy due to repulsive forces between the 
molecules of the solid and bulk phase (Saravanane et al., 
2002; Kebede et al., 2016). However, increase in contact 
time beyond 60 min did not increase the sorption 
efficiency, which might be due to the presence of fewer 
adsorption sites. 
 
 
Effect of pH on fluoride biosorption 
 
The fluoride sorption capacity progressively increased as 
the pH of the solution increased from 2 to 7 (Figure 2). At 
pH below 7, the decrease in fluoride adsorption efficiency  
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Figure 2. Effects of pH on fluoride ion sorption capacity of M. stenopetala seeds , 
initial fluoride ion concentration of 10 mg.L-1, Moringa dosage 2 g, volume of test 
solution 250 ml, contact time 60 min.  

 
 
 
and fluoride adsorption capacity might be due to the 
formation of hydrofluoric acid, which would reduce the 
coulombic attraction between adsorbent surface and the 
fluoride ion (Kagne et al., 2009). Moringa seeds contain 
cationic polypeptides with various functional groups, 
particularly low molecular weight amino acids (Jose et al 
1999). The carboxylic group of the amino acids would 
progressively be deprotonated as carboxylate ligands at 
pH range of 4 to 8, simultaneously protonating the amino 
group. Such positively charged NH3

+
 groups facilitate the 

Moringa-fluoride binding. As the pH rises above 7, 
sorption capacity dramatically decreased. This is due to 
the stronger competition for active sites between fluoride 
and hydroxide ions (Tembhurkar and Dongre, 2006). As 
hydroxyl ion concentration increases the overall charge 
on the biomass surface becomes negative. This causes a 
hindrance to the biosorption of the negatively charged 
Fluoride ion, resulting in a decrease of biosorption of 
fluoride at higher pH levels (Kebede et al., 2016). 
 
 

Effect of initial fluoride ion concentrations  
 
As illustrated in Figure 3, by changing the initial 
concentration of fluoride ion concentration from 2 to 40 
mg.L

-1
, removal efficiency was reduced from 54 to 26%. 

A reduction in percent removal at higher fluoride ion 
concentrations may be due to the increase in the number 
of fluoride ions competing for the available binding sites 

on the biomass and the lack of binding sites available for 
binding of fluoride ions at higher concentration. Similarly, 
it has been found that fluoride removal using iron ore was 
smaller at higher fluoride ion concentration (Kebede et 
al., 2016). In contrast, sorption capacity increases from 
0.07 to 1.32 mg.g

-1
 as the initial fluoride ion concentration 

increased from 2 to 40 mg.L
-1

. This finding is consistent 
with the results of Kebede et al. (2016), who found that 
the activity of fluoride ion increase as its concentration 
increases.  

 
 
Effects of Moringa dosage on fluoride removal  

 
As shown in Figure 4, fluoride sorption capacity 
decreased from 5 to 0.05 mg.g

-1
 when the biomass 

dosage increased from 2 to 20 g.L
-1

. The reason might be 
attributed to the high biomass concentration which could 
make a “screen” effect on the dense outer layer shielding 
the binding sites from fluoride ion in the solution and 
thereby lowering the specific uptake at higher biomass 
loadings (Kebede et al., 2016).  

 
 
Adsorption kinetics studies  

 
The derived parameters such as, qe, k2, and Kp, for the 
kinetic models are presented in Table 1. The coefficient 
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Figure 3. Effects of initial  Fluoride ion concentration on biosorption by M. stenopetala, initial 
fluoride ion concentration 0 to 40 mg. L-1, Moringa dosage 2 g, volume of test solution 250 ml, 
pH ±7, contact time 60 min. 

 
 
 

 
 
Figure 4. Sorption of   capacity of Fluoride ion at different dosage of 
Moringa, initial concentration 10 mg.L-1, pH ±7, volume of test solution 250 
ml, contact time 60 min. 

 
 
 
of determination (R

2
) for the pseudo second-order kinetic 

model (Figure 5a) was found to be high (0.99). The 
estimated equilibrium adsorption capacity (qe) with a 
value  of  1.27 mg/g  is  approximately   similar   with   the  
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(a) (b) 

 
 

Figure 5. Plot of pseudo-second-order model (a) and Intraparticle diffusion model (b) for fluoride ion adsorption onto 
Moringa powder. Initial Fluoride ion  concentration  20 mg. L-1, Moringa dosage 2 g, volume of test solution  250 ml, 
pH ±7.  

 
 
 

Table 1. Kinetics parameters for the adsorption of fluoride ion on seeds of cabbage tree 
(M.stenopetala). 
 

Kinetics Parameter Values 

Pseudo second order 

qe experimental (mg/g) 1.26 

qe calculated (mg/g) 1.27 

K
2
 1.67 

R
2
 0.9996 

   

Intraparticle diffusion 
Kp (min

1/2
) 0.163 

R
2
 0.9023 

 
 
 
experimental value of 1.26 mg/g (Table 1). Therefore, the 
adsorption of fluoride ion onto Moringa powder is best 
described by the pseudo-second-order kinetic model 
suggest that fluoride should be adsorbed by 
chemisorption, which involves the sharing of electrons 
between fluoride and the adsorbent (Bhaumik and 
Mondal, 2015). However, the adsorption of fluoride did 
not follow the pseudo-first order equation (results not 
shown).  

The plot of qt versus t
1/2 

for intra-particle diffusion in the 
adsorption of fluoride ion onto Moringa powder was used 
to obtain the diffusion rate parameters. As presented in 
Figure 5b, the intra-particle diffusion rate constant (kp) 
value estimated from the slope of plot of qt versus square 
root of time was found to be 0.163 min

1/2 
for the initial 

fluoride concentration of 20 mg/L. If intra-particle diffusion 
is a rate-controlling step, then the plots should be linear 
and pass through the origin (Weber and Morris, 1963). 
However, in this study, the plot does not pass through the 
origin. This suggested that fluoride removal is a complex 
process and the intra-particle diffusion  was  not  the  only 

rate controlling step which is similar with the findings of 
Kebede et al. (2016). 
 
 
Adsorption isotherm of fluoride 
 
A graphical representation of Freundlich and Langmuir 
adsorption isotherm is presented in Figures 6 and 7, 
respectively. Higher values of correlation coefficients 
indicate that adsorption data are good fitted for both the 
Freundlich and Langmuir model (R

2
 = 0.97 and 0.98 for 

Freundlich and Langmuir model, respectively).  
Freundlich constants Kf and n, that is, 1.07 mg.g

-1
 and 

0.36 L.mg
-1

, indicate good adsorption capacities. Kf is 
defined as the adsorbate adsorbed per unit weight of 
adsorbent (Chen et al., 2010). The Langmuir isotherms 
show a k value of 0.92 mg.g

-1
 and a value for constant b 

of 0.16 L.mg
-1

. Again, these data indicate the high affinity 
of fluoride for sorption with M. stenopetala seeds. The 
constant k in the Langmuir equation indicates the 
adsorption maximum.   
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Figure 6. Freundlich isotherm for adsorption of Fluoride ion, initial Fluoride ion  

concentration 0 to 40 mg. L-1, Moringa dosage 2 g, volume of test solution  250 
ml, pH ±7, contact time 60 min.  

 

 
 

 
 

Figure 7. Langmuir Isotherm for adsorption of fluoride ion, initial Fluoride 
concentration 0 to 40 mg. L-1, Moringa dosage 2 g, pH ±7, volume of test solution 
250 ml, contact time 60 min. 

 
 
 
Ligand binding model 
 
Figure 8 shows ligand binding model of fluoride ion on 
Moringa seed powder. The maximum binding capacity 
(Bmax) of fluoride on the target biomass was 15.5 mg.g

-1
, 

which is greater than the theoretical maximum adsorption 
capacity (K = 0.92 mg.g

-1
) obtained from Langmuir 

isotherm. Both the distribution constant (Kd) and 
maximum adsorption capacity (Bmax) were significantly 
influenced by the amount of adsorbent and equilibrium 
fluoride concentration (P<0.05).  

Desorption test  
 
In this study, desorption tests were employed to elucidate 
the nature of adsorption processes. A 10 mg.L

-1
 fluoride 

solution was allowed to adsorb onto 2 g.L
-1

 of Moringa 
seed powder. After 2 h of this sorption experiment, the 
concentration of fluoride in the filtrate was found to be 3.4 
mg.L

-1
, which means 7.6 mg.L

-1
 of fluoride ion was 

adsorbed on Moringa seeds (Table 2). Attempts were 
made to desorb fluoride

 
ion from these fluoride ion loaded 

Moringa seeds using a 0.02 M KCl solution (pH 6.03).  
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Figure 8. Binding of fluoride ion on Moringa stenopetala powder, initial fluoride ion concentration 0 
to 40 mg. L-1, Moringa dosage 2 g, pH ±7, volume of test solution 250 ml, contact time 60 minutes. 
Solid line = Sorption capacity vs. Equilibrium fluoride ion concentration; black dots = Sorption 
capacity vs. Equilibrium fluoride ion concentration; Short-Short line = 95% confidence band; 
Medium dash line = 95% prediction band.  

 
 
 

Table 2. Adsorption-desorption Fluoride concentration, initial concentration 
10 mg.L-1, Moringa dosage 2 g.L-1. 
 

Fluoride ion Values 

Residual (filtrate) (mg.L
-1

) 3.4±0.6 

Removed by Moringa (mg.L
-1

) 7.6±0.8 

Regenerated from Moringa (mg.L
-1

) 1.5±0.2 

% of regeneration 20±2.2 

 
 
 
After 2 h of desorption, only 20% of the initially bound 
fluoride

 
ion was regenerated, while the remaining 80% 

remained bound with the Moringa powder, which 
indicates that most of the fluoride ions are able to form 
strong bonds with the positively charged functional group 
(NH3

+
) of Moringa powder. The negligible desorption of 

fluoride ion with 0.02 M KCl indicates the predominance 
of chemical bonding between Moringa powder and 
fluoride ion. This implies that physical adsorption is not 
playing a significant role in fluoride removal by Moringa 
powder.  

Conclusions 
 
The results of this study revealed that application of M. 
stenopetala seeds as a biosorbent introduces a less 
expensive and environmentally friendly method for 
removal of fluoride ion from aqueous media. The removal 
of this pollutant was found to be depending on biomass 
dosage, pH, initial concentration and contact time. The 
adsorption capacity of Moringa for fluoride was 1.32 
mg.g

-1
 of dry weight of Moringa seeds. The adsorption 

equilibrium data has been fitted very well to  Langmuir  as  
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well as Freundlich adsorption models (r

2
≥0.97). The 

desorption tests indicated that only 20% of the initially 
bound fluoride ion was regenerated, while the remaining 
80% were bounded with the Moringa powder. This 
suggests that chemisorption was the proposed 
mechanism for fluoride removal. Moringa seeds powder 
could be applicable for the removal of fluoride ion from 
water, but could not bring fluoride concentration to 
permissible level. Hence, chemical activation or 
impregnation would increase the efficiency of this 
biosorbent. Further studies are required to determine 
functional groups of Moringa seeds which are responsible 
for fluoride fixation. Moreover, the surface morphology of 
the biosorbent and mechanism of fluoride–biosorbent 
interaction should be determined using scanning electron 
microscope (SEM) and/or Fourier transform infrared 
(FTIR). 
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