A radiological study was carried out in the soapstone quarries of Tabaka region of Kisii district in the Southern Nyanza province, Kenya, where soapstone has been mined and used as a carving medium for hundreds of years. To achieve this, 14 soil and rock samples collected from five quarries were analyzed using high-resolution gamma-ray spectroscopy. The activity concentrations of 232Th, 40K and 226Ra in the samples as well as other radiological parameters were determined. These ranged from 38.6 to 271.7 Bq kg$^{-1}$ for 232Th, 43.1 to 360 Bq kg$^{-1}$ for 226Ra, and 245 to 1780 Bq kg$^{-1}$ for 40K. The absorbed dose rates were measured 1 metre above the ground at each quarry using a Canberra radiagem 2000 model. The average absorbed dose rate for the five quarries was found to be 541.4 nGy h$^{-1}$ 1m above the ground level while the calculated total absorbed dose rates were found to average 177.6 nGy h$^{-1}$ below the surface. This is about 4 times higher than the world average of 43 nGy h$^{-1}$. Assuming a 40% occupancy factor, the corresponding annual effective dose rates due to the radionuclides 232Th, 226Ra and 40K in the quarries ranged from 0.215 to 0.875 mSv y$^{-1}$, with a mean of 0.44 mSv y$^{-1}$. This corresponds to an excess lifetime cancer risk of 0.07%. The internal and external hazard indices (1.03 and 1.27, respectively) were found to be more than unity, hence slightly exceeding the permissible limits set by the International Commission on Radiation Protection (ICRP). The annual effective dose rate in the quarries was found to be 0.44 mSv y$^{-1}$ and is less than the 1 mSv y$^{-1}$ upper limit recommended for the public by the ICRP.

Key words: Soapstone, quarries, spectroscopy, absorbed dose, hazard index.

INTRODUCTION

Human beings have always been exposed to ionizing radiations of natural origin, namely terrestrial and extra-terrestrial radiation. Radiation of extra-terrestrial origin is from high energy cosmic ray particles and at sea level it is about 30 nGy h$^{-1}$ (UNSCEAR Report, 2000), while that of terrestrial origin is due to the presence of naturally occurring radionuclides; mainly potassium (40K), rubidium and the radionuclides in the decay chains of thorium (232Th) and uranium (238U). These radionuclides have half-lives comparable to the age of the earth. Gamma radiation from these radionuclides represents the main external source of irradiation of the human body. Natural radioactivity in geological materials, mainly rocks and soil, comes from 232Th and 238U series and natural 40K.

Artificial radionuclides such as 137Cs which result from weapon testing and the Chernobyl nuclear accident could also be present (UNSCEAR, 2000). The levels due to the terrestrial background radiation are related to the types of rock from which the soils originate. Higher radiation levels are associated to igneous rocks such as granite and lower levels with sedimentary rocks. There are some exceptions however, since some shales and phosphate...
Material and methods

Sample preparation
A total of 14 samples were collected from the five main quarries named Orenge, Nyaberi, Ouma, Barongo and British as shown in Table 1 below.

After collection, the rock and soil samples were separately crushed into powder form and sieved through a 0.6 mm mesh sieve. They were then dried in an oven at 80 °C for 24 h, completely removing water from the samples. A mass of 200 g of each sample was packed in special gas tight polyethylene plastic containers then closed and tightly sealed using cello tape. The contents were labeled appropriately and then kept for 30 days. After this period all the decay products in the 232Th series and 226Ra sub-series were in radioactive equilibrium with their daughters. The samples were then taken for gamma spectrometric analysis at the Kenya National Radiation Protection Laboratory (NRPL).

Activity concentration measurements
The concentrations of radionuclides (226Ra, 232Th and 40K) in each sample were determined using a high purity germanium (HPGe) gamma ray spectrometer consisting of a p-type intrinsic germanium coaxial detector (ORTEC model 7450) mounted vertically. The detector had a relative efficiency of 33 % and full width at half maximum (FWHM) of 2.0 keV energy resolution for the 1332 keV gamma ray line of 57Co. The detector was connected to a Canberra multichannel analyzer (MCA) with apex software, that allowed data acquisition, display of gamma-spectra, analysis of the gamma-spectra and storage of the results in memory channels. The MCA was interfaced with a computer and a printer. The detector was housed inside a 10 cm thick lead shield internally lined with 2 mm Cu foils. The foils provided an efficient suppression of background gamma radiation present within the laboratory. Each sample was run for 43200 s.

The activity concentration for each radionuclide in the measured samples was determined using the total energy under respective peaks after applying appropriate factors for peak efficiency, gamma intensity of the radionuclide and weight of the sample. For example 40K activity was determined from its 1460.81 keV γ-line. The analysis of results was performed using Microsoft Excel software.

Radionuclide identification reports
The 226Ra activities for samples assumed to be in radioactive equilibrium were estimated from 214Pb (351.92 keV) and 214Bi (609.31 keV). The gamma-ray energies of 212Bi, 212Pb and 228Ac were used to estimate activity of 232Th. The activity concentrations of 40K were measured directly by its own gamma rays (1460.81 keV). Details of the employed spectroscopic parameters are shown in Table 2.

Absorbed dose
Two approaches are used to estimate the external doses that result from deposition of radionuclides in soil surfaces: direct measurements and calculations based on radionuclide deposition densities.

Measurement of absorbed dose rates in air
Absorbed dose rates in air were measured 1m above the surface at
External hazard index (H_{ex})

Radiation exposure due to 226Ra, 232Th and 40K may be external. This hazard, defined in terms of external hazard index or outdoor radiation hazard index and denoted by H_{ex}, can be calculated using the equation (Beretka and Mathew 1985):

$$H_{ex} = \frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$

where C_{Ra}, C_{Th} and C_{K} are activity concentrations of 226Ra, 232Th and 40K, respectively in Bq kg^{-1}. The value of this index should be less than 1 mSv y$^{-1}$ in order for the radiation hazard to be considered acceptable to the public (Beretka and Mathew, 1985).

Internal hazard index (H_{in})

The internal hazard index (H_{in}) gives the internal exposure to carcinogenic radon and is given by the formula (Beretka and Mathew, 1985):

$$H_{in} = \frac{C_{Ra}}{185} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$

where C_{Ra}, C_{Th} and C_{K} are activity concentrations of 226Ra, 232Th and 40K, respectively, in Bq kg^{-1}. The value of this index should be less than 1 mSv y$^{-1}$ in order for the radiation hazard to have negligible hazardous effects to the respiratory organs of the public (Beretka and Mathew, 1985).

RESULTS AND DISCUSSION

γ-ray spectrum and nuclide identification

Various spectra that were generated from various samples from during spectrometric analysis were used to identify various radio nuclides present in the sample. A typical γ-ray spectrum is shown in Figure 1.

Based on the spectroscopic parameters employed for quantification (Table 2) and the gamma ray spectra for various samples (such as the one in Figure 1), several radionuclides were identified in the samples. Nuclide identification reports for all quarries were compiled and the activity concentrations of 226Ra, 232Th and 40K were isolated as in Table 3.

The general activity of 226Ra, 232Th and 40K in the collected samples were in the range of 43.1-360, 38.6-271.7 and 307.0-1780 Bq kg^{-1}, respectively. There was no particular relationship between activity of the radionuclides and depth of the point of collection of the sample. This could be attributed to the fact that there was mixing of rock debris during refilling of the quarries for formation of new soapstone which is again excavated after 5-10 years.

In all quarries, 40K had the highest activity concentration.

External hazard index (H_{ex})

Radiation exposure due to 226Ra, 232Th and 40K may be external. This hazard, defined in terms of external hazard index or outdoor radiation hazard index and denoted by H_{ex}, can be calculated using the equation (Beretka and Mathew 1985):

$$H_{ex} = \frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$

where C_{Ra}, C_{Th} and C_{K} are activity concentrations of 226Ra, 232Th and 40K, respectively in Bq kg^{-1}. The value of this index should be less than 1 mSv y$^{-1}$ in order for the radiation hazard to be considered acceptable to the public (Beretka and Mathew, 1985).

Internal hazard index (H_{in})

The internal hazard index (H_{in}) gives the internal exposure to carcinogenic radon and is given by the formula (Beretka and Mathew, 1985):

$$H_{in} = \frac{C_{Ra}}{185} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$

where C_{Ra}, C_{Th} and C_{K} are activity concentrations of 226Ra, 232Th and 40K, respectively, in Bq kg^{-1}. The value of this index should be less than 1 mSv y$^{-1}$ in order for the radiation hazard to have negligible hazardous effects to the respiratory organs of the public (Beretka and Mathew, 1985).

RESULTS AND DISCUSSION

γ-ray spectrum and nuclide identification

Various spectra that were generated from various samples from during spectrometric analysis were used to identify various radio nuclides present in the sample. A typical γ-ray spectrum is shown in Figure 1.

Based on the spectroscopic parameters employed for quantification (Table 2) and the gamma ray spectra for various samples (such as the one in Figure 1), several radionuclides were identified in the samples. Nuclide identification reports for all quarries were compiled and the activity concentrations of 226Ra, 232Th and 40K were isolated as in Table 3.

The general activity of 226Ra, 232Th and 40K in the collected samples were in the range of 43.1-360, 38.6-271.7 and 307.0-1780 Bq kg^{-1}, respectively. There was no particular relationship between activity of the radionuclides and depth of the point of collection of the sample. This could be attributed to the fact that there was mixing of rock debris during refilling of the quarries for formation of new soapstone which is again excavated after 5-10 years.

In all quarries, 40K had the highest activity concentration.
Table 3. Activity of radio nuclides 232Th, 226Ra and 40K in the various samples.

<table>
<thead>
<tr>
<th>Quarry name</th>
<th>Depth of sample collection point (m)</th>
<th>Activity (Bqkg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>232Th</td>
</tr>
<tr>
<td>Orenge</td>
<td>0.3</td>
<td>147.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>84.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>38.6</td>
</tr>
<tr>
<td>Nyaberi</td>
<td>4</td>
<td>263.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>100.2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>120.8</td>
</tr>
<tr>
<td>Ouma</td>
<td>4</td>
<td>93.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>258.4</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>15.8</td>
</tr>
<tr>
<td>Barongo</td>
<td>4</td>
<td>172.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>92.7</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>210.4</td>
</tr>
<tr>
<td>British</td>
<td>4</td>
<td>271.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>236.5</td>
</tr>
</tbody>
</table>

Figure 2. Bar graph showing average activity concentrations of 40K, 226Ra and 232Th from the five quarries.

All the average values were higher than the world wide average activity concentrations of 40K, 226Ra and 232Th which are 400, 35 and 30 Bqkg$^{-1}$, respectively (UNSCEAR, 2000).

Potassium activity varied widely between 245 and 1780 Bqkg$^{-1}$ due to heterogeneous soil characteristics. Figure 2 shows comparisons between the average activity concentrations of the radionuclides 40K, 226Ra and 232Th in the samples retrieved from the five quarries.

The variation of natural radioactivity levels at different sampling sites was due to the variation of concentrations of radionuclides in the geological formations. The younger granites represent the highest elevation while the older rock is relatively low. The Presence of such high radioactivity in younger granites may be attributed to the presence of relatively increased amount of accessory minerals such as zircon, iron oxides, fluorite and other radioactive related minerals. These minerals play an
Table 4. Absorbed dose rates measured 1 m above the surface at each quarry.

<table>
<thead>
<tr>
<th>Quarry name</th>
<th>Absorbed dose rates (nGyh⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orenge</td>
<td>483</td>
</tr>
<tr>
<td>Nyaberi</td>
<td>480</td>
</tr>
<tr>
<td>Ouma</td>
<td>557</td>
</tr>
<tr>
<td>Barongo</td>
<td>590</td>
</tr>
<tr>
<td>British</td>
<td>597</td>
</tr>
</tbody>
</table>

Table 5. Calculated absorbed dose rates (nGyh⁻¹) of the samples.

<table>
<thead>
<tr>
<th>Quarry name</th>
<th>Dose rates due to ²³²Th (nGyh⁻¹)</th>
<th>Dose rates due to ²²⁶Ra (nGyh⁻¹)</th>
<th>Dose rates due to ⁴⁰K (nGyh⁻¹)</th>
<th>Total absorbed dose rates (nGyh⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orenge</td>
<td>59.8</td>
<td>23.9</td>
<td>47.1</td>
<td>130.8</td>
</tr>
<tr>
<td>Nyaberi</td>
<td>120.3</td>
<td>27.4</td>
<td>28.5</td>
<td>176.2</td>
</tr>
<tr>
<td>Ouma</td>
<td>104.4</td>
<td>67.6</td>
<td>35.0</td>
<td>207.0</td>
</tr>
<tr>
<td>Barongo</td>
<td>93.2</td>
<td>45.1</td>
<td>28.3</td>
<td>166.6</td>
</tr>
<tr>
<td>British</td>
<td>158.6</td>
<td>31.4</td>
<td>17.5</td>
<td>207.5</td>
</tr>
</tbody>
</table>

Absorbed dose rates

The measured absorbed dose rates in air measured 1 m above the surface at each quarry are presented in Table 4. The mean measured absorbed dose rate for the five quarries was 541.4 nGyh⁻¹. This is about nine times higher than the world average value of 60 nGyh⁻¹ (UNSCEAR, 2000).

The absorbed dose rates due to terrestrial gamma rays 1 m above the ground were calculated using Equation (1). Other radionuclides such as ¹³⁷Cs, ²³⁵U, ²³¹Th, ²¹¹Bi and ²²²Na were neglected because they contribute very little to the total dose rates from environmental background (Kocher and Sjoreen, 1985). The results of the calculations are presented in Table 5.

The calculated average total absorbed dose rates due to the presence of ²²⁶Ra, ²³²Th and ⁴⁰K in each of the quarries were 130.8, 176.2, 207.0, 166.6 and 207.5 nGyh⁻¹ for Orenge, Nyaberi, Ouma, Barongo and British quarries, respectively. The calculated average absorbed dose rate for the five soapstone quarries was found to be 177.6 nGyh⁻¹. This is about 4 times higher than the world average of 43 nGyh⁻¹ (UNSCEAR, 2000). The measured absorbed dose rates in air were much higher than the calculated absorbed dose rates for all the quarries. This may be attributed to the fact that the measured absorbed dose rates may not have come wholly from the sampled rock. They could have originated from other rocks and soils on the surface. Also the measured absorbed dose rates may include the dose due to terrestrial sources. The contribution by each of the radionuclides ²²⁶Ra, ²³²Th and ⁴⁰K to the total absorbed dose rate at the quarries were 25% (46.0 nGyh⁻¹), 58% (106.3 nGyh⁻¹) and 17% (31.5 nGyh⁻¹) respectively as illustrated in Figure 3.

Annual effective dose rates, external (H_{ex}) and internal (H_{in}) hazard indices

The external hazard index was calculated using Equation (3). The average external hazard index from all the samples was 1.03. This average value is greater than the acceptable average value of unity (ICRP, 2000).

The internal exposure to ²²²Rn and its radioactive progeny is controlled by the internal hazard index (H_{in}) which is given by Equation (4). The average internal hazard index for all the samples is 1.27. For safe use of a material in the construction of human dwellings, H_{in} should be less than unity (ICRP, 2000).

The mean annual effective dose rate in all the samples is 0.44 mSv y⁻¹. The value is more than the average annual effective dose rate (5.62 µSv y⁻¹) received by artisanal gold miners at Osiri, Macalder, Mikei and Masara gold mines in South Nyanza (Odumo, 2009). Assuming that the quarry workers work in the quarries for 40 years, and the risk factor is 0.04 per Sv (ICRP, 2008), the excess lifetime cancer risk is 0.07%. The average
Figure 3. Percentage contributions to the total absorbed dose rates due to Thorium (232Th), Radium (226Ra) and Potassium (40K) from the samples.

Table 6. Comparison of absorbed dose rates in Tabaka soapstone quarries with other areas of the world.

<table>
<thead>
<tr>
<th>Country</th>
<th>Absorbed dose rates (nGyh$^{-1}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruri hill, Kenya</td>
<td>949</td>
<td>Achola (2009)</td>
</tr>
<tr>
<td>Minas, Brazil</td>
<td>220</td>
<td>Malanka et al. (1993)</td>
</tr>
<tr>
<td>Firtina valley, Turkey</td>
<td>77</td>
<td>Kurnaz et al. (2007)</td>
</tr>
<tr>
<td>Xizhuang, China</td>
<td>124</td>
<td>Yang et al. (2005)</td>
</tr>
<tr>
<td>Eskisehir, Turkey</td>
<td>167</td>
<td>Orgun et al. (2005)</td>
</tr>
<tr>
<td>Tabaka, Kenya</td>
<td>178</td>
<td>Present study</td>
</tr>
</tbody>
</table>

value and all the annual effective dose rate values in Table 7 are less than 5.705 mSv y$^{-1}$ obtained by Achola (2009) in a radiological survey carried out at Lambwe east location and are also less than 1 mSv y$^{-1}$ which is the annual effective dose rate limit for the public exposure (ICRP, 2000). However care has to be taken since it is believed that radiation at any level poses a risk. The calculated values of annual effective dose rates, external and internal hazard indices are presented in Table 7.

Conclusions

The activity concentrations of 226Ra, 232Th and 40K were all found to be above the world’s average. In all quarries sampled, 40K had the highest activity concentration. The measured average absorbed dose rate in air (541.4 nGy h$^{-1}$) at the soapstone quarries was 9 times higher than the world measured average (60 nGy h$^{-1}$) and 2.9 times higher than the calculated average.

The calculated average absorbed dose rate in air (177.6 nGy h$^{-1}$) due to gamma-ray emitters in the soapstone quarries was 4 times higher than the world average (43 nGy h$^{-1}$). Thorium and potassium contributed the highest and lowest values respectively to the average absorbed dose rates in the quarries. The averages for both the external (1.03) and internal (1.27) hazard indices exceeded a unity, the limit recommended by ICRP 2000. Therefore soapstone rock may not be suitable for construction of houses. The annual effective dose rate in
Table 7. Annual effective dose rate, external and internal hazard indices.

<table>
<thead>
<tr>
<th>Quarry name</th>
<th>Average effective dose rate (mSv(^{-1}))</th>
<th>External hazard index (H(_{ex}))</th>
<th>Internal hazard index (H(_{in}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orenge</td>
<td>0.321</td>
<td>0.73</td>
<td>0.88</td>
</tr>
<tr>
<td>Nyaberi</td>
<td>0.432</td>
<td>1.02</td>
<td>1.19</td>
</tr>
<tr>
<td>Ouma</td>
<td>0.507</td>
<td>1.20</td>
<td>1.63</td>
</tr>
<tr>
<td>Barongo</td>
<td>0.408</td>
<td>0.97</td>
<td>1.25</td>
</tr>
<tr>
<td>British</td>
<td>0.509</td>
<td>1.21</td>
<td>1.41</td>
</tr>
</tbody>
</table>

the quarries (0.44 mSv\(^{-1}\)) was less than 1 mSv\(^{-1}\), the limit recommended for the public (ICRP, 2000), hence soapstone products are safe to consumers.

ACKNOWLEDGEMENT

We acknowledge the Kenya Radiation Protection Board for allowing us to use the National Radiation Laboratory.

REFERENCES

