DRYING CHARACTERISTICS AND SOME QUALITY ATTRIBUTES OF RASTRINEOBOLA ARGENTEA (OMENA) AND STOLEPHORUS DELICATULUS (KIMARAWALI)

Oduor-Odote PM *, Shitanda D, Obiero M and G Kituu

*Corresponding author email: podote@kmfri.co.ke

1Kenya Marine and Fisheries Research Institute, Box 81651, Mombasa.

2Jomo Kenya University of Agriculture & Technology, BEEDS, Box 62000, Nairobi
ABSTRACT

Rastrineobola argentea common name Omena and Stolephorus delicatulus common name Kimarawali are fishes that live in the freshwater and marine waters, respectively. Both are small in size, move in schools and are landed in large numbers during their peak landing seasons. Both go by the name Dagaa or sardines. In this study, they were dried in a locally fabricated solar tunnel dryer and on a drying rack in Gazi, South coast of Kenya for 14 hrs and their drying characteristics were evaluated using drying curves. Organoleptic analysis was carried out to compare some attributes of unsalted rack dried with salted spiced solar dried Kimarawali. The final moisture content of unsalted tunnel dried Kimarawali, unsalted rack dried Kimarawali, unsalted rack dried Omena and unsalted solar dried Omena was 0.161 kg/kg dry basis (db) (13.9% wet basis: wb), 0.163 kg/kg db (14.0% wb), 0.137 kg/kg db (12.7% wb) and 0.145 kg/kg db (12.1 wb)% respectively after 14 hrs of drying. The fish in the solar dryer attained moisture levels of 15% suitable for prevention of mould growth in 8 hours. The drying rate constants for unsalted tunnel dried and rack dried Omena were 0.23 and 0.22 with coefficient of determination (R²) values of 0.899 and 0.940, respectively. The corresponding drying rate constants for Kimarawali were 0.18 and 0.21 with coefficient of determination (R²) values of 0.814 and 0.932 respectively. There were no significant differences in drying rate after 14 hrs of drying for the two types of fishes and drying methods. The mean drying temperature for the tunnel dryer and drying rack during the 14 hrs of drying were 40.2±9.42 and 32.1±2.71 °Celsius respectively. The corresponding relative humidity values were 53.7%±20.34 and 70.08%±2.72, respectively. There was no significant difference in the quality attributes between the tunnel and rack dried fishes. The score for overall acceptability was however higher for the spiced tunnel dried Kimarawali.

Key words: Dryer, Organoleptic, Quality, Humidity, Temperature
INTRODUCTION

Fish preservation in Kenya must be elastic to involve newer techniques than the traditional methods. Although fresh fish is currently preferred by consumers and is available in major urban centres and in villages in the vicinity of landing sites, cured fish whether in the form of smoked, sun-dried or salted products are heavily marketed in remote rural areas, which are far from major fisheries and distribution routes.

Freshwater sardine commonly known as Omena (Rastrineobola argentea) comprises 44% of total catch of fish from Lake Victoria on the Kenyan side. Dried form of this fish is the most widespread commodity with a relatively long shelf life, and can be sold in small portions to meet needs of the rural poor [1]. In the marine sector, another “Omena-like” sardine commonly known as Kimarawali, (Stolephorus delicatulus) is also processed by drying [2]. Traditionally, both Omena and Kimarawali are dried by laying the fish on the ground, resulting in their contamination with sand and animal waste. This lowers the quality of the dried products as well as income. Drying racks, which are raised ventilated platforms have been used occasionally in the drying of fish. The racks rely on air circulation around the product to evaporate the excess moisture, and their use reduces soiling of fish during drying. However, infestation by insects, aerial contamination and rain remain a problem during rack drying [3].

Efforts to improve the drying of Omena in Lake Victoria by introducing racks are currently practised in Suba District [4, 5]. In the Coastal region, rack drying of fish has been introduced in Gazi [6]. A further improvement to rack drying is the use of solar dryers where drying in the enclosed chamber prevents insect infestation and rain, dries fish faster and more hygienically [7]. Value addition can be undertaken by spicing and salting the fish [8]. Spices are grown locally and have been known to enhance aroma and flavour of foods [9]. Salt is a well known flavour agent and a combination of salt and spices enhances taste [8].

Drying of fish is generally characterized by the constant and falling rate periods. In the constant rate period, drying continues at a constant rate equal to the rate of evaporation from a free water surface. Initially drying is governed by evaporation from the surface or near surface areas [10, 11]. In the falling rate period, moisture transfer takes place largely by diffusion in the material. Since diffusion is generally slower than surface evaporation, diffusion limits the drying rate. This period is generally characterized by a slow decreasing rate of drying at least partially due to the fact that the drier the product, the further the water must diffuse to reach the surface [11, 12].

In this study, therefore, the drying characteristics of solar tunnel and rack dried Omena and Kimarawali were evaluated. Organolaptic quality was also evaluated for salted spiced dried Kimarawali.
MATERIALS AND METHODS

Rack Dryer
The traditional rack dryer was constructed with some modifications [3]. The rack was 10 m long, 1 m wide and 1 m high and was made from mangrove poles that provided the support frame. The top was covered by a layer of nylon manila mesh size 1.2 mm. The nylon manila stretched from end to end not allowing sagging when fish was placed, owing to the inter-linked mangrove support structure below it. The mesh was chosen because it does not rust and is therefore ideal for use by the sea (Figure 1).

Solar Tunnel Dryer
The solar tunnel dryer was constructed with modifications [7, 13]. The dryer was designed and fabricated at Jomo Kenyatta University of Agriculture and Technology (JKUAT) in consultation with Kenya Marine and Fisheries Research Institute (KMFRI). It had 3 main components namely solar collector, drying chamber and power system (Figure 2).
Site selection
This was a community based project. The site selected was in Gazi area of South coast of Kenya. The area was chosen because the community there had accepted implementation of the project. Gazi is set on a mangrove filled bay just off the road going South Coast, about 50km from Mombasa town and lies 4°25’, 39°30’E. It is in Kwale district of the Coast Province of Kenya and the area has typical coastal weather.

Sample Preparation
Freshly harvested Ōmena were purchased in Kusa beach of Nyakach division in Kisumu District and iced upstream by specially hired fishermen. They were given two ice boxes (Coleman) of 100 litre capacity. One ice box contained crushed ice used for icing the fish upon fresh hauling from water. During icing, a thin layer of ice was laid at the bottom of the ice box followed by fish and finally an ice layer at the top. The ice boxes with fish were then sealed. The fish were transported for about 13 hours from Lake Victoria for solar drying at Gazi.

Freshly harvested Kimarawali were purchased at Jasini village in Vanga. They were iced and transported for about 2 hours by road to Gazi. A total of 50 kg of fish was preserved in each of the ice boxes.

The fish was washed in freshwater to remove dirt and drained in baskets, then transferred to the solar tunnel dryer and drying rack. About 48kg each of Ōmena and Kimarawali were used for the experiment. Both were divided into 3 parts of 16 kg each. One part of each fish was immersed in 2% brine solution for 10 minutes (Salted Ōmena or Salted Kimarawali). The second part of similar weight was placed in a solution containing 2% salt and 0.5% hot pepper (Salted Spiced Ōmena and
Kimarawali) and treated the same way as the first sample. The third batch was only washed once more in water (Unsalted Ōmena and Kimarawali).

Solar Drying of Fish

The drying characteristics were determined with some modifications [13]. The average wet weight of Kimarawali and Ōmena was 3.5 g ±1.3. All the 3 batches were removed from the respective solutions and spread in clearly demarcated areas on wire mesh trays to remove excess water. Only a few batches were selected because of the many samples. The selected batches were Rack Unsalted Ōmena, Tunnel Unsalted Ōmena (RUO, Tuo); Rack Unsalted Kimarawali, Tunnel Unsalted Kimarawali (RUK, TUK). They were placed on clearly demarcated areas in the drying rack and the tunnel dryer and labeled clearly. Salted Spiced Tunnel Dried Kimarawali (TSSK) was also selected but used for organoleptic comparisons only.

From each selected batch of fish being dried, 6 fishes were taken at random and their weight determined at the start of drying. Weight loss, drying air temperature and humidity inside the drying cabinet and ambient were measured after every 2 hours. Temperature and humidity during drying was measured using a DICKSON TH300 (USA) and weight using an electronic SALT PETER field balance (SALTPETERSK 2000-BLACK & DECKER, USA). On day 1, measurements were taken from 13.00 hr to 17.00 hr and from 08.00 hr to 16.00 hr on day 2. The fishes were left in the dryer overnight and the first reading taken at 08.00 hrs. The fish in the drying rack were kept inside overnight and returned to the rack at 06.00 hr the following day. The measurements were stopped when constant weight was observed in 3 consecutive weighings. At every weighing time, the weighed fish were removed and wrapped in aluminium foil, placed in polythene bags, labelled clearly and transported to KMFRI where they were placed in a freezer for moisture analysis. The data collected was used to plot graphs of moisture content (kg/kg wb) and moisture ratio against drying time [13]. The inlet and outlet dryer fans in the solar tunnel dryer were turned on during drying on day 1 as the weather was occasionally damp.

Moisture content was determined and expressed as dry basis moisture content using equation 1, where M is moisture content (kg/kg, db), W_t is weight of wet sample and W_d weight of dry sample [13, 14].

$$M = \frac{W_t - W_d}{W_d}$$ (1)

Based on the Newton model of thin layer drying for material drying under varying relative humidity as in solar drying, the moisture ratio equation can be expressed as equation 2 where MR is the moisture ratio (dimensionless), M_0 is the initial moisture content (kg/kg, db), k is the drying rate constant (per hour) and t is the drying time (hour) [15,16,17].

$$MR = \frac{M}{M_0} = \exp(-kt)$$ (2)
Sensory Evaluation
This was carried out with some modifications [18]. The semi-trained panelists were drawn from KMFRF staff. The organoleptic parameters that were evaluated included appearance, taste and texture with provision for a score on overall acceptability. A hedonic scale with scores of 1-5 (1=lowest acceptability and 5= highest acceptability) for various attributes was used. A score below 2 was considered not acceptable. The fish samples were coded with numbers of 2 digits indicating no information about the sample detail to avoid bias in preferred treatments.

Analysis of variance (ANOVA) was carried out on the data obtained using statistical program NCSS 2000 (NCSS, Utah, USA) and significance level set at 0.05 (α = 0.05).

RESULTS

Drying Characteristics
The drying characteristics were shown in Figures 3-5 and the drying equations are shown in Table 1. The variation of moisture content with time for Omena and Kimarawali drying in the solar tunnel and rack dryer are shown in Figure 3. The moisture curves for Omena and Kimarawali dried in the solar tunnel dryer and on the rack are presented in Figure 4. The change in the natural log of moisture ratio versus time for the solar tunnel and rack drying of the fish is presented in Figure 5. Moisture dropped from 2.71 kg/kg db (73.0% wb) for TUO and RUO to 0.145 kg/kg db (12.7% wb) for TUO and 0.137 kg/kg db (12.1% wb) for RUO; from 2.417 kg/kg db (70.7% wb) to 0.163 kg/kg db (14.0% wb) for RUK and 2.549 kg/kg db (71.7% wb) when fresh to 0.161 kg/kg db (13.9% wb) after 14 hrs of drying for TUK. The moisture content of TUO, RUO, RUK and TUK after 8 hrs was 0.170 kg/kg db (14.8% wb) for TUO, 0.230 kg/kg db (18.6% wb) for RUO, 0.230 kg/kg db (19.5% wb) for RUK and 0.180 kg/kg db (15.1% wb) for TUK.
Figure 3: Variation of moisture content with drying time

Figure 4: Variation of moisture ratio with drying time
Figure 5: Natural log moisture ratio drying curves

For Omena dried in the solar tunnel dryer and drying rack (TUO and RUO) the drying rate constant was 0.23 and 0.22 respectively and the coefficient of determination (R^2) was 0.899 for TUO and 0.94 for RUO. The drying rate constant for Kimarawali dried under similar conditions was 0.18 and 0.21 for TUK and RUK respectively with R^2 values of 0.814 and 0.932. The slopes of the drying equations were -0.238 and -0.227 for TUO and RUO respectively with coefficient of determination (R^2) of 0.899 and 0.814 respectively. For TUK and RUK the slopes were -0.182 and -0.216 respectively. The coefficients of determination (R^2) were 0.814 and 0.932 respectively. There were no significant differences ($p > 0.05$) in drying rate during drying after 14 hours of drying.

Humidity and temperature during drying are as shown in Figure 6. The mean temperature in the solar tunnel dryer (SD) and drying rack (DR) (in parentheses) during the first 8 hrs in degree Celsius was 36.62 ± 8.39 (31.84 ± 3.33) and 46.2 ± 9.0 (32.7 ± 1.80) in the last 6 hrs. The mean drying temperature in the 14 hrs period was 40.2 ± 9.42 (32.1 ± 2.72). The mean humidity in the solar tunnel dryer and drying rack (in parentheses) during the first 8 hrs was 61.58% ± 18.41 (75.22% ± 14.35 and 40.7% ± 9.80 (61.5% ± 6.6). The mean humidity in the 14 hrs period was 53.7% ± 20.3 (70.1% ± 2.7). Humidity in the drying rack was always higher.
Sensory evaluation

Data for sensory evaluation is reported for RUK and TS SK to compare unsalted rack dried Kimarawali with salted spiced solar dried Kimarawali. Organoleptic scores shown in Table 2 indicated that there was no significant difference (p > 0.05) by pairwise comparison between sample groups with respect to attributes appearance, taste, texture and overall acceptability.

DISCUSSION

There is a reduction in moisture content with time for both types of drying environments. More rapid drying took place in the first 8 hours (Figures 3-5). Drying rate is a function of air velocity, air humidity, temperature, product surface area, amount of heat transferred from air to product per unit of time and other variables like heat flow to the product [10, 11, 12, 19]. The predominant factor that contributes to drying is heat, which causes evaporation of water from the fish, while the contribution of air in drying is effective when the moisture is at the surface [10, 11, 12, 19].

Omena and Kimarawali drying whether in the drying rack or solar tunnel dryer fell in both the constant rate and falling rate period. The constant rate drying period was in the first 8 hours of drying and the falling rate period was after the 8th hour till the 14th hour (Figures 3-5). The moisture loss during the first 8 hours of drying was from 2.709 db (73.0% wb) to 0.173 db (14.8% wb) in T U O and 2.709 (73.0%) to 0.228 (18.6%) in R U O. In R U K it was from 2.417 db (70.7% wb) to 0.242 db (19.5% wb) and from 2.549 (71.7%) to 0.177 (15.1%) in T U K.
The dryer and the rack. The mean temperatures were 36.8°C drying through both temperatures were high enough to cause drying of the fish in both the drying rack and solar tunnel dryer was not significant during the first 8 hrs of transfer and effect of temperature on relative humidity. The temperature difference in the drying rack and solar tunnel dryer was 40.66% ± 18.99 and 46.2 ± 8.99 respectively while the mean temperature in the solar tunnel dryer during the constant rate period was 36.62°C. During this period, water is transferred by forced convection over the surface area to volume ratio of smaller fish is normally higher resulting in faster drying rates at the lower temperatures experienced in this study. Thin or smaller fish would normally dry faster than bigger or thicker ones. The effects of temperature on drying rate result from the effect of temperature on heat drying rate by limiting the amount of water the air can absorb [19].

Such high values of humidity in the ambient air suggested that its role was minimal in influencing drying rate because humidity influences moisture level unsuitable for mould growth within 8 hour of drying. The mean moisture content [7,19]. The solar tunnel dryer, therefore, dried the fish to the required 15% moisture level and moulds rarely grow below 15% moisture respectively. Fresh fish typically contain 75 to 85% water. Most spoilage bacteria which had a surface area to body ratio of smaller fish were considered ideal in the drying of fish [7]. These conditions however do not consider small fish like Omena and Kimarawali whose surface area to body ratios are 3008 and 31.80°C ± 8.39 and 32.66 ± 1.78 respectively.
The evaporation method coupled with direct radiation into the cabinet dryer. Lower humidity and the high surface area volume ratio of the fish were also responsible. The equally high ambient temperature surrounding the rack and the high surface area to volume ratio of Omena and Kimarawali was responsible for the relatively fast drying of Omena and Kimarawali in the drying rack.

The rack was located by the sea side where wind is strong. The sea side wind increased the drying rate by removing more surface moisture and creating room for more moisture migration to the surface. However, the drying potential still needed to be increased by heat, which for purposes of drying Omena and Kimarawali which are small in size, was high enough, hence the relatively faster drying or weight loss in the drying rack. Although wind alone can cause surface drying and might not influence the internal water content of the fish significantly, the rapid drying rate is because air currents at the height of the raised rack are strong and pass freely over and below the fish, picking any available moisture, thereby increasing moisture migration to the surface of the fish [3].

Fish drying contributes towards fish preservation by dehydrating the fish. Flavour, odour and taste in fish are influenced by different extractives [23, 24, 25, 26, 27]. Kimarawali is only washed and sun-dried on the ground or mats at the coast. Salted spiced solar dried Kimarawali would provide a new valued product. The organoleptic scores for unseasoned rack dried Kimarawali and salted spiced solar dried Kimarawali as shown in Table 5 indicated that the scores for appearance, taste, texture though not significantly different were above 3 and fell in the range for accepted products. The scores for overall acceptability for unseasoned rack dried Kimarawali was 2.8 while that for salted spiced solar dried was 3.5 showing a better preference for the valued added Kimarawali product. The scores for taste was 3.8 against 3.1 for the unseasoned one. The preference was confirmed further by scores for overall acceptability which were also high at 3.5.

Findings where enclosed solar dryers have given superior quality have been reported [11, 12, 28]. If a valued added fish product can have high scores during organoleptic assessment then the possibility of acceptance of the products in the market is there. The lack of significant difference in the overall acceptability score could provide need for further work to optimize the concentration of salt and spices required to produce the desirable effect.
CONCLUSIONS

The solar tunnel dryer dries fish to the desired moisture content much faster than the rack dryer, and therefore saves time. Rack drying which involved bringing in the fish every evening was labour intensive. With the rack dryer placed by the sea and with strong wind value, drying can be as competitive as in the solar tunnel dryer for small fishes like Omena and Kimarawali. Omena and Kimarawali are known for high surface to volume ratios. The introduction of spiced salted Kimarawali has chances of acceptance as a new product. Production conditions need to be optimized further. Value added Kimarawali products can later be produced on a large scale since they are acceptable. The rack dryers can be introduced in areas where small fishes are landed and where wind value is strong.

ACKNOWLEDGMENT

The authors would like to thank the Lake Victoria Research Initiative (VicRes) and Lighthouse Foundation (Germany) for funding, the Director Kenya Marine Fisheries Research Institute (KMFRI), Jomo Kenyatta University of Agriculture and Technology (JKUAT) for technical support, Cyriac Odioli for data analysis, Maurice Omega for technical assistance, Mpaaji ni Mungu Women Group in Gazi and Mzee Rashid of Jasini Vanga for their time input during the project.
Table 1: Moisture ratio constants, coefficients and slopes during drying of unsalted fish

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Drying rate constants K (hr⁻¹)</th>
<th>Coefficient of determination (R²)</th>
<th>Ln moisture ratio slopes</th>
<th>Coefficient of determination (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUK</td>
<td>0.23</td>
<td>0.899</td>
<td>-0.238</td>
<td>0.899</td>
</tr>
<tr>
<td>TSSK</td>
<td>0.22</td>
<td>0.940</td>
<td>-0.227</td>
<td>0.941</td>
</tr>
<tr>
<td>TUK</td>
<td>0.18</td>
<td>0.814</td>
<td>-0.182</td>
<td>0.814</td>
</tr>
<tr>
<td>RUSK</td>
<td>0.21</td>
<td>0.932</td>
<td>-0.216</td>
<td>0.932</td>
</tr>
</tbody>
</table>

Table 2: Appearance, taste, texture and overall acceptability of unsalted rack dried and salted spiced solar dried Kimarawali (n=9)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Appearance</th>
<th>Taste</th>
<th>Texture</th>
<th>Overall acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUK</td>
<td>3.8</td>
<td>3.1</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>TSSK</td>
<td>3.5</td>
<td>3.8</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>p-value</td>
<td>0.552</td>
<td>0.119</td>
<td>0.632</td>
<td>0.21</td>
</tr>
</tbody>
</table>
REFERENCES

12. Chavan BR, Yakupitiyage A, Kumar S and SK Rakshit

14. AOAC.

16. Kingsly RP, Goyal RK, Manikantau MR and SM Ilyas

17. Uluko H, Kanali CL, Mailutha JT and D Shitanda

18. Oduor-Odote PM and M Obiero

19. Wheaton FW and TB Lawson

20. Olgun H and S Kose

22. Mujaffar S and CK Sankat

23. Chung YH, Yeung WC, Kim JS and F Chen

24. Chavan BR, Yakupitiyage A, Kumar S and SK Rakshit

26. AOAC.

27. Rafiee SH, Keyhani A, Sharifi A, Jafari H, Mobli H and A Tatabaeefar

28. Kingsly RP, Goyal RK, Manikantau MR and SM Ilyas

29. Uluko H, Kanali CL, Mailutha JT and D Shitanda

30. Oduor-Odote PM and M Obiero

31. Wheaton FW and TB Lawson

32. Olgun H and S Kose

34. Mujaffar S and CK Sankat

35. Chung YH, Yeung WC, Kim JS and F Chen

36. Chavan BR, Yakupitiyage A, Kumar S and SK Rakshit

37. Kituu GM, Shitanda D, Kamali CL Mailutha JT, Njoronge CK, Wainaina JK and PM Oduor-Odote

38. AOAC.

40. Kingsly RP, Goyal RK, Manikantau MR and SM Ilyas

41. Uluko H, Kanali CL, Mailutha JT and D Shitanda

42. Oduor-Odote PM and M Obiero

43. Wheaton FW and TB Lawson

44. Olgun H and S Kose

46. Mujaffar S and CK Sankat

47. Chung YH, Yeung WC, Kim JS and F Chen

