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ABSTRACT 
 
The African indigenous vegetables (AIVs) are excellent sources of β-carotene, vitamin 
C, iron as well as protein, minerals, fiber and bioactive compounds. In the recent past, 
AIVs have gained commercial importance as a result of increased awareness of their 
nutritional and health benefits and are now produce in both formal and informal 
marketing channels. One of the challenges in production, marketing and consumption of 
AIVs is that they are highly perishable and there is inadequate capacity for their storage 
in fresh state. This is because most storage techniques require low temperatures, which 
are nonexistent for AIVs in Kenya. Minimal processing can enable AIVs produced in far 
flung locations to be stabilized and transported to the markets in the urban centres. 
However, this can affect the color, texture, flavor, and nutritional quality of AIVs. This 
study aimed at examining the influence of harvest maturity and minimal processing 
techniques on the nutritional, phytochemical and anti-oxidant capacity in stinging nettle, 
amaranth and black nightshade. The results indicated significant differences between 
treatments and stages of maturity. Results further show that the highest contents of β-
carotene in fresh state, at young stage was 47.82 mg/100g in amaranth and mature stage 
was 71.22 mg/100g in black night shade. For vitamin C, the highest content was 142.06 
mg/100g in stinging nettle at young stage while amaranth had the highest content of 
vitamin C at mature stage as 193.52 mg/100g. The highest phenol content in fresh state 
was in black night shade at 1.09 g/100g and 1.29 g/100g at young stage and mature stage 
respectively. Among the processed, the highest content of vitamin C was seen in Freeze-
Dried Unsliced Unblanched black nightshade at both young and mature stage as 
86.64mg/100g and 111.14mg/100g respectively. For β-carotene, the highest content was 
reported on Freeze-Dried Unsliced Blanched in amaranth as 30.24mg/100g at young 
stage and mature stage had 57.12mg/100g in black nightshade.  
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INTRODUCTION 
 
African Indigenous Vegetables (AIVs) are gaining prominence as an excellent source of 
vitamins A and C, iron as well as protein, minerals and fiber. In addition, AIVs have 
been found to be high in antioxidants and other health related phytochemicals [1, 2]. 
 
The AIVs have gained commercial importance over the past 15 years as a result of the 
enormous growth in demand and market [3]. The AIVs are now retailed in supermarket 
chains and other lucrative markets, resulting in better incomes. To respond to this 
increase in demand, there has been a tremendous increase in production of AIVs in the 
country. For instance, 200 AIV varieties have been documented [4] and many of these 
are either cultivated or gathered from the wild [5]. 
 
High postharvest losses are incurred during harvesting, transport and retailing due to lack 
of adequate capacity to maintain cold chains in these AIVs [6]. The high perishability is 
mainly attributed to the high moisture content. In addition, large portions are lost after 
harvesting due to poor handling and marketing conditions. In Africa and Kenya in 
particular, a significant portion is wasted during the in-season abundance [6, 7]. 
 
Use of processing technologies can increase the shelf life of AIVs by maintaining quality, 
improve safety and thus prevent losses.  Minimal processing of AIVs has the potential to 
create new market opportunities with employment at various levels and maximize returns 
from fresh produce. Minimalprocessing, however, can affect the color, texture, flavor, 
and nutritional quality. Hence, there is need to determine the effect of minimal processing 
on the nutritional and phytochemical qualities of some AIVs. 
 
The objective of this study was to evaluate the influence of harvest maturity and minimal 
processing on the nutritional and phytochemical contents, and anti-oxidant capacity 
ofstinging nettle, amaranth and black nightshade. The AIVs; amaranth and black 
nightshade, were selected because of their higher consumption and availability in the 
market whereas stinging nettle was selected for comparison due to its traditional 
consumption as an AIV. 
 
MATERIALS AND METHODS 
 
Plant material 
The study was carried out on Amaranthus dubius (Amaranth), Solanumscabrum (Black 
nightshade) and Urtica dioica (stinging nettle). Amaranth and black nightshade seeds 
were purchased from Simlaw seeds company, Kenya and grown in a randomized 
complete block design in an open-air field at the Jomo Kenyatta University of 
Agriculture and Technology (Juja, Kenya), experimental research farm.  The seeds were 
directly sown into furrows at an inter-row spacing of 40cm. Two weeks after 
germination, the plants were thinned to a spacing of 15cm between the plants. During 
planting, compost manure was sprinkled at the rate of 10 tonnes/hectare.  Planting was 
done during the month of December 2016 - February 2017. Stinging nettle was sourced 
from a commercial farmer in Juja farm. 
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Harvesting and sample preparation 
Leaves of the AIVs were harvested at two stages: young stage (5weeks) and mature stage 
(10weeks) after planting. After harvesting, AIVs were washed, with potable water, and 
allowed to drain the excess water, then divided into four portions for minimal processing 
treatments. Treatments involved blanching and unblanching, slicing and unslicing of leaf 
samples then subjecting them to either solar or freeze-drying. Fresh samples (no 
treatment) were used as a control. Slicing of the samples involved cutting the fresh leaves 
into small pieces of dimensions approximately 0.3cm × 0.5cm thickness. Blanching was 
done on the sliced and unsliced samples using hot water at 95±1ᵒC for 30seconds with 
the ratio of 1:7 vegetables to water (g/ml) according to the method by Tanongkankit et 
al. [8]. The blanched samples were removed and immediately dipped in ice cold water 
(4ᵒC) to stop any enzymatic activity. The blanched samples were then left in a wire mesh 
bucket to drain water. These samples were then solar dried or freeze-dried together with 
the unblanched samples. 
 
Drying processes 
Solar-drying 
The processed AIV samples were spread in a single layer in 40 x 60 cm rectangular 
chambers. The solar drier structure measured 185 cm wide by 273 cm long by 255 cm 
high with door dimensions measuring 60 cm wide by 180 cm high. The top part of the 
structure was semicircular in shape with a radius of 50 cm and was entirely covered with 
a polyvinyl chloride (PVC) material. The PVC material filters radiation which can 
destroy light sensitive nutrients in the dried samples [9]. The drying chamber temperature 
ranged between 42 and 63ᵒC while that of the solar dryer’s leaf collector was between 40 
and 73ᵒC. Moisture content (M.C.) of the AIV leaves was determined during and after 
drying. Drying was finalized when the vegetables were brittle and the dried samples were 
stored in zip lock bags at -20ᵒC for further analysis. Experiment was carried out in 
replicates and all results expressed in dry weight (dw) except antioxidant activity which 
was expressed in fresh weight (fw) basis. 
 
Freeze-drying 
A freeze-drier (Alpha1-4 LD plus-Martin Christ Model-101541; Germany) was used. 
Processed samples were placed in airtight ziplock bags and frozen in a freezer at -21ᵒC 
for 72hrs. Before placing in a freeze-drier, zip lock bags were perforated to attain several 
vents. These allowed good balance of pressure and temperature inside and outside the 
bags during drying. The initial and final drying were carried out at temperature and 
pressure conditions recommended by the drier manufacturer, which were -41ᵒC, 0.11 
mbar, -47ᵒC, 0.055 mbar, respectively for 48hrs.   
 
Determination of moisture content 
The moisture content was determined according to method 984.25 [10]. 
 
Determination of Crude fiber 
Two grams of the sample, initial weight(w0) of vegetable was weighed into a conical 
flask and 200mL of 1.25% sulphuric acid, added and the solution was boiled for 1hour. 
The content was then filtered using a glass wool and washed with hot water. The residue 
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was   transferred to a 500mL conical flask and 200mL of 1.25%NaOHwas added. The 
solution was boiled for 1hour and filtered using a glass wool. The residue was then 
washed with 7mL each of hot water, 1%HCL, methanol and petroleum ether and air dried 
for about 30minutes. The glass filter was then dried in an oven at 105ᵒC for 1hour, and 
the first weight (w1) recorded. The glass filter was then put in a muffle furnace at 600ᵒC 
for 1hour, and left to cool at room temperature then second weight (w2) recorded. The 
crude fiber was then calculated as follows: 
 

 
Where 
w0 - initial weight of the sample 
w1 – weight of the extracted fiber before ashing 
w2 – weight of the fiber after ashing 
 
Determination of Beta carotene 
Two grams of AIV samples were weighed and extracted with about 10mL acetone by 
grounding thoroughly in a mortar and pestle. The acetone extract was then transferred to 
100mL volumetric flask and the residue extracted again, with about 10mL acetone. This 
was repeated until the residue no longer gave orange color to acetone. The combined 
extract was made to 100mL mark. Twentyfive mL of the extract was evaporated to 
dryness on a rotary vacuum evaporator and the residue dissolved in about 1ml petroleum 
ether. The solution was introduced into chromatographic column that was packed with 
cotton wool and silica gel and eluted with about (10Ml) petroleum ether and collected up 
to 25mL. The absorbance of the solution was determined at 440nm using UV-vis 
spectrophotometer (Shimadzu model UV-1601 PC, Kyoto, Japan) and plotted against 
their corresponding standard concentrations. 
 
Determination of Vitamin C content 
Five grams of the sample was weighed and extracted with 0.8% metaphosphoric acid by 
grinding in a mortar and pestle. The extract was then made to 20 mL with 0.8% 
metaphosphoric acid and centrifuged at 10000 rpm for 10 minutes. The supernatant was 
filtered and diluted with 10 mL of 0.8% metaphosphoric acid. This was then filtered 
using cotton wool and micro-filtered through 0.45 µ filter and 20µL injected into the 
HPLC. High-performance liquid chromatography analysis was done using Shimadzu 
(10A model; Tokyo, Japan) and a UV-Vis detector. The mobile phase was 
0.8%metaphosphoric acid, at 1.1mL/min flow rate and wavelength of 266.0 nm. 
 
Extraction of total phenols, total flavonoids and antioxidants 
Five grams of samples were weighed into amber-colored bottles containing 50 mL of 
analytical grade methanol and vortexed for 3 hr. The solution was incubated in darkness 
for 48–72 hr at room temperature. The extracts were centrifuged for10 min at 
13,000×g/relative centrifugal force (RCF) and supernatants used to determine the total 
phenolic content and antioxidant capacity. 
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Determination of total phenolic content 
Total phenolic content was determined by the Folin–Ciocalteu colorimetric method [11] 
with gallic acid as the standard. Two milliliters of 10% (v/v) Folin Ciocalteu reagent and 
4 mL of 0.7 mol/L sodium carbonate were added to 1 mL of prepared sample extract. 
The mixture was vortexed and allowed to stand at room temperature for 2 hrs. The 
absorbance was measured at 765 nm using UV-Vis spectrophotometer (Shimadzu UV–
1240), and results were expressed as gallic acid equivalent (GAE), milligrams/100 g of 
dry matter. 
 
Determination of total flavonoid content 
Colorimetric method was used for determination of flavonoids as described by Jagadish 
et al. [12] with slight modification. To a 10 ml volumetric flask, 1 ml of plant extract 
was taken and 3mL of 5% sodium nitrite solution was added. After 3 minutes, 3 mL of 
10% aluminum chloride was added to the mixture, which was kept at room temperature 
for 5 more minutes, followed by the addition of 2ml of 1M sodium hydroxide. The 
mixture was vigorously shaken for 5 min and the volume made up to 10ml with water. 
Absorbance was measured at 415nm using UV-Vis spectrophotometer (Shimadzu model 
UV-1601 PC, Kyoto, Japan). The total flavonoid was quantified using quercetin standard 
and results presented as quercetin equivalent (QE)/g. 
 
Determination of antioxidant activity 
The free radical-scavenging activity was determined using diphenylpicrylhydrazyl 
radical (DPPH) according to Ayoola et al. [13]. The following concentrations of the 
extract were prepared, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0 and 5mg/ml in methanol in cuvette 
placed in the spectrophotometer.  One milliliter of the extract was placed in a test tube; 
3 mL of methanol was added followed by 0.5 mL of 1 mM DPPH in methanol. The 
mixture was shaken vigorously and left to stand for 5 min. Vitamin C was used as the 
antioxidant standard at the same concentration as the extract. The absorbance of the 
resulting solution was measured at 517 nm with a UV-vis spectrophotometer. All tests 
were run in triplicate and the radical scavenging activity was then calculated using the 
following formula; 

 
Where: 
AB = absorption of the blank sample; 
AA = absorption of the extract. 
 
Statistical analysis 
Data were subjected to analysis of ANOVA using Stata version 12 software (Stata Corp.) 
while means were separated using Duncan test at 0.05 significance level.  
 
RESULTS AND DISCUSSION 
 
The results of moisture content (M.C) of young and mature leaves are presented in Tables 
1 and 2, respectively. From the results, fresh sample of black nightshade that was 
unsliced blanched had the highest M.C of 89.34% compared to the other AlVs at young 
stage. After drying, the sliced treatments of solar dried stinging nettle retained the highest 
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M.C of 7.14%. Moisture content of the vegetables declined with the maturation of the 
leaves. Similar findings have been observed by Florkowski et al. [14] who reported that 
Cleome gynandra had a decrease in M.C with maturation. This may be due to structural 
changes as leaf grows older probably due to transpiration and starch hydrolysis. The 
blanched samples had higher M.C as compared to the unblanched samples, possibly due 
to disruption of the leaf tissue cells, facilitating degradation and solubilization of 
watersoluble components [15]. This, therefore, leads to softening of leaf tissues, hence 
higher rates in removal of water.  
 
In this study, the M.C of freeze-dried samples ranged between 1.31-7.57%, while solar 
dried samples had slightly higher M.C. suggesting that freeze-drying led to removal of 
more wateras compared to solar drying.  
 
Result for fiber content of the three AIVs (Table 3) shows that there was no significant 
difference (P > 0.05) between the treatments. Results show that, fresh black nightshade 
had the highest fiber content of 12.89% and 9.53% for mature stage and young stage, 
respectively. On the other hand, the lowest percentage of fiber content (6.28 %.) was 
observed in sliced blanched solar dried samples of amaranth. 
 
There was a significant difference (P≤0.05) between the fiber content of the leaves at the 
two stages of harvest. The fresh mature leaf samples had significantly higher values as 
compared to fresh young leaf samples in the study. This may be due to fiber material 
being more elaborate in mature leaf organs than in young leaf [16]. For the blanched 
samples, there was no significance difference (P≥0.05) in fiber content for both solar 
dried and freeze-dried samples. This could be due to the stability of fiber component 
found in the vegetables. In addition, no significant difference (P≥0.05) was observed in 
fiber content between the sliced and unsliced samples, blanched and unblanched samples 
and between the solar and freeze-dried samples. 
 
The β-carotene results for young and mature stage AIV samples are presented in Table 
4. From the results, the fresh samples of amaranth had a higher β-carotene content of 
47.82mg/100g at young stage, while the blacknightshade had the highest β-carotene 
content at mature stage (71.22mg/100g). On the other hand, the lowest content was 
observed in the young and mature stage of stinging nettle in solar dried sliced unblanched 
with β-carotene content of 12.33mg/100g and 18.29mg/100gdw, respectively. 
 
In this study, mature leaves were found to have significantly higher (P < 0.05) β-carotene 
content compared to the young leaves, suggesting that β-carotene increases with the 
maturation of the leaves.  The blanched solar and freeze-dried samples had higher beta 
carotene content as compared to the unblanched samples. In this case, there was a 
significance difference (p≤0.05) between the unsliced unblanched and sliced unblanched 
samples of solar and freeze-dried treatments. On the other hand, both solar and freeze-
dried samples of unblanched treatments were significantly lower as compared to the 
blanched treatments. As reported by Rickman et al. [17], thermal processing causes 
isomerization of all the naturally predominant trans-β-carotene to cis form due to 
presence of conjugated double bond hence higher β-carotene content in blanched 
samples. Slicing of the samples significantly affected the β-carotene content whereby 
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lower amount was observed in sliced treatments compared to unsliced samples. The 
reduction of the β-carotene during slicing may be due to increase in surface area which 
could have promoted the oxidation of β-carotene [18]. The highest β-carotene of the three 
AIVs on solar drying was reported in unsliced blanched leaves, followed by sliced 
blanched, unsliced unblanched and the lowest was observed in sliced unblanched leaves. 
On the other hand, solar dried samples had significantly lower β-carotene in all the 
vegetables (P<0.05) as compared to freeze-dried samples, probably due to degradation 
of some of the compounds by solar radiation [19]. 
 
The fresh samples of stinging nettle had higher vitamin C content (142.06mg/100g) table 
5, at young stage, whereas amaranth had the highest vitamin C content at mature stage 
(193.52 mg/100g). Lowest vitamin C content, on the other hand, was observed in sliced 
blanched solar dried samples of young stage amaranth and mature stage stinging nettle 
with values of 11.87 mg/100g and 30.66 mg/100g, respectively. 
 
Vitamin C was shown to increase with the maturation of the leaves. These findings 
concur with other studies in broccoli leaves [20] and spinach leaves [21]. Blanching was 
observed to significantly affect the vitamin C content (P < 0.05). Blanched samples had 
lower vitamin C compared to the unblanched samples. The results of blanching agree 
with the findings of a study by Volden et al. [22] which showed that blanching affects 
the vitamin C content. Their study reported a loss of 41% of vitamin C content in 
blanched cauliflower as compared to the unblanched [22]. Since vitamin C is heat labile, 
much of it was lost during blanching and heat treatment [22]. In addition, Liu et al. [23] 
observed that the blanching temperature inactivates most of vitamin C enzymes thus 
inhibiting their accumulation. Slicing of the samples also affected the vitamin C content 
whereby, the unsliced blanched had significantly higher content as compared to sliced 
blanched samples. Besides, the sliced unblanched samples showed significantly higher 
content as compared to sliced blanched. It has been reported that slicing of the vegetables 
increases the surface area, therefore altering the availability of vitamin C [24]. There was 
a significant difference on the vitamin C content in solar and freeze-dried samples. 
Freeze-dried samples had a higher content than solar dried samples. 
 
The total flavonoid results for AIV samples are shown in Table 6. These results indicate 
that black nightshade at young and mature stage had higher flavonoid content of 
1.2g/100g and 1.52g/100g (qe), respectively as compared to the dried samples. This was 
followed by unsliced unblanched freeze-dried samples of black nightshade which had 
the highest flavonoid content of 0.74 g/100g and 1.41 g/100g (QE) in young and mature 
stage, respectively. The lowest flavonoids were observed in sliced blanched solar dried 
samples of both young and mature stage stinging nettle with values of 0.23 g/100g and 
0.36 g/100g, respectively. 
 
All mature AIV leaves had significantly higher (P < 0.05) flavonoid as compared to the 
young leaves, therefore, suggesting that total flavonoid content increases with plant 
maturity. These results concur with the findings of Pandjaitan et al. [25] who observed 
increased flavonoid content in mature spinach leaves compared to immature leaves. 
Blanching affected the flavonoid content whereby the blanched samples had significantly 
(P < 0.05)   lower content of flavonoids in the three AIVs as compared to the unblanched 
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samples. This suggests that blanching affected the chemical components especially the 
flavonoid, which likely leached into the blanching water. Slicing of the samples 
significantly (P < 0.05) affected the flavonoids. Unsliced samples had significantly 
higher flavonoid as compared to the sliced samples. Sliced unblanched samples had 
significantly higher flavonoids as compared to sliced blanched but significantly lower as 
compared to unsliced unblanched. According to Dos Reis et al. [24], slicing of vegetables 
alters the bioavailability of bioactive compounds such as flavonoids. 
 
The total phenol contents had the same trend as the flavonoids (table 7) with fresh 
samples of young and mature stage black nightshade reporting higher contents of 1.09 
g/100g and 1.29 g/100g, respectively as compared to dried samples. Unsliced unblanched 
freeze-dried samples of black nightshade on the other hand reported a higher value of 
0.51g/100g and 1.07g/100g in young and mature stage, respectively. Sliced blanched 
solar dried samples had the lowest value of total phenols with stinging nettle being the 
most affected at both stages. 
 
The total phenols in the studied AIVs ranged between 0.05 -1.29 g/100g. However, the 
values were significantly lower than the ranges of 3.23 g/100g - 11.7 g/100g reported by 
Zainol [26]. Phenol content increased with maturity as higher concentration was 
observed in mature leaves than the young leaves. Similar results were observed by Igbal 
and Bhanger [27] who reported increase in polyphenols concentration as leaf matures. 
Total phenols were affected by blanching and the drying methods. Blanched samples had 
significantly lower phenols than the unblanched samples. Sliced samples reported low 
levels of phenols as compared to the unsliced. Dos Reis et al. [24] reported that chopping 
alters the bioavailability of bioactive compounds such as carotenoids, polyphenols and 
flavonoids. Aditha et al. [28] also found out that raw amaranth extract had higher total 
phenolic content as compared to blanched counterpart. Similarly, Amin et al. [29] 
reported a loss of 71% of total phenolic content in blanched Amaranth. According to 
Aditha et al. [28], blanching of vegetables leads to oxidation of the compounds 
specifically, phenolics thus affecting their concentration. In addition, since phenolic 
compounds are known to occur in soluble forms and in combination with cell wall 
components in plants [30], the high temperature of the blanching may also lead to the 
disruption of the cell walls and the breakdown of the phenolics. This leads to leaching of 
these compounds into the blanching water. On the other hand, fresh and freeze-dried 
samples had significantly higher phenols than the solar dried samples. 
 
The antioxidant activity results for AIVs are shown in Table 8. The IC50 values were high 
in fresh black nightshade at 2.4mg/ml and 1.11mg/mL in amaranth at mature stage. On 
the other hand, the IC50 values of the blanched samples were significantly higher 
(p≤0.05) as compared to the unblanched samples. The IC50 values of stinging nettle and 
amaranth for unsliced blanched solar dried similarly to unsliced blanched freeze-dried 
samples were significantly lower (2.48mg/ml and 2.4mg/ml (fresh weight respectively) 
as compared to amaranth of sliced blanched solar dried (2.5mg/ml) but significantly 
higher as compared to sliced unblanched solar dried (2.35mg/ml) of amaranth. 
 
Significant changes in antioxidant activity were observed for the different growth stages, 
treatments and drying methods. The IC50 values are inversely proportional to the 
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antioxidant activity where the higher the IC50 the lower the antioxidant activity and vice 
versa. Therefore, from the results, it shows that there is a significant increase in 
antioxidant activity as the AIVs leaves matures.  There was a significant difference (P < 
0.05) on the antioxidant activity of the blanched samples of both solar and freeze-dried 
treatments. The antioxidant activity of the blanched samples was significantly lower 
(2.5mg/ml) (P < 0.05) as compared to the unblanched samples (2.01 mg/ml). Similarly, 
for the solar and freeze-dried samples, the antioxidant activity of unsliced blanched (2.48 
mg/ml) was significantly higher as compared to sliced blanched (2.5 mg/ml) but 
significantly lower as compared to sliced unblanched (2.3 mg/ml). On the other hand, 
there was a significant difference (P < 0.05) on the unblanched samples. Higher 
antioxidant activity was observed in freeze and solar dried unsliced unblanched (0.02 
mg/ml) and lowest in sliced unblanched (2.35 mg/ml). Lower antioxidant activity on the 
blanched samples might have been due to leaching of soluble antioxidants into the 
blanching water. Besides, slicing also had significant effect on the antioxidant activity 
since lower antioxidant activity was reported for the sliced samples as compared to the 
unsliced samples. The results of study concur with findings by Sreelatha [31] and 
Pandjaitan [25] which found out that antioxidants are affected by stage of maturity 
inMoringa oleifera and spinach leaves, respectively. 
 
CONCLUSION 
 
From the study, it is evident that the AIV maturity as well as the different processing 
techniques affects their nutritional and phytochemical composition. The fiber, vitamin 
C, β-carotene, phenols, flavonoids and antioxidant activity increased with the maturity 
of the leaves. Freeze-drying retained vitamins C, β-carotene, phenols, flavonoids and 
antioxidant activity better than solar dried. The fiber content of AIV leaves were not 
affected by the drying method or even processing like slicing and blanching. On the other 
hand, blanching of the three ALVs; stinging nettle, amaranth and black nightshade was 
shown to affect the nutritional and phytochemical quality where in all the parameters it 
decreased during blanching, unlike β-carotene where its content was higher as compared 
to unblanched samples. For the sliced samples, all the parameters were affected, resulting 
to lower content on the AlVs. 
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Table 1: Effect of processing on moisture % of young stinging nettle, amaranth 
and black nightshade 

 Percentage moisture content 
  Stinging Nettle Amaranth Black nightshade 
Treat
ments Fresh 

Solar 
Dried 

Freeze-
Dried Fresh 

Solar 
Dried 

Freeze-
Dried Fresh 

Solar 
Dried 

Freeze-
Dried 

Fresh 
76.60±
0.27bA   

80.44±
0.71bB   

87.28±
0.79bC    

UU 
76.60±
0.27bF 

6.76±0
.31aE 

5.50±0.
13aD 

80.44±
0.71bG 

4.7±0.
19bC 

3.49±0.
02bB 

87.28±
0.79bH 

3.3±0.
08bB 

1.35±0.
03aA 

UB 
80.25±
0.01dF 

6.96±0
.01aE 

5.27±1.
03aD 

83.43±
0.33dG 

4.73±0
.21bC 

3.62±0.
10bB 

89.34±
0.68cH 

3.83±0
.16bB 

1.62±0.
19aA 

SU 
75.39±
0.19aE 

7.04±0
.17bD 

5.26±0.
07aC 

79.04±
0.13aF 

5.82±0
.05cC 

3.34±0.
37bB 

86.64±
0.07aG 

2.99±1
.05aB 

1.26±0.
11aA 

SB 
78.68±
0.23cE 

7.14±0
.21bD 

5.10±0.
27aC 

82.53±
0.89cF 

2.26±0
.42aA 

2.76±0.
92aA 

88.00±
0.05cG 

3.18±0
.17bB 

2.04±0.
09bA 

Values are given as percentage moisture means of three replicates ± SD. Means with different 
superscript uppercase letters across the row and lower case within the column are significantly 
different (P < 0.05). Fresh - no processing, UU - unsliced unblanched, UB - unsliced blanched, 
SU - sliced unblanched, SB -sliced blanched 
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Table 2: Effect of processing on moisture % of mature stinging nettle, amaranth 
and black nightshade 

 Percentage moisture content 

  stinging nettle  Amaranth  
Black 

nightshade  
Treat
ments Fresh 

Solar 
Dried 

Freeze-
Dried Fresh 

Solar 
Dried 

Freeze-
Dried Fresh 

Solar 
Dried 

Freeze-
Dried 

Fresh 
74.95±
0.97bA   

78.22±
0.66bB   

85.78±
0.27bC    

UU 
74.95±
0.97bF 

7.08±1
.29aE 

4.32±0.
17aC 

78.22±
0.66bG 

6.09±0
.47bD 

2.31±0.
51bB 

85.78±
0.27bH 

1.74±0
.41aA 

2.05±0.
02bB 

UB 
75.88±
0.27cE 

7.14±0
.61aD 

5.66±0.
03bC 

81.2±0.
39dF 

2.37±0
.37aB 

1.53±0.
01aA 

87.22±
0.31dG 

2.2±0.
09bB 

1.97±0.
03aA 

SU 
71.66±
1.01aE 

7.57±0
.91aD 

4.76±0.
19aC 

75.01±
0.07aF 

2.03±0
.99aB 

1.31±0.
09aA 

82.97±
0.89aG 

4.6±0.
23dC 

1.5±0.2
9aA 

SB 
76.31±
0.87dF 

7.06±0
.11aE 

4.59±0.
31aD 

80.05±
1.03cG 

2.52±0
.77aB 

1.42±0.
11aA 

86.31±
0.07cH 

3.01±1
.03cC 

1.54±0.
81aA 

Values are given as percentage moisture content means of three replicates ± SD. Means with 
different superscript uppercase letters across the row and lower case within the column are 
significantly different (P < 0.05). Fresh - no processing, UU - unsliced unblanched, UB - 
unsliced blanched, SU - sliced unblanched, SB -sliced blanched 
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Table 3: Effect of harvest maturity and processing on % crude fiber of young and 
mature stinging nettle, Amaranth and Black nightshade (on dry weight basis) 

 
Stinging 
nettle  Amaranth  

Black 
nightshade  

Fiber Young Mature Young Mature Young Mature 

SDUU 9.07±0.65cB 11.98±0.53bB 6.25±0.57bA 10.69±0.26aB 7.48±0.36aA 11.6±0.38aB 

SDUB 8.44±0.22bA 11.18±0.19bB 6.09±0.32bA 10.85±0.25aB 7.52±0.24aA 12.05±0.46bC 

SDSU 8.32±0.48bA 11.05±0.74bB 5.96±0.5aA 10.45±0.18aB 7.55±0.12aA 11.77±0.17aB 

SDSB 7.51±0.54aA 10.01±0.88aB 6.4±0.63bA 10.03±0.66aB 7.14±0.12aA 10.76±0.51aB 

Fresh 9.53±0.17cA 12.48±1.13cC 7.51±0.3cA 10.96±0.67aB 7.59±0.66aA 12.77±0.17bC 

FDUU 9.17±0.16cB 11.55±0.67bC 6.63±0.51bA 11.43±0.73bC 7.62±0.67aA 12.18±0.23bC 

FDUB 8.93±0.19bA 11.15±0.91bB 6.5±0.55bA 10.84±0.55aB 7.2±0.65aA 12.89±0.25bC 

FDSU 8.35±0.13bA 11.17±0.41bB 6.28±0.47bA 10.91±0.22aB 7.79±0.51aA 11.29±0.56aB 

FDSB 8.15±0.14bA 10.84±0.9aB 6.36±0.24bA 10.38±0.54aB 7.69±0.14aA 12.41±0.17bC 

Values are given as (%) of three replicates ± SD. Means with different superscript uppercase letters across 
the row (per parameter) and lower case within the column are significantly different (P < 0.05). SDUU-
solar dried unsliced unblanched, SDUB-solar dried unsliced blanched, SDSU-solar dried sliced 
unblanched, SDSB-solar dried sliced blanched. FDUU-freeze-dried unsliced unblanched, FDUB-freeze-
dried unsliced blanched, FDSU-freeze dried sliced unblanched, FDSB-freeze-dried sliced blanched and 
fresh-fresh sample (no processing) 
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Table 4: Effect of harvest maturity and processing on beta-carotene of young and 
mature stinging nettle, Amaranth and Black nightshade (on dry weight basis) 

 Stinging Nettle Amaranth Black nightshade 
Beta-
Carotene Young Mature Young Mature Young Mature 

SDUU 17.08±1.59bA 27.15±1.31dB 23.31±1.53bB 40.29±1.52cC 22.24±1.43bB 47.64±1.62cC 

SDUB 26.86±1.61dA 18.29±1.14aB 27.25±1.06fA 45.74±1.71fC 27.27±2.74eA 54.82±2.49gD 

SDSU 12.33±1.56aA 30.96±0.91fA 18.36±1.67aB 34.52±0.94aC 20.18±0.8aB 41.15±1.66aD 

SDSB 22.66±1.49cA 20.21±2.47bB 25.87±1.63dB 42.46±1.71dC 25.5±2.45dB 50.92±1.48eD 

Fresh 33.67±2.48fA 41.45±1.56gB 47.82±1.32hB 64.35±1.46hC 33.94±2.32iA 71.22±0.87iC 

FDUU 21.55±1.52cA 24.44±2.51cA 26.18±0.87eA 42.63±2.18dB 24.74±1.29cA 49.15±1.55dB 

FDUB 26.66±1.72dA 29.27±1.4eA 30.24±1.35gA 44.07±1.89eB 29.19±2.4fA 57.12±1.23hC 

FDSU 16.22±1.34bA 20.57±1.57bB 24.97±2.2cB 38.22±2.4bC 22.41±1.57bB 46.7±0.96bC 

FDSB 28.67±2.39eA 34.07±0.92cAB 27.55±2.4eB 48.04±2.18gB 27.26±2.79eA 53.36±2.62fB 

Values are given as means (mg/100g) of three replicates ± SD. Means with different superscript uppercase 
letters across the row (per parameter) and lower case within the column are significantly different (P < 
0.05). SDUU-solar dried unsliced unblanched, SDUB-solar dried unsliced blanched, SDSU-solar dried 
sliced unblanched, SDSB-solar dried sliced blanched. FDUU-freeze-dried unsliced unblanched, FDUB-
freeze-dried unsliced blanched, FDSU-freeze-dried sliced unblanched, FDSB-freeze-dried sliced blanched 
and fresh-fresh sample (no processing) 
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Table 5: Effect of harvest maturity and processing on vitamin C of young and mature 
stinging nettle, amaranth and black nightshade (on dry weight basis) 

 Stinging Nettle Amaranth Black nightshade 
Vitamin C Young Mature Young Mature Young Mature 

SDUU 36.86±2.66dA 50.67±4.61fB 53.41±3.11gB 67.7±4.95dC 84.74±2.99gD 103.66±3.04fE 
SDUB 21.65±3.96bA 37.46±2.52bB 33.94±3.96cB 43.29±2.94bB 34.44±3.02bB 89.35±2.97cC 

SDSU 29.26±2.8cA 43.91±3.45dB 44.2±2.93eB 59.67±2.47cC 78.97±2.66eD 96.52±2.72dE 

SDSB 17.69±3.83aA 30.66±3.12aB 11.87±2.24aA 37.37±2.96aB 20.52±3.01aA 66.82±2.91aC 

Fresh 142.06±2.71hB 181.48±3.22iC 102.14±2.53iA 193.52±3.04hC 124.64±3.57iAB 177.97±3.73hC 

FDUU 53.98±2.32gA 68.23±3.58hAB 55.07±3.4hA 98.46±2.99gB 86.64±4.37hB 111.14±2.41gC 

FDUB 35.44±2.17dB 47.87±3.52eA 41.76±2.68dA 68.93±6.44dD 72.23±2.43dB 95.35±2.81dC 

FDSU 45.17±2.22fA 61.82±2.33gB 14.62±2.56bA 94.98±2.27fC 52.95±2.64cC 101.48±3.9eD 

FDSB 40.61±2.08eA 39.42±2.2cB 49.13±2.09fA 80.63±3.11eBC 82.78±3.23fC 74.89±3.66bD 

Values are given as means (mg/100g) of three replicates ± SD. Means with different superscript uppercase letters 
across the row (per parameter) and lower case within the column are significantly different (P < 0.05). SDUU-solar 
dried unsliced unblanched, SDUB-solar dried unsliced blanched, SDSU-solar dried sliced unblanched, SDSB-solar 
dried sliced blanched. FDUU-freeze-dried unsliced unblanched, FDUB-freeze-dried unsliced blanched, FDSU-freeze-
dried sliced unblanched, FDSB-freeze-dried sliced blanched and fresh-fresh sample (no processing) 
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Table 6:  Effect of harvest maturity and processing on total flavonoid content of 
young and mature stinging nettle, amaranth and black nightshade (on dry 
weight basis) 

 

 Stinging Nettle Amaranth Black nightshade 

Flavonoids Young Mature Young Mature Young Mature 

SDUU 0.46±0.03gA 0.48±0.01fA 0.47±0.02fA 1.16±0.02fC 0.65±0.02dB 0.65±0.02dB 

SDUB 0.28±0.02bA 0.4±0.03bB 0.3±0.02bA 0.77±0.02aC 0.56±0.04bB 0.56±0.04bB 
SDSU 0.4±0.03eA 0.45±0.02dA 0.39±0.02dA 0.82±0.04cC 0.59±0.03cB 0.59±0.03cB 
SDSB 0.23±0.02aA 0.36±0.04aA 0.23±0.03aA 0.73±0.02iC 1.2±0.02gC 1.2±0.02gC 
Fresh 0.3±0.03cA 0.78±0.05iB 0.8±0.03hB 1.49±0.04hC 0.52±0.03aB 0.52±0.03aB 
FDUU 0.52±0.02hA 0.55±0.02hA 0.31±0.02cA 1.23±0.04gC 0.74±0.02fB 0.74±0.02fB 
FDUB 0.35±0.03dA 0.47±0.02eA 0.39±0.02dA 0.78±0.02bC 0.65±0.02dB 0.65±0.02dB 

FDSU 0.44±0.02fA 0.5±0.03gA 0.44±0.03eA 0.89±0.02eB 0.69±0.04eB 0.69±0.04eB 

FDSB 0.63±0.03iA 0.43±0.03cA 0.51±0.03gA 0.86±0.03dC 0.59±0.02bB 0.59±0.02bB 

Values are given as means (g/100g) of three replicates ± SD. Means with different superscript 
uppercase letters across the row (per parameter) and lower case within the column are significantly 
different (P < 0.05). SDUU-solar dried unsliced unblanched, SDUB-solar dried unsliced blanched, 
SDSU-solar dried sliced unblanched, SDSB-solar dried sliced blanched. FDUU-freeze-dried unsliced 
unblanched, FDUB-freeze-dried unsliced blanched, FDSU-freeze-dried sliced unblanched, FDSB-
freeze-dried sliced blanched and fresh-fresh sample (no processing) 
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Table 7:  Effect of harvest maturity and processing on total phenol content of 
young and mature stinging nettle, amaranth and black nightshade (dry 
weight basis) 

 

 Stinging Nettle Amaranth Black nightshade 

phenols Young Mature Young Mature Young Mature 

SDUU 0.27±0.02fA 1.01±0.04hB 0.37±0.03fB 0.56±0.06eE 0.45±0.05fB 1.03±0.02gC 

SDUB 0.09±0.03bA 0.19±0.02aA 0.21±0.08bB 0.33±0.03bC 0.21±0.05bB 0.62±0.02cD 
SDSU 0.24±0.04eA 0.41±0.05dB 0.34±0.03eA 0.47±0.04dB 0.33±0.09dA 0.94±0.07eC 

SDSB 0.05±0.02aA 0.3±0.02bC 0.19±0.02aA 0.27±0.03aB 0.11±0.03aA 0.39±0.03aB 
Fresh 0.89±0.05iA 0.49±0.04fB 0.85±0.04iA 1.01±0.06gB 1.09±0.03hB 1.29±0.08iC 
FDUU 0.43±0.04hA 0.59±0.02gB 0.47±0.04hA 0.63±0.03fB 0.51±0.03gB 1.07±0.04hC 

FDUB 0.17±0.02dA 0.44±0.03eB 0.3±0.03dB 0.39±0.02cB 0.29±0.02cA 0.71±0.04dC 

FDSU 0.34±0.01gA 0.49±0.03fB 0.25±0.02cA 0.56±0.06eB 0.21±0.03bA 1.01±0.06fC 

FDSB 0.11±0.03cA 0.36±0.02cB 0.39±0.02gA 0.33±0.02bB 0.44±0.07eB 0.45±0.03bC 

Values are given as means (g/100g) of three replicates ± SD. Means with different superscript 
uppercase letters across the row (per parameter) and lower case within the column are 
significantly different (P < 0.05). SDUU-solar dried unsliced unblanched, SDUB-solar dried 
unsliced blanched, SDSU-solar dried sliced unblanched, SDSB-solar dried sliced blanched. 
FDUU-freeze-dried unsliced unblanched, FDUB-freeze-dried unsliced blanched, FDSU-freeze-
dried sliced unblanched, FDSB-freeze-dried sliced blanched and fresh-fresh sample (no 
processing) 
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Table 8:  Effect of harvest maturity and processing on antioxidant activity of 
stinging nettle, amaranth and black nightshade (mg/ml fresh weight 
basis for fresh samples and dried weight basis for dried samples) 

 
 Young Mature 

  
Stinging 
Nettle Amaranth 

Black 
nightshade 

Stinging 
Nettle Amaranth 

Black 
nightshade 

SDUU 2.01±0.00dD 2.1±0.00bE 1.42±0.01bC 0.07±0.01bA 2.18±0.02dF 1.39±0.09dB 

SDUB 2.48±0.22gD 2.48±0.00fD 2.38±0.00fA 2.15±0.00gB 2.48±0.01gD 2.4±0.00hC 
SDSU 2.3±0.01eD 2.35±0.01dE 2.23±0.00eC 0.34±0.04dA 2.3±0.01eD 1.53±0.01eB 

SDSB 2.5±0.09hC 2.5±0.00gC 2.5±0.04hC 2.48±0.02hB 2.4±0.00fA 2.49±0.16hB 

Fresh 2.34±0.07fE 2.17±0.04cD 2.4±0.00gF 0.78±0.00eB 1.11±0.23aC 0.12±0.00aA 

FDUU 0.02±0.07aA 1.91±0.00aF 0.88±0.01aC 0.98±0.03fD 1.38±0.97bE 0.29±0.00bB 
FDUB 2.32±0.04eD 2.4±0.21eE 2±0.11dC 0.08±0.00cA 2.4±0.12fE 1.98±0.00fB 
FDSU 0.99±0.00cB 2.11±0.10bF 1.51±0.01cD 0.04±0.09aA 1.72±0.00cE 1.11±0.01cC 

FDSB 2.44±0.01eC 2.5±0.03gE 2.49±0.00hD 0.09±0.01cA 2.48±0.01eD 2.29±0.03gB 

Values are given as means IC50 (mg/ml) ± SD. Means with different superscript uppercase letters 
across the row and lower case letters within the column are significantly different (P < 0.05). IC50 
values (the concentration which scavenges 50% of the DPPH radicals). SDUU-solar dried 
unsliced unblanched, SDUB-solar dried unsliced blanched, SDSU-solar dried sliced unblanched, 
SDSB-solar dried sliced blanched. FDUU-freeze-dried unsliced unblanched, FDUB-freeze-dried 
unsliced blanched, FDSU-freeze-dried sliced unblanched, FDSB-freeze-dried sliced blanched 
and fresh-fresh sample (no processing) 
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