ISSN: 2006-0165©2008

MEDICINAL PLANTS USED IN THE MANAGEMENT OF MALARIA AMONG THE TRADITIONAL MEDICINE PRACTITIONERS (TMP’S) IN SOUTH WESTERN NIGERIA

Oladele A.T¹ and C.O Adewunmi²

¹Department of Pharmacognosy, ²Drug Research and Production Unit Obafemi Awolowo University, Ile-Ife, Nigeria.
*E-mail: aoladele@oauife.edu.ng

Abstract

This study examined the type of medicinal plants used in the management of malaria in the Yoruba folklore in south western Nigeria. 87 Traditional medicine practitioners (TMP's) were interviewed. Plants available in the regions were considered in the survey and recorded with their local names, parts used, preparation and the modes of use. A total of 21 plant species used by TMP’s in the management of malaria infections were identified. These species belong to 18 plant families.

Key words: Malarial management, TMP’s, Yoruba.

Introduction

Malaria is a major disease problem in tropical regions of the world, and is a vector-borne infectious disease that is widespread in tropical and sub-tropical regions. An estimated annual death of 1-3 million from malaria only was made by WHO (1996) and Greenwood et al. (2005) with children being the most vulnerable in sub-Saharan Africa, while it infects between 300-500 million people yearly. Concerted effort had been made in combating the malarial parasite, and the disease vector.

Decades ago many antimalarial drugs were developed from plant based materials, for example an alkaloid (quinine) from the bark of Cinchona Spp, (Rubiaceae) and artemisinin from Artemisia annua, (Asteraceae). Despite some breakthroughs in the synthesis of antimalarial drugs, the parasite has developed resistance to most of the synthetic drugs, hence large population of people in the tropics still rely on plant based therapy. In the tropical regions of Asia, South America and Africa where the disease is prevalent people still use Cinchona bark and other plants respectively.

About 80% of the populations of many developing countries still use traditional medicines for their health care (Khan and Nkunya., 1991; Tuley De Silva, 1999). Over 90% of Nigerians in rural areas and about 40% of the population living in urban areas depend partly or wholly on traditional medicines (Osemeobo, 1993). Due to economic reasons, most of the people in developing countries are precluded from the luxury of access to modern therapy (Elmi, 1991). This has made the people to rely on plant and animal resources for their health care over centuries. A study in Ibadan (Nigeria), has shown that urban centres are areas where traditional medicine is widely practiced, (Cunningham, 1997). Odebiyi (1990) also opined that
2/3 of the healthcare practitioners in Nigeria are traditional healers, while Cunningham (1993) reported that in Benin City (Nigeria), the ratio of TMP to the population is 1:110 while that of western medical doctor is 1:16400. Many trees and shrubs in Nigeria have medicinal values (Young, 1989). The survey and proper documentation of various plants used by TMP’s in combating the infant killer disease (malaria) is pre-requisite to the preservation of indigenous knowledge of our rich plant resources. It is the aim of this paper to provide invaluable information on these plants for further scientific research in drug development from plant resources.

Population and study area

The people of South Western Nigeria are mainly of Yoruba ethnic group and distributed over six States namely: Oyo, Ogun, Ondo, Osun, Ekiti, and Lagos States. The study area lies between latitude 5° 30’N - 8° 05’N and longitude 2° 45’E – 6° 00’E (Filani and Olabode, 1993). The natural vegetation is composed of coastal and swampy forest, high forest, rainforest and derived savannah towards the north. Four out of the six States were considered for the study with an average population of 2.5m/ State (1991 census). The major occupation of the people is agro based and mostly lived in rural area except in Lagos State where urbanization has reduced the farming population.

Data Collection

A total of 87 traditional medicine practitioners (TMP’s) were interviewed in 22 locations distributed over the selected 4 States. Seventy eight (78) respondents were male practitioners while nine (9) respondents were female practitioners representing 90% and 10% respectively.

Table 1: Questionnaire Distribution Table

<table>
<thead>
<tr>
<th>States</th>
<th>No of questionnaire</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osun</td>
<td>49</td>
<td>56.3</td>
</tr>
<tr>
<td>Ogun</td>
<td>17</td>
<td>19.5</td>
</tr>
<tr>
<td>Oyo</td>
<td>12</td>
<td>13.7</td>
</tr>
<tr>
<td>Ekiti</td>
<td>09</td>
<td>10.3</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The surveys were conducted between the years 2001 and 2003. Ethno-botanical data were collected through oral interviews and responses recorded since the TMP’s were mainly non-literate. With the help of the TMP’s on the field, plant specimens were collected and identified at the Herbarium of Forestry Research Institute (FHI), Ibadan Nigeria. (Herbarium voucher nos were collected. Towns visited for interview are as follows:

Ogun State – Abeokuta, Ijebu-Ode, Iperu, Isara, Ilisan.
Osun State – Ile-Ife, Gbongan, Oyan, Olode, Awo, Ilesa Osogbo, Ipetumodu, Ido Osun.
Oyo State – Iseyin, Ibadan, Oko, Kisi
Ekiti State – Ilawe, Oye Ekiti, Aramoko, Ido

Results and Discussion

A total of 21 plant species used by TMP’s in the management of malarial infections were identified. These species belong to 18 plant families. The plants were collected during the survey in the four (4) States of south western Nigeria and identified taxonomically. All the plants listed in the survey were available in all the forest regions of the 4 States. Results from
the survey showed that out of the 21 plant species cited, 52.4% were trees, 33.3% shrubs and 14.3% climbers; this is an indication that trees are often used than shrubs and climbers/creepers. Also 47.6% of the plants cited as antimalarial species were sourced from the wild, 14.3% from cultivated sources (farms and TMP’s premises), while 38.1% are either from cultivated sources or from the wild. This showed that TMP’s mostly sourced their plant materials from the wild (47.6%) while few are cultivated (14.3%) in the region surveyed. Also leaves were mostly used 44.5%, followed by stem bark 25.9%, seed/fruits/flowers 14.8%, roots 11.1% and plants used wholly represent only 3.7%.

Some of the plants have been reported to contain compounds with antimalarial activities while some are yet to be investigated biologically. Kansik. et al. (2002) have reported the components of the alcoholic extracts of leaves and seeds of *Azadirachta indica* to be effective against both chloroquine-resistant and chloroquine sensitive strains of the malarial parasite. Nimboide, azadirachtin and gedunin isolated from *A. indica* inhibited the growth of the malarial parasite (Rochanakij et al., 1985; Khalid et al., 1989; Govindachari, 1992; Kraus, 1995). In Ghana and Nigeria, *Alstonia boonei, Rauvolfia vomitoria, Morinda lucida and Xylopia aethiopica* have been reported to be widely used in treating malaria, (Agbovie. et al., 2002; Aiyeloja and Bello, 2006). *Momordica charantia* leaf was listed by Leslie (2005) as antimalarial component of Brazilian, Peruvian, Nicaragua and Panama herbal medicine. According to Awadh et al. (2004) studies have shown and confirmed extensive use of combination of these plants as antimalarial agents. But most of the antimalarial tests in the laboratory have not conclusively authenticated their antimalarial properties. It is, therefore, suggested that investigation on these antimalarial plant combinations should be carried out rather than investigating the plants individually as antimalarial agents, and antimalarial activities of the recipes should be investigated and developed. *Lawsonia inermis* ranked high among the antimalarial plants in Yemeni herbal medicine (Awadh et al., 2004). *M. charantia* leaf contains momordin, alpha and beta-momorcharin, cucurbitacin B and charantins. Anthraquinones from *Morinda lucida* (Awe and Makinde, 1998) and active agents from *Garcinia cola* are all worth investigating biologically on malaria parasites using appropriate models.
Table 2: Plants used in the management of malarial in south western Nigeria

<table>
<thead>
<tr>
<th>Name</th>
<th>Local names (Yoruba)</th>
<th>Part used</th>
<th>Preparations</th>
<th>Modes of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Usteria guinensis Wild (Loganiaceae) (FHI 38336)</td>
<td>Esinsin ile</td>
<td>Leaves, stem</td>
<td>Leaves & Stem macerated with local black soap</td>
<td>Bath with the soap daily.</td>
</tr>
<tr>
<td>2. Hilleria latifolia H.Walt (Phytolacaceae) (FHI 92002)</td>
<td>Ogo</td>
<td>Leaves</td>
<td>Leaves plus Lvs of Blighia sapida, Carica papaya, Citrus aurantifolia, Anogeissus leocarpus plus fruits of Xylopia aethiopica all boiled in water</td>
<td>35ml of the decoction thrice daily and bath with decoction</td>
</tr>
<tr>
<td>4. Momordica charantia Linn (Curcubitaceae) (FHI 90843)</td>
<td>Ejinrin wewe</td>
<td>Fresh Leaves</td>
<td>Macerated with Vernonia amygdalina leaf and juice of Citrus aurantium plus palm wine</td>
<td>One cup 3 times a day</td>
</tr>
<tr>
<td>5. Jatropha curcas Linn (Euphorbiaceae) (FHI 1986)</td>
<td>Botuje, Lobotuje, Lapalapa, Iyalode.</td>
<td>Stem bark (dry)</td>
<td>Pounded with black soap</td>
<td>Bath with soap 2 times daily</td>
</tr>
<tr>
<td>6. Azadirachta indica A. Juss (Meliaceae) (FHI 45479)</td>
<td>Dongoyaro</td>
<td>Leaves and or stem bark</td>
<td>(1) Boiled with Carica papaya and Mangifera indica leaves</td>
<td>1 cup of decoction 2 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) Boiled with Morinda lucida, Mangifera indica, Alstonia boonei leaves and Capsicum frutescens fruits</td>
<td>1 cup of decoction 3 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) Decoction of the leaves</td>
<td>1 cup 2 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) Decoction of leaf with Cymbopogon citratus, Crinum jagus and Carica papaya leaves plus root of Morinda lucida.</td>
<td>1 cup 2 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) Decoction of stem bark in water</td>
<td>1 cup 2 times daily</td>
</tr>
</tbody>
</table>
| **7. *Tetrapleura tetraptera* Taub**
(Mimosaceae) (FHI 56148) | **Aridan Aidan** | **Fruits** | **(1) Pounded with *Carica papaya* roots, and *Citrus sinensis*, *Zanthoxylum xanthoxyloides*, *Securidaca longipedunculata* and *Allium ascalonicum* bulb mixed with local black soap.**
(2) Fresh mature fruits with *Kigelia africana* stem bark, roots of *Abras precatorius*, *Olax subscopoides*, *Citrus aurantifolia* with fruits of *Capsicum frutescens*, *Piper guineense* and bulbs of *Allium cepa* & *Allium ascalonicum*
(3) Fresh fruits plus dry fruits of *Xylopia aethiopica*, *Macaranga barterii* fresh leaves, *Allium ascalonicum* (whole plant), Sea shell and black soap are macerated together. | **Bath twice daily with soap**
All the materials are dried and ground.1 tablespoonful of the powder mixed with pap 2 times daily for children. | **Bath twice daily with soap**
All the materials are dried and ground.1 tablespoonful of the powder mixed with pap 2 times daily for children. |
|---|---|---|---|
| **8. *Jatropha gossypifolia* Linn**
(Euphorbiaceae)
(FHI 107130) | **Lapalapa pupa, Botuje pupa** | **Leaves** | **Macerated with black soap**
Bath with it twice in 3 days. | **Bath with it twice in 3 days**
Bath with it twice in 3 days. |
| **9. *Piper guineense* Schum & Thum (Piperaceae)**
(FHI 106409) | **Iyere** | **Fruits** | **Powdered with dry twigs of *Celtis zenkeri*, *Capsicum frutescens* and table salt**
Powder taken with hot pap or water 3 times daily | **Powder taken with hot pap or water 3 times daily**
Powder taken with hot pap or water 3 times daily |
| **10. *Xylopia aethiopica* A.Rich**
(Annonaceae) (FHI 3849) | **Eeru** | **Leaves plus Stem bark** | **Table salt plus leaves of *Dracaena fragrans*, *Citrus aurantifolia* fruits of *Capsicum frutescens*, bulb of *Allium ascalonicum* are all dried and grounded together**
Powder taken with hot pap or water 3 times daily | **Powder taken with hot pap or water 3 times daily**
Powder taken with hot pap or water 3 times daily |
| **11. *Allium ascalonicum* Linn**
(LiLiaceae) | **Alubosa elewe** | **Whole plant** | **1. Powdered with *Mondia whitei* leaves, maize grains, fruits of *Capsicum frutescens* and table salt**
Mixture taken with pap or water | **Mixture taken with pap or water**
Mixture taken with pap or water |
<table>
<thead>
<tr>
<th>12. Citrus aurantifolia Swingle (Rutaceae) (FHI 89525)</th>
<th>Orombo wewe</th>
<th>Leaves</th>
<th>1. Decoction made with Alchornea laxiflora, Culcasia scandens, and Pergularia daemia leaves</th>
<th>A cup twice daily</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fruits</td>
<td>2. Decoction prepared with Cyclosorus afer, Blighia sapida and Anthocleista vogelli</td>
<td>1 cup daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) Citrus leaf decoction with Hilleria latifolia, Blighia sapida, Anogeisus leocarpus and Carica papaya. Xylopia villosa stem bark is added in the decoction</td>
<td>Oral administration of the decoction 2 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4) In decoction with Azadirachta indica, cajanus cajan and Morinda lucida leaves</td>
<td>A cup 3 times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5) In decoction with Jatropha curcas, Jatropha gossypifolia and Chromolaena odorata</td>
<td>1 cup daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) In decoction with Lawsonia inermis, Vernonia amygdalina, Calotropis procera and Jatropha curcas leaves</td>
<td>A cup 2 times daily</td>
</tr>
<tr>
<td>No.</td>
<td>Plant Name</td>
<td>Family</td>
<td>Part Used</td>
<td>Preparation</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 13. | *Alstonia boonei* Dewild. (Apocynaceae) (FHI 85136) | | | (1) Prepared in decoction with barks of *Morinda lucida*, *Enanchia chloranta*, *Terminalia avicenoides* and *Anthoclestii vogelii*
(2) Powdered with bark of *Anthoclestii vogelii* and fruit of *Parkia biglobosa* add table salt
(3) Prepared in decoction with bark of *Kigelia africana*, leaves of *Gossypium barbadens*, fruits of *Capsicum frutescens* and *Citrus auratium*. | About 35ml of the decoction 3 times daily
Oral administration with water or pap.
35ml taken 3 times daily
1 cup every morning
1 cup 3 times daily |
(2) Decoction of leaf prepared with *Leea guineensis* & *Terminalia avicenoides* leaves and *Capsicum frutescens* fruits. | 1 cup 2 times daily
1 cup 3 times daily |
| 15. | *Enantia chloranta* syn-*Enanchia chloranta* Oliv. (Anonaceae) (FHI 101821) | | | Decoction of the bark with *Harungana madagascariensis*, *Lawsonia inermis* & *Chasmanthera dependus* barks and *Capsicum frutescens* fruits. | 1 cup 2 times daily |
| 16. | *Morinda lucida* Benth (Rubiaceae) (FHI 7424) | | | (1) Bark decoction prepared with *Khaya senegalensis*, *Alstonia boonei* and *Mangifera indica* barks
(2) Decoction or Macerate and decant
(3) Decoction of root with *Mallotus oppositifolius*, *Anthoclestiti vogelii* root and rhizomes of *Curtica domestica* | 1 cup 2 times daily
1 cup 2 times daily
1 cup once daily |
| 17. *Lawsonia inermis* Linn *(Lythraceae)* (FH1100042) | Laali | Leaves | Leaves Infused With *Senna alata*, *Senna podocarpa* Leaves and Juice Of *Citrus aurantifolia* | 1 cup 3 times daily |
| 18. *Kigelia africana* (Jacq) D.C. *(Bignoniaceae)* (FHI 4123) | Iyan, Pandoro Somunroro | Stem bark | Infusion Prepared With Stem Bark Of *Anarcardium occidentalis*, *Mangifera indica* and *Terminalia catapa* | 1 cup 2 times daily |
| 19. *Spondias monbin* Linn *(Anarcardiaceae)* (FHI63948) | Iyeye, okika | Leaves | Decoction prepared with *Alstonia boonei*, *Harungana madagascariensis*, *Lawsonia inermis*, *Gossypium* spp, and *Cymbopogon citratus* leaves | 1 cup 2 times daily |
| 20. *Blighia sapida* Koenig *(Sapindaceae)* (FHI 89466) | Isin | Leaves | Decoction of leaves prepared with *Carica papaya*, *Tetracarpidium conophorum* leaves | 1 cup daily |
| 21. *Senna alata* Linn-Holl *(Caesalpinaceae)* (FHI 87305) | Asunwon oyinbo, Asunran oyinbo, Ajawa oyinbo | Root | Roots of *Senna alata*, *Senna podocarpa*, *Mondia whitei*, *Uvaria afzelii* and fruit of *Uvaria chammnae*, *Capsicum frutescens*, *Parkia biglobosa* and sea shells plus table salt. | All the materials dried and ground, 1 table spoonful mixed with pap taken once daily. |

*The families and voucher numbers obtained at the Forest Herbarium, Ibadan, (FHI) for the plant specimens are put in parenthesis.

References

