Publication Bias and the Market Orientation-Performance Nexus Literature

Kwaku Appiah-Adu
Professor of Strategy and Marketing
Central Business School
Central University
Accra, Ghana

Justice G. Djokoto
Department of Agribusiness,
Central Business School,
Central University
Accra, Ghana

Correspondence:
Email: kappiah.adu@central.edu.gh
kwaku_appiahadu2001@yahoo.com
Telephone: +233242644738

Abstract
In the past decade, a number of studies have conducted meta-analyses of the market orientation-performance literature. The purpose of this paper is to investigate publication bias in the field of marketing with a specific emphasis on the market orientation-performance relationship. This study adds to existing knowledge by explicitly accounting for both publication bias and the control for important variables that influence the market orientation-performance measure. Firstly, we conduct a quantitative survey of the literature on market orientation-performance from various countries and create a database of market orientation-performance studies for each country examined in the literature. Next, we estimate the average effect size, publication bias and examine the role of study specific effects on the observed market orientation-performance measure. From our findings, though the funnel plots emanating from data used for two of our models suggest the existence of publication bias, the inclusion of other variables which explain the differences in market orientation-performance coefficients result in the absence of publication bias in our third model. We subsequently present the implications of our findings for managers and scholars within the contexts of the market orientation-performance and publication bias literature.

Keywords: market orientation, performance, meta-analysis, publication bias

Introduction
'Bias' is used commonly in different contexts, therefore, it is important to define (operationalise) bias (publication). This is the systematic error induced in a statistical inference by an author expecting to secure
Publication status. Begg & Berlin (1988) explained that such a bias can only be present if the inference drawn in a study influences the decision to publish. This bias arises from the preference of authors (Cho and Bero, 1996; Davidson, 1986; Needleman, 1996), editors (Armstrong, 1997), or reviewers (Goodstein and Brazis, 1970; Lloyd, 1990; Mahoney, 1977; Speck, 1993) for some particular results; usually those that are statistically significant (Begg and Berlin, 1988; Greenwald, 1975; Hubbard and Armstrong, 1992; Sterling, Rosenbaum, and Weinkam, 1995) or consistent with theory (Armstrong and Hubbard, 1991; Kuhn, 1962; Stanley, 2005). Publication bias can seriously exaggerate the magnitude of the effect size (Havranek and Irsova, 2012).

Evidence from a large survey of economics meta-analyses, showed the magnitude of publication bias decreased with more theory competition in the particular research area (Doucouliagos and Stanley, 2013). Similar evidence exists in the field of marketing. In Hubbard and Armstrong’s (1992) thought-provoking paper which examined whether null results were becoming an endangered species in marketing, they found that editorial procedures tended to promote studies that rejected the null hypothesis, suggesting the possibility of publication bias, an observation that had been made in biomedical sciences (Greenwald, 1975), medical studies (Simes, 1986) and by psychologists (Rosnow and Rosenthal, 1989), economists (Feige, 1975) and statisticians (Salsburg, 1985).

The possibility of publication bias in any field can result in the creation of serious knowledge gaps in that scholarly area. When this happens, the scholarly world and business practitioners will hardly have the opportunity to benefit from insightful findings that exhibit non-significant results. This will result in a situation where researchers continue to research that issue, until by chance, a significant result occurs. Hubbard and Armstrong (1992) conclude that bias against the publication of non-significant findings would help to prevent researchers from reinvestigating blind alleys. In the world of business, limited publications of non-significant research findings will deprive practitioners of knowledge that would help them to subject traditionally held business paradigms to further analyses in developing strategies for their operations.

In this study of publication bias, market orientation is selected because of the significant role this concept has played in business and management research over the last two decades and its relevance to practitioners and scholars alike. Moreover, the authors have conducted substantial research in this field in Europe and Africa over the past decade and had the existing literature, information and data to analyze in connection with this research (Appiah-Adu, 1998a; Appiah-Adu and Blankson, 1998; Appiah-Adu and Ranchhod, 1998; Morgan, Katsikeas and Appiah-Adu, 1998; Appiah-Adu and Singh, 1998; Appiah-Adu, 2009). Further, any revealing findings would be of interest to scholars and provide suggestions to change the way the scholarly world perceives marketing-related papers with non-significant findings, providing evidence that encourages...
innovation. Such findings should offer practitioners a wider range of evidence, assumptions and options on which to build their models in an increasingly sophisticated business environment.

Market orientation is a pertinent subject for analyzing and gaining an understanding of how organisations behave (Narver and Slater, 1990). It is posited that market orientation entails an implementation of the marketing concept because it provides organisations with the capacity to foresee, respond to and exploit changes in the business environment, thus resulting in greater success (Kohli and Jaworski, 1990; Shoham, Rose and Kropp, 2005).

Over the last two and half decades scholars have examined a number of precursors and effects of market orientation to gain further insights into its significance in organizations and markets (Bhuian, 1998; Grinstein, 2008; Kohli and Jaworski, 1990; Lagat, Chepkwony and Kotut, 2012; Narver and Slater, 1990; Vieira, 2010). In spite of the plethora of studies on the link between market orientation and organizational success, conclusions from these studies indicate inconsistent findings. Consequently, the body of literature depicts varied effects of the relationship. For example, these findings differ from non-significant (Appiah-Adu, 1998a; Müller Neto, 2005) or negative Bhuian (1997) to positive (Jaworski and Kohli, 1996; Slater and Narver, 1994a). One way of determining the reasons for these mixed findings is to conduct a meta-analysis of a number of papers exploring the market orientation-performance relationship to explore the effects of possible publication bias on the findings and evaluate the universal applicability of the conclusions (Brown and Peterson, 1993; Havranek and Irsova, 2012).

It is conceivable to suggest that various global factors would impact market orientation. Clearly, amalgamating studies across countries and continents makes it possible to obtain an overview of the dynamics of market orientation and its impact on performance. Drawing on the aforementioned issues, this research attempts to find solutions to four questions:
1) Is there publication bias in the market orientation-performance literature?
2) What is the average effect of market orientation on performance?
3) What is the role of study characteristics on market orientation-performance estimates?
4) Does accounting for study characteristics influence publication bias?

This paper is unique for two reasons. First, most recent meta-analytic studies adopted an approach that weighed the effect size by the sample size, performed Z and/or Fisher transformation. These have relied on procedures recommended by Bamberger, Klugar and Suchard (1999) and Hunter and Schmidt (2004) among others. One of the reasons for these transformations of the effect size is to control for publication bias, the existence of which is not always shown in the analysis. In a rare case, regression analysis was performed relating the mean effect size to categorical and continuous variables separately - see Rodriguez Cano, Carrillat and Jaramillo (2004).
In this market-orientation-performance study, we examine the subject of publication selection bias, effect size and specific study characteristics, jointly. This joint estimation proved to be efficient in identifying the role of effect size and specific study characteristics and detecting publication bias. Secondly, the study employed only market orientation-performance regression coefficients unlike others such as Grinstein (2008) and Vieira (2010), that used correlation coefficients. The former is superior to the latter because the former controls for factors that the latter is incapable of doing.

The remainder of the paper is structured as follows: first, we review the market orientation literature and adapt a theoretical model of its consequences. In the next section, we present the methodology. The results are presented in section four and the discussions and managerial implications are captured in section five. Finally, we conclude with some recommendations for future research.

Theoretical context

The phenomenon of publication selection bias is prevalent in several fields of economics (business) research (Doucouliagos and Stanley, 2011). The economics-research-cycle theory (Goldfarb, 1995) has been supported in some areas of applied economics by others (e.g. Stanley, 2008; Havranek, 2010). This theory posits that ground-breaking papers in the fields of economics and related areas such as business tend to be characterized by sizeable and significant estimates. This is probably because such findings do not only persuade the reviewers and editors, but also surmount entry barriers, leading to the birth of a pristine empirical domain. Ensuing studies tend to lend credence to the sizeable estimates of this new field. However, with time, conflicting findings become preferable, because they are generally deemed more fascinating by the editors, reviewers and target audience. Owing to the likelihood of publication bias and the research cycle in the market orientation-performance literature, we chose to analyse a wide collection of empirical studies, evaluating the findings of a variety of scholars. Additionally, as opposed to selective preferences, conclusions drawn from the extant literature are not contingent on any specific methodology adopted by the primary research to determine the constituents of market orientation and its impact on performance.

This study adapts the model propounded by Kirca, Jayachandran and Bearden (2005), which illustrates the relationships among the most commonly investigated effects of market orientation. Given the purpose of this paper, the market orientation-performance relationship is given prominence to the exclusion of other consequences such as organisational commitment; organisational learning; customer orientation; and innovativeness. Consequently, Figure 1 presents the adjusted theoretical model.
If market orientation provides an organisation with the ability to proactively adapt to evolving customer demands and preferences, it is reasonable to suggest that market orientation would have a positive impact on business success. The extant literature indicates that organisations with superior performance are those that tend to be abreast of current and emerging trends in order to proactively respond to or influence developments within their business environments (e.g. Appiah-Adu, 2009; Sheth, 2011). Drawing from the Resource Based View it can be inferred that an organisation which possesses differential resources can leverage these assets to develop superior strategies and performance (Barney, 1991). If a strong market orientation provides an organisation with an advantage to enhance its resources and in itself is considered a market differential, a focus on this strategy should lead to enhanced performance (Perin, Sampaio and Henriqson, 2005). Consequently, it is postulated that market orientation will have a positive impact on performance (Atuahene-Gima, Slater and Olson, 2005; Deshpandé and Farley, 1998).

Rodriguez Cano et al., Carrillat and Jaramillo (2004), Shoham, Rose and Kroppet al. (2005), Ellis (2006), Grinstein (2008) and Vieira (2010) have meta-analysed studies in market orientation and performance. To investigate the impact of market orientation on long term success, Rodriguez Cano, Carrillat and Jaramillo et al. (2004) conducted a meta-analysis and found that the relationship between market orientation and business performance is positive and consistent worldwide. One of the unique contributions of this research is a sample that included studies conducted in 23 countries spanning five continents. The moderating effects of

Figure 1: Antecedents and Consequences of Market Orientation: Adjusted Brazilian Model

- Moderators of market-orientation performance relationship
- Measurement of market-orientation
- Measurement of performance
- Market orientation moderators
- Sample size - Industry
- Geographic coverage
- Market-orientation-performance metric

business objective (profit, not-for-profit),
industry type (manufacturing, service),
and socioeconomic development, gross
domestic product per capita, human
development index, and Hofstede’s individual-
ism cultural dimension were examined.
Stronger correlations between market ori-
entation and business performance were
found for not-for-profit compared to
profit firms and service compared to
manufacturing firms.

The relationship between market orienta-
tion and alternative strategic orientations
was authored by Shoham et al. (2005).
They examined the effect of market
orientation on different orientations, and
identified the orientations that are more
likely to be combined with market
orientation. The study employed a meta-
analysis procedure to synthesize empirical
results on the relationship between market
orientation and innovation, learning, en-
trepreneurial, and employee orientations.
Its findings suggest that market orienta-
tion is strongly correlated with learning,
entrepreneurial, and employee orientation.
The authors suggested that market
orientation should shift its focus, moving
from the study of its direct effect on
business performance to the study of
various combinations of strategic orien-
tations that firms can pursue in different
situations, studying how the more suc-
cessful market-oriented firms balance
between market orientation and other
strategic orientations. This was the first
meta-analysis study to examine the rela-
tionships between market orientation and
alternative strategic orientations.

Ellis (2006) assessed quantitatively the
impact of market orientation on the
performance of the firm. It was based on
a substantive meta-analysis quantitatively
which summarized the results of empiri-
cal studies of the direct and indirect
impact of market orientation on three
outcomes. The meta-analysis assessed the
influence of methodological variables on
explained variances in performance. It was
found that the direct, indirect and total
impacts of market orientation on perfor-
mance were all significant. Additionally,
the geographic location of the study and
the performance measure used (but not
the scale) affected explained variance. The
authors suggested that the impact of
market orientation might be stronger than
previously thought due to the indirect
paths not considered in previous research.
Moreover, the strength of its impact
depends on the country in which it was
implemented, suggesting that managers
should expect higher payoffs in less de-
veloped countries. The findings of this study
refined the body of knowledge concern-
ing the impact of market orientation on
business performance, and thereby
offered an improved conceptual frame-
work for marketing planners.

Grinstein’s (2008) study, based on
quantitative evidence drawn from a meta-
analysis of 56 studies (58 samples) con-
ducted in 28 countries revealed that mar-
ket orientation is a generic determinant of
firm performance. However, stronger ef-
fects were found for studies set in large,
mature markets and when market
orientation was measured using Kohli,
Jaworski and Kumar’s (1993) MARKOR
scale. The meta-analysis also revealed that
the value of a market orientation weakens
in proportion to the cultural distance
separating the home market from the
USA. This study extended previous
research by: (i) providing evidence of
measurement moderators that inhibit the generalization of results obtained from studies using different scales and performance variables; (ii) establishing benchmark effect sizes for specific regions around the world; and (iii) revealing that the managerial value of market orientation is significantly affected by the cultural and economic characteristics of the host country.

In the most recent market orientation meta-analysis study, Vieira (2010) showed that the relationship between market orientation and business performance is positive and strong ($r = 0.39$). This study aggregated a sample size of 4,537 in 27 countries from seven meta-analyses on market orientation. It emerged that there is a positive, strong and consistent relationship between market orientation and performance across countries ($r = 0.33$).

Methodology

We accessed data for the study from diverse publishers' websites and databases namely, Oxford University Press, Wiley, Taylor & Francis, Sage and Emerald among others. Databases included EBSCOHost, Google Scholar, Cab Abstract and DOAJ. Owing to the methodology we employed, only studies that reported regression coefficients of market orientation and performance relationship were included in the data set. The list of eligible data is presented in Table 1 (See Appendix).

Following Begg and Berlin (1988) and Gorg and Strobl (2001) we specified the publication bias model as:

\[\log|t_i| = \alpha_i + \alpha_0 \log(\text{d.f.}) + \psi_i \]

Where, t_i is the absolute t-statistics and α_i are coefficients and ψ_i is error term. However, Stanley (2005) recommended the use of number of observations in place of degrees of freedom (d.f.) since it makes no practical difference. Hence 1 can be re-formulated as:

\[\log|t_i| = \alpha_i + \alpha_0 \log(\text{number of observations}) + \psi_i \]

It must be acknowledged however, that, number of observations is larger than degrees of freedom as the latter is reduced by the number of parameters estimated from the model. We note therefore, that, nominal differences may be observed in the results using number of observations and degrees of freedom. $\alpha_0 = 1$ means that no publication bias is present.

In the absence of publication bias, the absolute value of t-statistic should increase with more degrees of freedom; that is: the absolute value of the t-statistic should be directly proportional to the logarithm of the square root of the number of degrees of freedom (Card and Krueger, 1995; Görg and Strobl, 2001; Stanley, 2005; and Doucouliagos and Stanley, 2009). Stanley, (2005) rightly noted that equation 2 should rather be interpreted as a test for genuine empirical effect.

An alternative that can be used to detect
the significance and magnitude of both publication bias and a genuine underlying effect is a funnel plot and equation 3 (Card and Krueger, 1995; Görg and Strobl, 2001; Stanley and Doucouliagos, 2012). The funnel plot presents the estimate (coefficient) on the horizontal axis and their precision often the inverse of the standard error on the horizontal axis. The most precise estimates will be close to the genuine underlying effect, while imprecise estimates will be more dispersed.

Effectively, the cloud of the estimates should resemble an inverted funnel. Publication bias is then established by the asymmetry of the funnel plot. If publication bias is absent, all imprecise estimates have the same chance of being reported, and the funnel is symmetric.

Owing to subjectivity in the interpretation of the funnel plot, a more objective form of test is 3:

\[e_i = e_o + \beta_o SE(e_o) + u_i \]

where \(\beta_o \) measures asymmetry of the funnel plot and the strength of publication bias. Beyond measuring effect size and publication bias, results from market orientation-performance (MO-performance) studies differ in several aspects; the market-orientation instrument used, the performance measure employed and moderating variables. Others are the industry the study covers, geographical location of the organization studied and whether the MO-performance measure is standardized or not. These differences are accounted for in equation 4.

\[e_i = e_o + \beta_o SE(e_o) + \beta\text{,MOJK} + \beta\text{,MOM} + \beta\text{,MONS} + \beta\text{,MOPW} + \beta\text{,MOD} + \beta\text{,MODLO} + \beta\text{,MODT} + \beta\text{,MODMP} + \beta\text{,MODPMO} + \beta\text{,MODRMO} + \beta\text{,SS} + \beta\text{,PMO} + \beta\text{,PMNPP} + \beta\text{,PMF} + \beta\text{,RGUSA} + \beta\text{,PGEUROPE} + \beta\text{,INMANUF} + \beta\text{,INS} + \beta\text{,MOPC} + u_i \]

Where \(e_o \) becomes the effect size, \(\beta_o \) is the strength of publication bias. If \(\beta_o \) is statistically significant, then there is publication bias. Otherwise, then, there is no publication bias. Also, the size and statistical significance of \(e_o \) reflects the size and significance of the effect size. This approach to jointly estimate the effect size and publication bias is more efficient than alternative approaches used extensively, more specifically in meta-analyses of the market orientation literature. It must be noted that, the method and data did not permit isolation of country, industry or study specific publication bias. Therefore, the expectation of a specific threshold of publication bias described by a statistical measure for a study may not be possible.

The contribution of multiple observations from some studies to the metadata set could result in metadata being influenced by results from those studies. While acknowledging this possibility, we were unable to employ cluster(ed) analysis and multilevel modelling because of limitations of the size of metadata set.

With the exception of SE (standard error) and SS (sample size), all others are dummy variables. Where the study used Jaworski and Kohli’s measure of market orienta-
When the study adopts mixed measures, then MOM takes 1 and zero otherwise. MONS equals 1 if Narver and Slater’s measure of market orientation is employed. MOPW equals 1 if Pelham and Wilson’s measure of market orientation is used. The excluded measure is Kohli et al (1993). MOD equals 1 if no moderator variable is included in the market orientation-performance model and zero otherwise. The specific moderator variables are captured by MODLO-learning orientation, MODT-turbulence (market, technological and competitive), MODM-marketing’s power within the organization, MODPMO-proactive market orientation and MODRMA-reactive market orientation. The excluded group of moderators is strategic consensus, strategic mission rigidity, risk-taking rewards and long-term rewards. Measures of performance are captured as follows: PMO-overall performance, PMRMS-relative market share, PMNPP-new product performance and PMF-financial measures of performance such as ROA, ROI, ROE and profit margin). The excluded performance measure is sales growth. RGUSA represents studies in USA while RGEUROPE represents studies in Europe. The ex-cluded regions are Asia and Africa. INMANUF captures manufacturing which is equal to 1 and zero otherwise. INS equals 1 and zero otherwise. The excluded industry is multi-industry. MOPC equals 1 if the coefficient of market orientation performance relationship is standardized and zero otherwise.

Results

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>MOPE</th>
<th>MOPE/SE</th>
<th>MOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory Variables</td>
<td>Model 1*</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>Constant (e₀)</td>
<td>-0.802619***</td>
<td>-</td>
<td>7.897799***</td>
</tr>
<tr>
<td></td>
<td>(0.234465)</td>
<td>(1.515304)</td>
<td></td>
</tr>
<tr>
<td>Standard Error (β₁)</td>
<td>6.011429***</td>
<td>-</td>
<td>0.507689</td>
</tr>
<tr>
<td></td>
<td>(0.842725)</td>
<td>(0.840220)</td>
<td></td>
</tr>
<tr>
<td>Constant (β₀)</td>
<td>-</td>
<td>2.191479**</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.899799)</td>
<td></td>
</tr>
<tr>
<td>Inverse of Standard Error (e₁)</td>
<td>-</td>
<td>-0.130064</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.106113)</td>
<td></td>
</tr>
<tr>
<td>MOJK</td>
<td>-</td>
<td>-</td>
<td>-7.384089***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.920185)</td>
</tr>
<tr>
<td>MOM</td>
<td>-</td>
<td>-</td>
<td>0.011871</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.309204)</td>
</tr>
<tr>
<td>MONS</td>
<td>-</td>
<td>-</td>
<td>-7.787494***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.152377)</td>
</tr>
<tr>
<td>MOPW</td>
<td>-</td>
<td>-</td>
<td>-7.044879***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.971821)</td>
</tr>
<tr>
<td>MOD</td>
<td>-</td>
<td>-</td>
<td>0.672148*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.252026)</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>MOPE</td>
<td>MOPE/SE</td>
<td>MOPE</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Explanatory Variables</td>
<td>Model 1<sup>a</sup></td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>MODLO</td>
<td>-</td>
<td>-</td>
<td>0.157685</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.309361)</td>
</tr>
<tr>
<td>MODT</td>
<td>-</td>
<td>-</td>
<td>-0.066171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.476933)</td>
</tr>
<tr>
<td>MODM</td>
<td>-</td>
<td>-</td>
<td>0.129366</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.478427)</td>
</tr>
<tr>
<td>MODPMO</td>
<td>-</td>
<td>-</td>
<td>-0.171694</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.348171)</td>
</tr>
<tr>
<td>MODRMO</td>
<td>-</td>
<td>-</td>
<td>0.226630</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.347043)</td>
</tr>
<tr>
<td>SS</td>
<td>-</td>
<td>-</td>
<td>-0.0002972</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0002671)</td>
</tr>
<tr>
<td>PMO</td>
<td>-</td>
<td>-</td>
<td>-1.083693</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.643506)</td>
</tr>
<tr>
<td>PMRMS</td>
<td>-</td>
<td>-</td>
<td>-0.847978</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.759231)</td>
</tr>
<tr>
<td>PMNPP</td>
<td>-</td>
<td>-</td>
<td>-0.946670</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.794129)</td>
</tr>
<tr>
<td>PMF</td>
<td>-</td>
<td>-</td>
<td>0.042781</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.222743)</td>
</tr>
<tr>
<td>RGUSA</td>
<td>-</td>
<td>-</td>
<td>-7.276988***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.9653219)</td>
</tr>
<tr>
<td>RGEUROPE</td>
<td>-</td>
<td>-</td>
<td>-1.015783</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.585028)</td>
</tr>
<tr>
<td>INMANUF</td>
<td>-</td>
<td>-</td>
<td>1.218155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.781854)</td>
</tr>
<tr>
<td>INS</td>
<td>-</td>
<td>-</td>
<td>-0.428063</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.335520)</td>
</tr>
<tr>
<td>MOPC</td>
<td>-</td>
<td>-</td>
<td>-0.563780</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.624815)</td>
</tr>
</tbody>
</table>

Model properties

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R squared</td>
<td>0.599455</td>
<td>0.043092</td>
<td>0.981434</td>
</tr>
<tr>
<td>R squared Adjusted</td>
<td>0.587674</td>
<td>0.014947</td>
<td>0.953584</td>
</tr>
<tr>
<td>F statistic</td>
<td>50.88435***</td>
<td>1.531094</td>
<td>35.24085***</td>
</tr>
</tbody>
</table>

Normality test

| Jarque-Bera | 4.057104 | 0.999716 | 0.797789 |

Serial Correlation tests

| F-statistic | 0.326745 | 0.042511 | 1.652495 |
| Obs*R-squared | 1.103446 | 0.093596 | 11.18406*c |
Equation 3 was estimated using OLS. The results (model 1) in Table 2 show that there is overall fit with statistically significant F test and no presence of serial correlation evidenced by statistically insignificant F and Obs*R squared statistics. Also, the model shows normally distributed error term. However, the heteroscedasticity tests show non-constant variances. The ameliorations in equation 4 were estimated (Model 2). The results show absence of heteroscedastic error as well as the absence of serial correlation and existence of normally-distributed error term. However, the R squared and adjusted R squared dwindled drastically, resulting in insignificant model fit shown by statistically insignificant 1.531094 F-statistic. Despite the violation of OLS properties of Model 1 and poor fit of model 2, together with the funnel plot (Figure 2), one can conclude that there exists publication bias.

The study proceeded to assess the effect of study characteristics on the estimated coefficients of MO-performance regressions. Model 3 shows drastic improvement in the R squared and adjusted R squared values. The variances are homoscedastic. The F-statistic of the serial correlation LM test is statistically insigni-
significant. The Obs* R squared showed weak statistical significance with the second order test. However, the inclusion of AR (1) and AR (2) in the estimation model turned statistically insignificant. Higher order ARs resulted in singular matrices for which the model could not be estimated. Hence, the weak serial correlation is inconsistent with that of the F-statistic and this can be ignored. More importantly, the data is not a pure time series data for which serial correlation is a relevant issue.

The funnel plots (Figure 2) and model 1 and 2 suggest there is publication bias. The inclusion of other variables which explain differences in MO-performance coefficients (MOPE) have resulted in the disappearance of publication bias in model 3. This is confirmed by the statistical insignificance coefficient of SE, which represents publication bias. The constant, which measures the effect size, is 7.898 and statistically significant at 1% means that there is strong evidence of a positive relationship between market orientation and organizational performance.

Three of the MO measures are negative and statistically significant. The mixed measure is statistically insignificant. This implies that the excluded measure, Kohli et al (1993) produces a higher MO-performance relationship than all others. Recognizing the role of moderators in the primary studies increased the MO-performance relationship. The statistically insignificant moderator variable suggests that the excluded moderators; strategic consensus, strategic mission rigidity, risk-taking rewards and long-term rewards together increase the MO-performance effect. Sample size coefficient is statistically insignificant. This implies that the size of the sample does not influence the MO-performance effect.

All coefficients representing the performance measures are statistically insignificant. This implies that choice of performance measure does not influence the MO-performance effect. The variable capturing studies in USA is negative and statistically significant, whilst that of Europe is statistically insignificant. This implies that in the excluded regions, namely Asia and Africa, the effect of MO-performance is higher than it is in the USA. The coefficients of variables capturing industry from which data were collected for primary studies showed statistical insignificance. This implies that there is no difference in MO-performance measures among industries. Regression coefficients reported in MO-performance studies are either standardized or unstandardized. The coefficient for the standardized variable is statistically insignificant, implying that statistically, there is no difference between these two types of measures.

Discussions and Managerial Implications

Our findings indicate the existence of publication bias when we examined the effect of market orientation on performance. This finding may be attributed to the likelihood of distortion of reported results of studies involving only two constructs due to publication pressures. This finding is in line with the economics-research-cycle hypothesis. However, when the analysis is extended to include other variables which are purported to explain the differences in the market orientation-performance relationship, there is an absence of publication bias. It is likely that
the inclusion of these additional variables introduces complexities into the model being examined and provides further room to investigate a host of factors that extend the life-span of the economic-research-cycle, thus limiting the effect of publication bias. It must be noted that publication bias is more a research issue than a managerial issue. Its disappearance with the inclusion of study characteristics implies that these factors need to be controlled for in order to reduce publication bias.

On the average, the impact of market orientation on performance is statistically significant and positive, lending credence to several research studies conducted either based on various countries performance measures which found a strong relationship between market orientation and performance. The works in different countries include Australia - Farrell (2000); USA - Kohli et al. (1993), Germany - Homburg and Pflesser, (2000); Taiwan - Horng and Chen (1998); the Netherlands - Langerak et al. (2004); Spain - Lado et al. (1998) among others. Studies using different performance measures include Appiah-Adu (1997) - new product success, sales growth and return on investment; Kirca et al. (2005) - overall performance; Gray et al. (1998) - return on investment, brand awareness, customer satisfaction and loyalty; among others.

Our market orientation-performance finding is also consistent with those of other meta-analytical researchers whose empirical work has been conducted over the last decade. These include the findings of: Rodriguez Cano et al. (2004); Shoham et al. (2005); Ellis (2006); Grinstein (2008); and Vieira (2010).

The fact that Kohli et al. (1993) measure of market orientation produces a stronger market orientation-performance link compared to the association between all other market orientation constructs and performance is worth commenting on. This finding could be attributed to the fact that Kohli et al.’s (1993) scale, with its emphasis on information generation, dissemination and utilisation, makes it possible for a firm to be more knowledgeable about its internal and external business environments than its rivals, and when this knowledge is used effectively and proactively, places the organisation in a stronger position to achieve superior performance relative to its competitors.

The statistically significant impact of moderator variables on the market orientation-performance relationship implies that businesses that aim to excel in the marketplace must be fully aware of the important role that the combined effect of moderators such as strategic consensus, strategic mission rigidity, risk-taking rewards and long-term rewards play in honing the impact of market orientation on performance. This finding does not only lend additional support to the results of the meta-analysis studies highlighted in the above section, but firmly reinforces earlier propositions by ground-breaking research into the market orientation-performance association that environmental factors do moderate the relationship (Jaworski and Kohli, 1993; Slater and Narver, 1994a).

From the findings, the suggestion is that acknowledging the roles of various moderators on the market orientation-performance link provides an organization with the opportunity to know which variables
of the business environment to focus on in order to excel in specific areas of business performance. This finding is consistent with those of various meta-analytical researchers who used different moderators. These include Rodriguez Cano et al. (2004) (moderators - business objective, industry type, socio-economic development, cultural dimension); Shoham et al. (2005) (moderators - geographical location, market orientation measure used; performance measure used); Ellis (2006) (size and growth stage of markets, market orientation measure used); Grinstein (2008) (moderator - firm size); and, Vieira (2010) (moderators - performance measure, industry type, market orientation measure).

It is interesting to note that sample size does not influence the market orientation-performance effect. The inference from this finding is that the impact of a strong market orientation on performance is robust and once the appropriate analytical tools are used to determine the relationship between the two constructs, the finding tends to be universally consistent. The finding that sample size coefficient is statistically insignificant is quite surprising since one would have expected that studies with larger data sets would be likely to detect statistically significant results without much specification research and, therefore, exhibit less variability. Also there is the possibility that the sample sizes used are adequate; above the minimum required to produce robust results.

Another implication is that research on MO-performance can be cost effective by working within a sample size of 52 and 411 depending on the explanatory variable employed in the study. In the context of meta-analytical findings that this research draws from, all the earlier work was based on large data sets, and reported significant positive relationships between market orientation and performance and if we are to limit our discussion to these particular studies, then there may be no further explanations to give for this finding. However, it must be noted that specific research based on individual countries has revealed that regardless of the sample size used, varying results have been obtained by different researchers in previous studies, lending support to our finding that on this particular subject, sample size may not really matter (Cadogan et al. 1999; Moorman, 1995). Based on our findings, the statistical insignificance of the coefficients representing performance measures suggests that variation of performance measures does not influence the market orientation-performance statistic. This finding is supported by the key meta-analysis studies that this research draws from (Ellis, 2006; Grinstein, 2008; Rodriguez Cano, Carrillat and Jaramillo, 2004; Shoham, Rose and Kropp, 2005; Vieira, 2010). While Shoham, Rose and Kropp (2005) suggested that the impact of market orientation on subjective performance measures tended to be stronger than its impact on objective measures, combinations of the two captured the middle ground. Their argument is that subjective assessments may provide a better measurement of performance because managers integrate environmental conditions in their performance measures, and therefore, subjective assessments may offer a more appropriate measure compared to objective evaluations. A creative methodology to examine the variations is to adopt a
combination of performance measures and select the most germane performance measure for an organization in line with its strategic goals.

If the selection of performance measure does not influence the market orientation-performance relationship, then regardless of an organization's performance objectives, the imperative to be strongly market oriented would not be a misplaced priority. Consequently, depending on its objective(s) in the marketplace, a firm can choose to focus on organisational commitment, organisational learning, customer orientation, innovation, financial performance or a combination of the aforementioned performance measures as long as such a strategy helps the firm to meet its overall goals and its market-oriented efforts are aligned to the business environment to enable it to achieve that particular performance objective.

The variable capturing empirical research into the market orientation-performance relationship in the USA is negative and statistically significant. The finding that in the excluded regions, specifically, Africa and Asia, the impact of market orientation on performance is stronger than it is in the USA is quite revealing and contradicts the findings of Ellis (2006), that the market orientation-performance effect is significantly stronger in the USA compared to other regions. This result is also inconsistent with Rodriguez Cano et al.'s (2004) finding that country context does not influence the market orientation-performance link. However, our finding is supported by Shoham et al. (2005) whose USA samples exhibited a relatively weaker association between market orientation and performance. This implies that in less developed markets (Africa and Asia), market orientation efforts tend to make a relatively more significant impact. Therefore, marketers in Africa and Asia need to invest in market orientation as this has significant payoffs.

One would have expected that in a mature market like the USA, which is characterized by stable demand, intense competition, short channels and sophisticated buyers, higher levels of market orientation are required for better performance compared to emerging developing economies that are characterized by rapid growth and uncertain demand, thus, making market orientation less valuable. Moreover, since the two dominant market orientation measures were designed and validated within the context of a US business culture, it is suggested that modifying these measures for application in other countries may reduce the reliability of these instruments resulting in “noisier” market orientation measures and weaker correlations (Ellis, 2006).

A possible explanation for our finding of the need for stronger emphasis on market orientation in the emerging economies (Africa and Asia) is that marketing is now evolving as a critical variable that organizations have to pay attention to in growing markets, and all firms that aspire to survive or remain competitive need to execute marketing principles and operations effectively in order to be successful. It is plausible that market orientation may have a stronger impact in countries where consumer service and customer expectations are still evolving. In such nations, market orientation may permit an organization to gain a competitive edge by offering superior service levels than its rivals (Shoham...
et al., 2005). This finding implies that the period when developing country firms could reap the benefits of marketing without necessarily being market oriented may be over and that managers in Africa and Asia would do well to invest their resources in market oriented activities. It is suggested that this orientation needs to involve a holistic marketing approach that takes into account the organization's management of the marketing mix, usefulness of its market research, suitability of its positioning strategies, and the nature of its marketing goals (Ellis, 2005; Fahy et al., 2000).

The statistical insignificance of the coefficients of variables capturing industry from which data was generated indicates that market orientation’s influence traverses industries. The implication is that irrespective of the industry in which a firm operates, it is important for managers to take the execution of marketing practices effectively because the sound implementation of such practices tends to distinguish high performers from the rest of the competition. Our results are inconsistent with the findings of Gray and Hooley (2002) that, all things being equal, for the same level of market orientation, business performance is stronger for service than manufacturing organizations, since by the nature of their business, service firms maintain a strong relationship with customers (Kotler and Keller, 2011). Nevertheless, our finding corroborates the assertion that has been made over more than half a century by leading advocates of marketing, that effective marketing is cardinal to competitive success (McCarthy, 1960; Kotler, 2011). The managerial implication of our finding is that regardless of the industry in which a business operates, it is important to be market oriented in order to achieve superior performance.

Conclusions and recommendations for future research

In this study we pick 38 estimates from 12 papers that concentrate on the market orientation–performance relationship using regression analysis. An examination of the literature on market orientation showed that a significant number of studies employed linear correlation analysis to study the market orientation-performance phenomenon hence the relatively small sample that studied the phenomenon using regression analysis. In addition, we undertake related studies of the effect of moderators on the market orientation-performance association by incorporating only those coefficients that scholars estimate in the same regression with the market orientation-performance link. We utilise contemporary meta-analysis techniques to determine the fundamental consequences of market orientation on organizational performance. The results show a strong and positive MO-performance relationship. As noted in the introduction, the sources of this bias suggest that authors, editors and reviewers should rely more on the rigor of the study rather than studies with 'desirable or expected results' as deviations from the norm informed by plausible explanations constitute advancement in knowledge. Despite the initial existence of publication bias, accounting for study characteristics eliminated the publication bias.

This research makes unique contributions to the literature in several ways. With respect to performance measures, our study uses overall performance, relative market share, new product performance and
several financial performance measures (return on assets, return on equity, return on investment, profit margin and sales growth) in order to strengthen the conclusions drawn from our findings in the light of existing knowledge.

Moreover, our research created four categorisations of performance, one more than the studies of Rodriguez Cano et al. (2004) and Shoham et al. (2005) did, and two more than that of Ellis (2006). Whilst Vieira (2010) used four disaggregated measures, this study employed more than seven disaggregated measures. This provided an opportunity to test the possible influence of the different performance measures. Furthermore, this study used the MO-performance measures as reported by the authors listed in Table 1. However, these were appropriately accounted for using a dummy variable. Correlation coefficients result from the relation of only two variables. However, several factors moderate performance and market orientation. Since regression analysis tends to control for some of the moderating factors, our study used only MO-performance regression coefficients.

Research in the area of market orientation has evolved over the years covering single firm studies, comparative industry studies within a nation, international comparative studies and global meta-analytic studies. Based on the most recent studies of meta-analytic trends, the approach has been to weight the effect size by the sample size, perform Z and/or Fisher transformation. These have relied on procedures recommended by Hedges and Oklin (1985), Bamberger et al. (1999) and Hunter and Schmidt (1990, 2004). In rare cases, regression analysis was performed relating the mean effect size to categorical and continuous variables separately.

This study is the first market orientation-performance study to examine the subject of publication selection bias, effect size and specific study characteristics jointly. From our standpoint, the most critical area requiring further investigation in this arena is research into the use of market orientation-performance effect measures generated from correlation analysis as the dependent variable. This study indicates that there are significant variations in the market orientation-performance relationship examination across nations. When it is possible to determine the bases of these variations in detail, the findings may provide practitioners and policy makers with critical insights into how to obtain the greatest benefits from a sound market orientation at both the firm and national level.

Our conclusions are based on MO-performance regression coefficients. It is unknown if similar conclusions would be arrived at MO-performance using correlation coefficients. This will indeed be interesting as the effect size used in most of the meta-analysis studies we reviewed were correlation coefficients. It is also recommended that similar studies be conducted in specialized areas of marketing such as consumer behaviour, marketing communications, retail management, branding, sales management, international marketing, and other areas such as strategic management, organizational behaviour, human resource management, accounting, banking and finance in order to examine the universal applicability of our findings across the various fields of business and management.
Our inability to control for multiple observations from the same author to the metadata due to limitation of the size of the metadata offers an opportunity for further research with larger metadata set.

REFERENCES

Goldfarb, R. (1995). If empirical work in economics is not severe testing, what is it?

ness Management, 36(3), 79.
Proceedings of the National Meeting of the National Association of Graduate Studies and Research in Administration, Brasilia, DF, Brazil, 29.

APPENDIX - Table 1: List of Literature used as data set

<table>
<thead>
<tr>
<th>No</th>
<th>Author/year</th>
<th>Estimate</th>
<th>Standard error</th>
<th>MO measure</th>
<th>Moderators/Interactions</th>
<th>Sample</th>
<th>Performance measure</th>
<th>Degrees of freedom</th>
<th>Country</th>
<th>Industry</th>
<th>Standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Appiah-Adu & Singh (1998)</td>
<td>0.32</td>
<td>0.11</td>
<td>N&S</td>
<td>No</td>
<td>132</td>
<td>ROI</td>
<td>123</td>
<td>UK</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>2</td>
<td>Appiah-Adu & Singh (1998)</td>
<td>-0.74</td>
<td>0.319</td>
<td>N&S</td>
<td>Market growth</td>
<td>132</td>
<td>Sales growth</td>
<td>129</td>
<td>UK</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>3</td>
<td>Appiah-Adu & Ranchhod (1998)</td>
<td>0.34</td>
<td>0.12</td>
<td>N&S</td>
<td>No</td>
<td>62</td>
<td>Profit margins</td>
<td>52</td>
<td>UK</td>
<td>biotechnology</td>
<td>Standardized</td>
</tr>
<tr>
<td>4</td>
<td>Appiah-Adu & Ranchhod (1998)</td>
<td>0.37</td>
<td>0.18</td>
<td>N&S</td>
<td>No</td>
<td>62</td>
<td>Overall performance</td>
<td>52</td>
<td>UK</td>
<td>biotechnology</td>
<td>Standardized</td>
</tr>
<tr>
<td>5</td>
<td>Appiah-Adu & Ranchhod (1998)</td>
<td>0.42</td>
<td>0.23</td>
<td>N&S</td>
<td>No</td>
<td>110</td>
<td>Mkt share growth</td>
<td>52</td>
<td>UK</td>
<td>biotechnology</td>
<td>Standardized</td>
</tr>
<tr>
<td>6</td>
<td>Appiah-Adu (1998b)</td>
<td>0.30</td>
<td>0.14</td>
<td>Pelham & Wilson (1996)</td>
<td>Proactive MO</td>
<td>110</td>
<td>Sales growth</td>
<td>102</td>
<td>UK</td>
<td>Small business</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>7</td>
<td>Appiah-Adu (1998b)</td>
<td>0.27</td>
<td>0.18</td>
<td>Pelham & Wilson (1996)</td>
<td>No</td>
<td>110</td>
<td>ROI</td>
<td>102</td>
<td>UK</td>
<td>Small business</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>8</td>
<td>Anauhene-Gima et al (2005)</td>
<td>-0.22</td>
<td>0.089</td>
<td>Mixed</td>
<td>Proactive MO</td>
<td>142</td>
<td>New product performance</td>
<td>119</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>9</td>
<td>Anauhene-Gima et al (2005)</td>
<td>0.20</td>
<td>0.082</td>
<td>Mixed</td>
<td>Strategic consensus</td>
<td>142</td>
<td>New product performance</td>
<td>119</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>10</td>
<td>Anauhene-Gima et al (2005)</td>
<td>-0.27</td>
<td>0.085</td>
<td>Mixed</td>
<td>Marketing’s power</td>
<td>142</td>
<td>New product performance</td>
<td>119</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>11</td>
<td>Anauhene-Gima et al (2005)</td>
<td>-0.21</td>
<td>0.083</td>
<td>Mixed</td>
<td>Strategic mission rigidity</td>
<td>142</td>
<td>New product performance</td>
<td>119</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>12</td>
<td>Anauhene-Gima et al (2005)</td>
<td>0.13</td>
<td>0.521</td>
<td>Mixed</td>
<td>Learning orientation</td>
<td>142</td>
<td>New product performance</td>
<td>119</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>13</td>
<td>Anauhene-Gima et al (2005)</td>
<td>0.19</td>
<td>0.112</td>
<td>Mixed</td>
<td>Responsive MO</td>
<td>142</td>
<td>New product performance</td>
<td>117</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>14</td>
<td>Anauhene-Gima et al (2005)</td>
<td>0.16</td>
<td>0.075</td>
<td>Mixed</td>
<td>No</td>
<td>142</td>
<td>New product performance</td>
<td>128</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>15</td>
<td>Baker & Sinkula (1999)</td>
<td>-0.162</td>
<td>0.129</td>
<td>K et al (1993)</td>
<td>Learning Orientation</td>
<td>411</td>
<td>Rel. mkt share</td>
<td>397</td>
<td>USA</td>
<td>Manufacturing</td>
<td>Standardized</td>
</tr>
<tr>
<td>16</td>
<td>Baker & Sinkula (1999)</td>
<td>0.266</td>
<td>0.130</td>
<td>K et al (1993)</td>
<td>None</td>
<td>411</td>
<td>Rel. mkt share</td>
<td>397</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>17</td>
<td>Baker & Sinkula (1999)</td>
<td>0.240</td>
<td>0.140</td>
<td>K et al (1993)</td>
<td>None</td>
<td>411</td>
<td>Rel. mkt share</td>
<td>397</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>No</td>
<td>Author/year</td>
<td>Estimate</td>
<td>Standard error</td>
<td>MO measure</td>
<td>Moderators/ Interactions</td>
<td>Sample</td>
<td>Performance measure</td>
<td>Degrees of freedom</td>
<td>Country</td>
<td>Industry</td>
<td>Standardization</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>18</td>
<td>Baker & Sinkula (1999)</td>
<td>0.465</td>
<td>0.114</td>
<td>K et al (1993)</td>
<td>None</td>
<td>411</td>
<td>New product success</td>
<td>397</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>20</td>
<td>Baker & Sinkula (1999)</td>
<td>0.355</td>
<td>0.119</td>
<td>K et al (1993)</td>
<td>None</td>
<td>411</td>
<td>Overall</td>
<td>397</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>21</td>
<td>Bhuian (1997)</td>
<td>-0.13</td>
<td>0.1446</td>
<td>J&K</td>
<td>None</td>
<td>92</td>
<td>ROE</td>
<td>89</td>
<td>Saudi Arabia</td>
<td>Banking</td>
<td>Standardized</td>
</tr>
<tr>
<td>22</td>
<td>Bhuian (1997)</td>
<td>-0.15</td>
<td>0.1244</td>
<td>J&K</td>
<td>None</td>
<td>92</td>
<td>Sales/ Employee ROA</td>
<td>89</td>
<td>Saudi Arabia</td>
<td>Banking</td>
<td>Standardized</td>
</tr>
<tr>
<td>23</td>
<td>Bhuian (1997)</td>
<td>-0.13</td>
<td>0.1446</td>
<td>J&K</td>
<td>None</td>
<td>92</td>
<td>ROE</td>
<td>89</td>
<td>Saudi Arabia</td>
<td>Banking</td>
<td>Standardized</td>
</tr>
<tr>
<td>24</td>
<td>Bhuian (1998)</td>
<td>0.65</td>
<td>0.1820</td>
<td>J&K</td>
<td>No</td>
<td>115</td>
<td>Overall</td>
<td>113</td>
<td>Manufacturing</td>
<td>Standardized</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Charles et al (2012)</td>
<td>0.106</td>
<td>0.048</td>
<td>N&S</td>
<td>No</td>
<td>147</td>
<td>Mixed</td>
<td>146</td>
<td>Thailand</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>26</td>
<td>Grewal and Tansuhaj (2001)</td>
<td>-0.734</td>
<td>0.356</td>
<td>J&K</td>
<td>CI. DU, TU</td>
<td>120</td>
<td>Satisfaction ROA, Sales, Profit, etc.</td>
<td>111</td>
<td>Mali</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>29</td>
<td>Slater & Narver (1994)</td>
<td>0.91</td>
<td>0.19</td>
<td>N&S</td>
<td>No</td>
<td>107</td>
<td>Sales growth</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>30</td>
<td>Slater & Narver (1994)</td>
<td>0.52</td>
<td>0.20</td>
<td>N&S</td>
<td>No</td>
<td>107</td>
<td>New product success</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>31</td>
<td>Slater & Narver (1994)</td>
<td>-0.51</td>
<td>0.33</td>
<td>N&S</td>
<td>Market turbulence</td>
<td>107</td>
<td>ROA</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>32</td>
<td>Slater & Narver (1994)</td>
<td>-0.22</td>
<td>0.32</td>
<td>N&S</td>
<td>Technological Turbulence</td>
<td>107</td>
<td>ROA</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>33</td>
<td>Slater & Narver (1994)</td>
<td>0.38</td>
<td>0.42</td>
<td>N&S</td>
<td>Competitive Hostility</td>
<td>107</td>
<td>ROA</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>34</td>
<td>Slater & Narver (1994)</td>
<td>-0.00</td>
<td>0.07</td>
<td>N&S</td>
<td>Market growth</td>
<td>107</td>
<td>ROA</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>35</td>
<td>Slater & Narver (1994)</td>
<td>0.63</td>
<td>0.20</td>
<td>N&S</td>
<td>Market growth</td>
<td>107</td>
<td>ROA</td>
<td>97</td>
<td>USA</td>
<td>Mixed</td>
<td>Un-standardized</td>
</tr>
<tr>
<td>No</td>
<td>Author/year</td>
<td>Estimate</td>
<td>Standard error</td>
<td>MO measure</td>
<td>Moderators/Interactions</td>
<td>Sample</td>
<td>Performance measure</td>
<td>Degrees of freedom</td>
<td>Country</td>
<td>Industry</td>
<td>Standardization</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>37</td>
<td>Wei & Atuahene-Gima (2009)</td>
<td>0.23</td>
<td>0.09</td>
<td>J&K</td>
<td>Long-term rewards</td>
<td>110</td>
<td>New product performance</td>
<td>101</td>
<td>China</td>
<td>High-tech</td>
<td>Standardized</td>
</tr>
<tr>
<td>38</td>
<td>Wei & Atuahene-Gima (2009)</td>
<td>-0.18</td>
<td>0.09</td>
<td>J&K</td>
<td>Risk-taking rewards</td>
<td>110</td>
<td>New product performance</td>
<td>101</td>
<td>China</td>
<td>High-tech</td>
<td>Standardized</td>
</tr>
</tbody>
</table>