The Namibian coast, on the west coast of southern Africa, has a high reputation as an angling destination. The Benguela Current, flowing along the coast, is characterized by cold, nutrient-rich upwelling. A system with relatively low species diversity but high production forms the basis for the recreational fishery. Anglers brave the somewhat inhospitable desert coast, with its cold winds and fog, to make sometimes notable catches. Most angling is from the shore, from the beach, in the surf, using bait. Some shore-angling takes place off rocks, and some angling is done from skiboats offshore. Catches are made all year round but are higher in summer. The most frequently landed bonefish are kob (mostly silver kob \textit{Argyrosomus inodorus}, but also dusky kob \textit{A. coronus}), West Coast steenbras \textit{Lithognathus aureti}, galjoen \textit{ Dichistius capensis} and blacktail \textit{Diplodus sargus}. To a much lesser extent, sharks, including the copper shark \textit{Carcharhinus brachyurus}, the spotted gulley shark \textit{Triakis megalopterus} and the smoothhound \textit{Mustelus mustelus}, are targeted.

Access to shore-angling on the Namibian coast is restricted to about one-quarter of the coastline, some 260 km, stretching from Sandwich Harbour, south of Walvis Bay, to the mouth of the Ugab River in the north (all places mentioned in text are shown on Fig. 1). Most of this coast is made up of the West Coast Recreation Area (WCRA), and more than 90% of Namibia’s angling takes place there. Additional, smaller angling sites exist north of this, at Torra Bay and Terrace Bay in the Skeleton Coast Park, and in the south near Lüderitz. Kirchner et al. (2000) described the fishery. They used a roving creel survey to determine that the angling population is made up of three distinct segments; coastal Namibian residents (15%), inland Namibian residents (38%), and South African visitors (46%).

Kirchner et al. (2000) undertook an expenditure survey in which a stratified sample of 240 anglers was questioned for details on expenditures. It was determined that, during the 1997/98 season, some 8 800 anglers spent about 173 000 days angling and had direct expenditures of N$30 million within Namibia. The average angler thus spent some 20 days fishing and spent some N$3 400 doing it. These findings were in broad agreement with those for South African anglers (McGrath et al. 1997), except that effort per angler was higher in Namibia, perhaps a reflection of the relative remoteness of the Namibian coast. The gross value added attributable to the recreational shore fishery was estimated to be N$14 million,

A sample of 626 anglers was surveyed with a questionnaire to determine the expenditures, consumer surpluses and elasticities of demand associated with the Namibian recreational marine shore fishery in 1998. Two entirely different methods of valuation, the travel cost method and contingent valuation, were applied. Results for the two methods indicate convergent validation. On aggregate, anglers spent between N$23 million and N$31 million on angling trips in Namibia during 1998, and they were willing to pay between N$24 million and N$27 million more than this for the experience. The fishery contributed between N$11 million and N$15 million to gross national income. Anglers in the fishery were found willing to pay some N$1 million annually towards conservation of the fish resource, as well as some N$340 000 annually for licences. Demand for angling experiences is generally price inelastic, suggesting that rents might be captured through donations and licence fees, without reducing angler numbers.

Key words: demand, economic valuation, Namibia, recreational fishery

The Namibian coast, on the west coast of southern Africa, has a high reputation as an angling destination. The Benguela Current, flowing along the coast, is characterized by cold, nutrient-rich upwelling. A system with relatively low species diversity but high production forms the basis for the recreational fishery. Anglers brave the somewhat inhospitable desert coast, with its cold winds and fog, to make sometimes notable catches. Most angling is from the shore, from the beach, in the surf, using bait. Some shore-angling takes place off rocks, and some angling is done from skiboats offshore. Catches are made all year round but are higher in summer. The most frequently landed bonefish are kob (mostly silver kob \textit{Argyrosomus inodorus}, but also dusky kob \textit{A. coronus}), West Coast steenbras \textit{Lithognathus aureti}, galjoen \textit{Dichistius capensis} and blacktail \textit{Diplodus sargus}. To a much lesser extent, sharks, including the copper shark \textit{Carcharhinus brachyurus}, the spotted gulley shark \textit{Triakis megalopterus} and the smoothhound \textit{Mustelus mustelus}, are targeted.

Access to shore-angling on the Namibian coast is restricted to about one-quarter of the coastline, some 260 km, stretching from Sandwich Harbour, south of Walvis Bay, to the mouth of the Ugab River in the north (all places mentioned in text are shown on Fig. 1). Most of this coast is made up of the West Coast Recreation Area (WCRA), and more than 90% of Namibia’s angling takes place there. Additional, smaller angling sites exist north of this, at Torra Bay and Terrace Bay in the Skeleton Coast Park, and in the south near Lüderitz. Kirchner et al. (2000) described the fishery. They used a roving creel survey to determine that the angling population is made up of three distinct segments; coastal Namibian residents (15%), inland Namibian residents (38%), and South African visitors (46%).

Kirchner et al. (2000) undertook an expenditure survey in which a stratified sample of 240 anglers was questioned for details on expenditures. It was determined that, during the 1997/98 season, some 8 800 anglers spent about 173 000 days angling and had direct expenditures of N$30 million within Namibia. The average angler thus spent some 20 days fishing and spent some N$3 400 doing it. These findings were in broad agreement with those for South African anglers (McGrath et al. 1997), except that effort per angler was higher in Namibia, perhaps a reflection of the relative remoteness of the Namibian coast. The gross value added attributable to the recreational shore fishery was estimated to be N$14 million,
equivalent to some 3.6% of the value added in the whole Namibian fisheries sector. The impact of gross expenditures on the national income was N$27 million, calculated using a crude national income multiplier.

In this paper, the results of a survey of 626 coastal recreational anglers in Namibia in 1998, aimed at measuring further economic characteristics of demand in the fishery, are reported. In particular, consumer surpluses and value added for the different market segments, as well as elasticities of demand, were sought. Two different approaches to valuation, the travel cost method (TCM) and the contingent valuation method (CVM), were employed to allow comparison of results and possible convergent validation. The study is part of an ongoing project to assess potential economic values of Namibian natural resources and wildlife.

METHODS

Economic values

Values (measured in Namibia dollars (N$)) in this paper can be placed in the context of total economic value (TEV), as described by Pearce and Turner (1990). TEV consists of use values and non-use values.

1 Consumer surplus is the difference between the maximum amount a consumer is willing to pay for a product and what they actually pay for it – a component of economic value

2 At the time of the study (early 1998), N$1.00 = ZAR1.00 = US$0.20
The use values consist of direct and indirect use values. Direct use values reflect direct consumption, such as fishing. Indirect use values reflect indirect creation of such value. For example, a marine ecosystem creates nutrient-rich water and hence increases the fish stock for direct use. Non-use values embrace option, bequest and existence values. Option value reflects the willingness to pay to ensure future use of the resource. Bequest value reflects willingness to pay to ensure that the resource is available for future generations. Existence value reflects willingness to pay to ensure the mere existence of the resource. All measures of gross expenditure, net income and consumer surplus listed below are measures of direct use value. Where anglers were asked for their willingness to pay for conservation of the fish resource, their responses could be reflecting non-use values.

In the macroeconomic context of Namibia, a primary measure of economic value is the gross national income (GNI). This measure can either be estimated as the total value of consumption of all final products in the economy, or as the total value added by all productive activities in the economy. Value added in an enterprise is defined as the returns to internal factors of production (labour and capital); it is the gross output less intermediate expenditures. Net national income (NNI) is gross national income less depreciation. Using expenditure data and empirical data on intermediate inputs from the broader tourism sector, an attempt is made here to estimate these contributions to national income. The measure calculated is the recreational marine shore fishery’s share of the total value added by all productive activities within the fishery sector in Namibia. Intermediate inputs for the angling activities are subtracted from the total expenditures made by recreational anglers in Namibia. The intermediate inputs are simply the expenditures made for inputs from outside the angling sector, and they can be interpreted as leakage from the tourism sector. No figure is available for angling tourism specifically, but Ashley (1995), in an empirical analysis of the economic structures of tourism activities in Namibia, found gross value added to be 48% of gross output, and net value added to be 41% of gross output. Accordingly, these proportions are applied here to gross expenditures, to calculate the contributions of the fishery to gross and net national income. It is noteworthy that the measures documented here are of the “value” of the fishery, involving first-round expenditures only. No attempt was made to measure the “impact” of the fishery on the economy, using multiplier analysis.

Both valuation approaches used, the travel cost method and the contingent valuation method, provide estimates of consumer surpluses associated with angler expenditures. Use of two, completely different and independent, methods should increase the theoretical and practical validity of the study. Both methods have been widely used and, in the right circumstances, have been accepted as giving reliable economic values for recreational activities (Mitchell and Carson 1989).

Field survey

The field survey was carried out among coastal anglers between January and April 1998. This allowed the collection of mostly high season responses, but also some from the low season, in April. In all, 626 anglers were interviewed at angling sites along the coast stretching from Walvis Bay in the south to Terrace Bay in the north. Sampling took place while anglers were on the beach, or at government campsites/resorts along the coast. Some piles of questionnaires were left at campsite offices for distribution by staff and later return by mail. Sampling was not systematic or random, but non-selective at sites, with the aim of getting the highest possible number of responses. Stratification of sampling between sites was undertaken with the aim of achieving a suitably representative spatial coverage.

More than half the sample (52%) consisted of foreign visitors. The other 48% were Namibians, of whom 64% travelled from inland Namibia and 34% from coastal areas. These proportions differ from those actually measured by Kirchner et al. (2000). They determined that, in 1997/98, foreign visitors made up 46%, coastal Namibian residents 15% and inland Namibian residents 38% of the angling population. To correct for sample bias with respect to angler origin, the sample was divided into these three segments and weighted according to the measured ratios. It was not possible to correct the sample for bias in other characteristics, such as gender and income. However, primary interest was in the three segments above, and it is reasonable to assume that the sample was sufficiently representative.

A questionnaire, similar to that used by Barnes (1996) and Barnes et al. (1999) to survey broader tourism populations and wildlife-viewing tourists, was developed. The questionnaire was designed to elicit as much information as possible so that data could be analysed using the travel cost and contingent valuation approaches. In addition to general tourist characteristics and reasons for the visit, respondents were asked to state their travel costs, total costs, specific angling costs, such as for bait, tackle, rods and reels, as well as the replacement cost of their vehicle/skiboat (if any). Further, anglers were asked if they were willing to pay for an angling licence and to contribute to a coastal conservation trust fund.

A team of five enumerators distributed question-
naires, assisted respondents when needed, and collected completed questionnaires. The questionnaire was in most cases handed out and the respondents completed them without assistance, but some regular interviews were held. Most anglers approached were willing to complete the questionnaire; refusal rate was very low. Children were excluded from the interviewing process because it was considered that adults were more capable of estimating expenditures within their budget constraints. Of the 626 returned questionnaires, 372 were finally selected for use after cleaning. All expenditure estimates were converted to Namibia dollars (N$) at prevailing exchange rates.

Travel cost method (TCM)

The travel cost method uses anglers’ costs of consuming the services of the environmental asset as a proxy for price. These consumption costs include travel costs, entry fees, on-site expenditures and the annualized costs of outlay on capital equipment needed for consumption. The basic premise is that the user population is homogeneous in its willingness to pay, and that differences in the costs of consumption (owing, for example, to different travel costs) result in different rates of visitation. Visitation rate is used as the quantity measure of the angling experience. As such, the travel cost method is an indirect method of valuation. By varying the travel costs and visitation rates, it is possible to derive a demand curve that expresses the demand for trips to the recreational area, in this case recreational angling on the Namibian coast (Hanley and Spash 1993).

TCM has not been used much in the context of southern African tourism activities, because it depends for success on certain assumptions, which are commonly not applicable. It requires that the population of users be homogeneous regarding willingness to pay, that the destination be a sole one (not part of a multi-destination trip), and that the substitutability of the destination is low. In this particular case (recreational angling on the Namibian coast), the angling population is fairly homogeneous (nearly all middle class and southern African), visits are made specifically for angling, substitute sites are remote and somewhat different, and the price elasticity of demand is likely to be low (McGrath et al. 1997). This angling population is therefore considered suitable for analysis using the conventional travel cost approach (Kerr 1986, Hanley and Spash 1993).

Depending on the degree of homogeneity of the sample population regarding travelling distance and social characteristics, an individual or zonal travel cost model can be used. The individual model uses each person’s travel costs and visitation rate, but requires a relatively homogenous dataset, i.e. the observations may not differ too much (Hanley and Spash 1993, Navrud and Mungatana 1994, Randall 1994). The current sample consists of anglers travelling from 10 to 3 000 km, with highly variable costs data and variable frequencies of visitation. The zonal model is better suited to deal with this variability, because all visitors are divided into zones of origin. Population figures are derived for zones, and figures on visits per capita can therefore be calculated. A typical zonal visitation rate model is

\[VPC_{zj} = f(TC_{zj} S_z) \]

where \(VPC_{zj} \) is the visits per capita from zone \(z \) to site \(j \), \(TC_{zj} \) the trip (including travel) costs from zone \(z \) to site \(j \), and \(S_z \) is a vector for the social characteristics of zone \(z \). It is assumed that visitors travelling from different zones have the same willingness to pay and the same social characteristics. The zonal model is

<table>
<thead>
<tr>
<th>Zone</th>
<th>Number of visits</th>
<th>Population (thousands)</th>
<th>Visits per 10 000 inhabitants</th>
<th>Mean zone trip cost (N$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KwaZulu-Natal</td>
<td>15</td>
<td>7 672</td>
<td>0.020</td>
<td>3 273</td>
</tr>
<tr>
<td>Gauteng</td>
<td>89</td>
<td>7 171</td>
<td>0.124</td>
<td>2 041</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>5</td>
<td>5 865</td>
<td>0.094</td>
<td>2 873</td>
</tr>
<tr>
<td>Northern Province</td>
<td>11</td>
<td>4 128</td>
<td>0.027</td>
<td>3 258</td>
</tr>
<tr>
<td>Western Cape</td>
<td>86</td>
<td>4 118</td>
<td>0.209</td>
<td>2 008</td>
</tr>
<tr>
<td>North-West Province</td>
<td>34</td>
<td>3 043</td>
<td>0.112</td>
<td>1 902</td>
</tr>
<tr>
<td>Mpumalanga</td>
<td>17</td>
<td>2 646</td>
<td>0.064</td>
<td>1 669</td>
</tr>
<tr>
<td>Free State</td>
<td>9</td>
<td>2 470</td>
<td>0.036</td>
<td>1 766</td>
</tr>
<tr>
<td>Northern Cape</td>
<td>30</td>
<td>746</td>
<td>0.402</td>
<td>1 489</td>
</tr>
<tr>
<td>Inland Namibia</td>
<td>199</td>
<td>275</td>
<td>7.236</td>
<td>638</td>
</tr>
<tr>
<td>Walvis Bay</td>
<td>45</td>
<td>50</td>
<td>9.000</td>
<td>122</td>
</tr>
<tr>
<td>Swakopmund</td>
<td>47</td>
<td>25</td>
<td>18.800</td>
<td>88</td>
</tr>
<tr>
<td>Henties Bay</td>
<td>24</td>
<td>10</td>
<td>24.000</td>
<td>87</td>
</tr>
</tbody>
</table>

Table I: Southern African zones used in the travel cost model
somewhat sensitive to the selection of zones used. This can affect the resulting consumer surplus estimates (Hanley and Spash 1993, Sterner 1996).

In all, 13 geographical zones were identified for the model. These comprised South Africa’s nine provinces, three Namibian coastal zones, and one Namibian inland zone. The populations and mean incomes for the South African zones were derived from data from the South African Centre for Statistical Services (CSS). The populations for zones in Namibia were derived by adding the populations for each city or town in the zone represented in the zone samples. No official estimates of local Namibian incomes were available. The zones, their numbers of visits, populations, visitation rates and trip costs are shown in Table I.

The travel costs included the fuel cost of a return trip to the Namibian coast and on-site expenditure. For the current purposes, it was assumed that the fuel costs only, rather than the total cost of the vehicle (including depreciation of the car, tyres, etc.), were closest to the typical respondent’s perception of vehicle costs. A difficult issue regarding travel cost models relates to the inclusion and estimation of costs for travel time. Current economic thinking tends to favour the notion that time costs ought to be included in travel cost models. It could be argued that travelling time is the opportunity cost of foregone income, i.e. an angler could have worked, and hence been making money, instead of travelling. Hanley and Spash (1993) suggest that the questionnaire should include a question about the enjoyment during the time spent travelling. They argue that, if the visitor enjoyed the time spent travelling, it is not reasonable to impute the time cost of travelling to that specific visitor. Of all respondents in this study, 95% stated that they enjoyed the time spent travelling. Accordingly, time costs for these respondents were not imputed. Nevertheless, in order to show what effect time costs would have on the final outcome, models and consumer surpluses calculated with 0, 30, 60 and 100% time costs included are presented in addition to the above.

The cost of time for the South African zones was determined by deriving hourly income from mean zonal incomes, as acquired from the CSS. For Namibian zones, mean incomes from questionnaire responses were used. The travel cost was determined by multiplying the distance travelled to and from the coast with the Automobile Association of South Africa’s (AARSA 1998) estimation of cost per km for two-wheel and four-wheel drive vehicles. Added to this was the time cost, which was calculated by assuming an average speed of 70 km h⁻¹.

The inclusion of on-site and other non-travel costs, such as accommodation and entry fees, is also contentious. Whether these should be included depends on whether they can be deemed to affect rates of participation and, as with travel time, the degree of enjoyment derived from the consumption. For current purposes, it is considered that, along with the cost of travel, these expenditures overwhelmingly do affect visitation rates, and therefore should be included in the analysis.

Many travel cost models (e.g. Navrud and Mungatana 1994) include social characteristics such as gender, income and other relevant variables to obtain better specification for the model. In this case, it was difficult to acquire such information for all zones, and attempts to develop models with the information acquired resulted in problems with multi-colinearity. Different functional forms were tested. The model that had the “best” fit was chosen for the following stages of the analysis, i.e. developing a second-stage demand function (Kerr 1986, Hanley and Spash 1993) and calculating the consumer surplus.

Contingent valuation method (CVM)

For this analysis, a variation of the contingent valuation method was used. Unlike travel cost, which is based on revealed preferences, contingent valuation is a direct method and is based on stated preferences. In it, the respondent’s willingness to pay for an increased amount of a specific good, or her/his willingness to accept to avoid a decrease of a good, are elicited through surveys. It is generally agreed that willingness to pay is preferable to willingness to accept (Mitchell and Carson 1989, NOAA 1993).

Barnes et al. (1999) describe the contingent valuation approach used here in some detail. Among general questions regarding their personal characteristics, origin, trip and trip preferences, respondents were asked how much their travel to and from their angling destination (by any mode) was costing, what their total angling trip was costing, how much of this they were personally spending within Namibia, and what their annual income was. In the introduction to a section on expenditures they were informed that their answers were to assist with planning and could not affect actual prices. A payment card was used to ask the respondents what they would be willing to pay for a similar return angling trip. They were first asked whether their current trip was value for money and then whether they would be willing to return on a similar trip. If they said “yes” (nearly all did), they were asked to identify the cost level (in relation to their present or actual cost) that would prevent them from returning. If they said “no” they were asked to identify the cost...
level (also in relation to their actual cost) that would induce them to return. These cost levels were taken as the maximum willingness to pay for a return trip. For each respondent, a positive difference between willingness to pay for return trips and actual trip cost was taken as an estimate of that individual’s consumer surplus for the whole trip. For foreign anglers, the consumer surplus for the Namibian part of the trip was calculated proportionally, based on the ratio between expenditures for the whole trip and for the Namibian component of the whole trip. Therefore, the reasonable assumption was made that consumer surplus for the Namibian part of the trip was proportionally the same as that for the whole trip.

The cost of travel and of the overall trip were common to all, and most respondents seemed able to make a good estimate of these themselves. They were first asked for these two costs in that order, before being asked to value any other specific components of the trip, such as accommodation. The order of questions was selected with care after the pilot survey and was thought to reduce the potential for both budget constraint\(^4\) bias (as described by Mitchell and Carson 1989) and embedding or part-whole\(^5\) bias (Kahneman and Knetsch 1992, Navrud and Mungatana 1994). The order of the overall trip cost for the willingness to pay question was also thought to reduce the possibility of these biases. Other workers conducting willingness to pay surveys (Moran 1994, Navrud and Mungatana 1994) have also deemed it best to focus on the overall trip cost.

Getting anglers to focus on return trips in their consideration of willingness to pay was thought to reduce confusion between actual and maximum estimates, which might arise if they were to focus on the actual trip. In as much as desire for return trips is likely to be less than that for first-time trips, the estimates of actual demand and consumer surplus are likely to be conservative. This is considered to be of value in reducing any effects of avidity\(^6\) bias, as described by Thomson (1991), which might be expected. The way the question was worded (using the words “prevent” and “induce”) was thought to reduce the possibility of strategic\(^7\) bias, as described by Mitchell and Carson (1989). Using the actual angling experience as the reference point for the valuation of a return trip was considered to minimize the risk of various forms of misspecification\(^8\) bias and to reduce the risk of other possible sources of bias defined by Mitchell and Carson, such as compli-

\(^4\) Where a respondent gives an answer that differs from her/his true amount in an attempt to influence the provision of the good and/or the respondent’s level of payment for the good

\(^5\) Where the respondent values a larger or smaller entity than the researcher’s intended good

\(^6\) Where the survey attracts respondents who are more avid or enthusiastic than the average

\(^7\) Where a respondent gives an answer that differs from her/his true amount in an attempt to influence the provision of the good and/or the respondent’s level of payment for the good

\(^8\) Biases of this type occur when a respondent does not respond to the correct contingent scenario

\(^9\) Where a respondent gives an answer that differs from her/his true one in an attempt to comply with the presumed expectations of the sponsor/researcher, or to please or gain status in the eyes of the researcher/interviewer

\(^10\) Where the elicitation method or payment vehicle directly or indirectly introduces a potential answer that influences the answer given by the respondent

\(^11\) Where the elicitation method presents a range of potential answers that influences the respondent’s answer

\(^12\) Where the description of the good presents information about its relationship to other public or private commodities that influences a respondent’s answer

\(^13\) Where the position of, or order in which, different valuation questions for different goods, or levels of a good, suggest to the respondent how those levels should be valued
source. If they said “yes”, they were also asked how much they would pay.

By informing respondents before they completed the questionnaire that the Ministry of Environment and Tourism was carrying out an environmental evaluation of recreational angling, possible sponsor bias was hopefully avoided. In general, the interviewers felt that the respondents answered the questions correctly and honestly.

Price elasticities

Measures of price elasticity were derived from the data and the demand functions developed using the TCM and CVM methods. First multiple and then simple regressions were run on the raw variables to try to determine price, income, success and other elasticities. Then the second-stage demand functions developed in the travel cost analysis were used to try and determine mainly price elasticities. In addition, the variable for willingness to pay, obtained in the contingent valuation study, was manipulated to develop a derived demand function. Here, the range of willingness to pay was divided into 20 equal segments, and a frequency histogram depicting the distribution of responses along the range was drawn. Simple regression on the histogram data was carried out to obtain the price (willingness to pay) to quantity (number of respondents per price category) relationship. Double log, lin-log, log-lin, linear and reciprocal functional forms were tested for both multiple and simple regression models. In multiple regressions, different combinations of explanatory variables were tested in an attempt to minimize multicollinearity effects. Only models displaying significance, overall and with respect to the coefficients, were retained. Elasticities were calculated from the model data. Point elasticities at mean and median price values were calculated for all other than double log functions.

RESULTS

Angler profile

The general characteristics of the angling population are presented in Table II. The average angling visitor to the Namibian coast was 45 years old, male, spent ten days at the coast (of which he spent 8.2 days fishing), travelled with three people and by his own vehicle, used private accommodation, and had an annual income of N$116 000. The latter figure is approximate, because data on income from the questionnaires was inadequate as a result of the low response, and statistical data on the subject was lacking for Namibia. An attempt to estimate more complete income data using regression and the Heckman two-stage approach was unsuccessful.

From the anglers’ responses, it was determined that the mean weight of the daily catch was 6.06 kg, and that the mean number of fish caught per day was 3.98. The average angler had 21 years of angling experience and spent 26 days per year angling. Only 12% of the angling population were members of an angling club.

Travel cost model

Five visitation rate models were tested with different functional forms. Of all the model forms tested, the lin-log function had the best explanatory power for each of the five models. This is also consistent with earlier research in which the semi-log function has been widely used (Ziemer et al. 1980, Strong 1983). Table III shows the five models. All independent variables were, as expected, negative (i.e. the lower the travel costs, the more frequently anglers visit the coast). Further, they were all significant at a 99% level of significance ($p < 0.01$). The modelling was therefore successful and consistent with theory. As stated above, attempts to include other variables, such as income, were unsuccessful. Further, very low levels of significance and multi-collinearity problems were encountered. It is possible that income has little effect on the demand for angling trips.

The model with the mixed time cost, as defined by Hanley and Spash (1993), was chosen for further analy-
sis. This cost level is believed to be closest to what the respondents perceived when the interviewing was carried out. A majority of 95% did enjoy their travelling time. The demand for recreational angling can therefore be described by the function

\[VPC = 0.004232 - 0.00055 \ln P, \]

where \(VPC \) is the number of visits per capita and \(P \) is the trip cost.

Table IV lists the trip expenditures and consumer surpluses determined using the travel cost method. It was considered useful to split the angling population into the three main segments based on origin. Accordingly, the results are presented for coastal Namibians (from Henties Bay, Swakopmund and Walvis Bay), inland Namibians (mostly from Windhoek), and foreigners (mainly from South Africa).

As can be seen in Table IV, the estimates differ markedly between segments. The mean consumer surplus per trip for foreign anglers was more than three times larger than that for the Namibians. There was also a notable difference within Namibia. Inland Namibians enjoyed a >2× larger consumer surplus than did coastal Namibians. However, seen as a percentage of trip costs, coastal Namibian anglers enjoyed the largest consumer surplus, whereas foreign anglers had the smallest.

The inclusion or not of on-site and other non-travel costs (accommodation, food, entry fees, costs of capital items) in the model was tested in sensitivity analyses. The consumer surplus estimates were sensitive to their inclusion. This finding points to the need for care in determining which costs to include in travel cost analysis. The results in Table IV show consumer surpluses derived with full inclusion of these costs. The fact that these values of consumer surplus conform closely with those derived using contingent valuation (see below) seems to suggest that the current approach to inclusion of on-site costs is valid.

According to the sample, coastal Namibians spend 41.4 days angling per year, inland Namibians 18.9 days and foreigners 18.5 days. As calculated by Kirchner et al. (2000), the numbers of anglers per year were 1 279 coastal Namibians, 3 156 inland Namibians, and 3 836 foreigners. Given the consumer surplus per day for these categories (N$149, N$122 and N$165 respectively), the aggregate annual consumer surplus for the angling population is estimated at some N$26,9 million.

Contingent valuation

The contingent valuation study used the stated preferences rather than derived ones for the consumer surplus estimations. As such, it is a direct valuation technique. Table V presents results from the contingent valuation study. As with travel cost, the population was split into three different segments of origin.

The consumer surplus, in absolute nominal terms, was greatest for foreigners. It was double that of inland Namibians and more than triple that of coastal Namibians. However, expressed as a percentage of expenditure, coastal Namibians enjoyed a surplus of 121% compared with foreigners’ 48%. The aggregated annual consumer surplus was estimated to be some N$23.7 million. This is more or less the same as the result of the travel cost method. The results from the two widely disparate methods show remarkable convergence. Comparison of the results for the different segments

Table IV: Estimates of mean angling trip costs and consumer surpluses for recreational shore-anglers, made using the travel cost method for Namibia in 1998

<table>
<thead>
<tr>
<th>Segment</th>
<th>Trip cost (N$)</th>
<th>Consumer surplus per day (N$)</th>
<th>Consumer surplus per trip (N$)</th>
<th>Consumer surplus as percentage of trip cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Namibians</td>
<td>101</td>
<td>149</td>
<td>239</td>
<td>237%</td>
</tr>
<tr>
<td>Inland Namibians</td>
<td>638</td>
<td>122</td>
<td>639</td>
<td>100%</td>
</tr>
<tr>
<td>All Namibians</td>
<td>440</td>
<td>Not available</td>
<td>491</td>
<td>112%</td>
</tr>
<tr>
<td>Foreigners</td>
<td>2 051</td>
<td>165</td>
<td>1 947</td>
<td>95%</td>
</tr>
</tbody>
</table>
in Tables IV and V also show remarkable consistency of pattern, although the absolute values are slightly divergent.

Some multiple regression analyses were carried out using the questionnaire data, in an attempt to reveal determinants of willingness to pay, as estimated through contingent valuation. Monetary and non-monetary variables were regressed against the respondents’ willingness to pay. Several models were developed, most of which suffered from problems with multicollinearity. Table VI shows the results for the best one, a log-linear model with an adjusted r^2 value of 0.32. It excludes other variables, rejected because of non-significance. The results give some indication on how the variables affect anglers willingness to pay. If an angler is foreign, her/his willingness to pay is increased. Female anglers have less willingness to pay than men. If an angler is from inland Namibia, her/his mean willingness to pay is reduced by N$1 172. The more frequently an angler visits the coast, as well as the larger the angling group, have a small effect on angler willingness to pay. If an angler is not a member of an angling club, her/his willingness to pay is decreased. The number of fish caught, a measure of angling success, had a very small influence on the willingness to pay, but the coefficient here was not significant.

From the questions eliciting willingness to pay for conservation, 74% of anglers were willing to pay for a fishing licence. If a licence system were to be established, revenue amounting to some N$340 000 per year (N$41 per angler) could be generated.

Price elasticity of demand

Multiple regression models constructed from the unaltered data, with number of days fishing per year as the dependent variable, and including inter alia willingness to pay, angling success, angler age, angler experience, club membership and annual income in various combinations as explanatory variables, had extremely poor fit. They were also affected by multi-collinearity and were therefore abandoned. Elasticities were obtained, as explained above, from second-stage demand functions developed in the travel cost analysis, and derived price-quantity demand functions developed from the contingent valuation data on willingness to pay. The lin-log form consistently provided good fit and significance. The second-stage lin-log travel cost demand function used is described as

$$Q = 18052.43 - 25.48 \ln P - 1186.61 \ln I - 837.02 \ln C,$$

where Q is the quantity of angling trips, P the trip cost, I the angler annual income and C is the angler consumer surplus. This model shows a negative response to rising price, as expected, but (not as expected) negative signs to the income and consumer surplus variables. The derived lin-log demand function constructed from the contingent valuation (willingness to pay) data is described as

$$Q = 266.09 - 29.43 \ln Pw,$$

where Pw is the willingness to pay for angling trips.

The results, shown in Table VII, suggest that, on average, demand of shore-angling on the Namibian coast is price inelastic. They also show variation in

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coastal Namibians</th>
<th>Inland Namibians</th>
<th>Foreigners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angling trip cost</td>
<td>N$267</td>
<td>N$744</td>
<td>N$2 325</td>
</tr>
<tr>
<td>Consumer surplus</td>
<td>N$322</td>
<td>N$562</td>
<td>N$1 116</td>
</tr>
<tr>
<td>Consumer surplus per day</td>
<td>N$188</td>
<td>N$116</td>
<td>N$95</td>
</tr>
<tr>
<td>Consumer surplus as percentage of trip cost</td>
<td>121%</td>
<td>76%</td>
<td>48%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>6.58</td>
<td><0.01</td>
</tr>
<tr>
<td>Gender (1=female)</td>
<td>-0.53</td>
<td><0.01</td>
</tr>
<tr>
<td>Foreign (1=yes)</td>
<td>0.92</td>
<td><0.01</td>
</tr>
<tr>
<td>Visits per year</td>
<td>-0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Size of group</td>
<td>-0.02</td>
<td><0.05</td>
</tr>
<tr>
<td>Member of an angling club (yes=0)</td>
<td>-0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Replacement cost of fishing equipment (N$)</td>
<td>0.00005</td>
<td><0.05</td>
</tr>
<tr>
<td>Success (fish caught)</td>
<td>-0.006</td>
<td>0.31</td>
</tr>
</tbody>
</table>
results, depending on the model used to estimate elasticities, highlighting the need for sensitivity analyses in such exercises. The simple regression models are mis-specified to the extent that other, possibly explanatory, variables are omitted. The current sensitivity analyses indicated that price elasticities derived from simple regressions were consistently higher than those from multiple regressions. True price elasticity is therefore probably lower than indicated in Table VII.

Aggregate values

Calculations made from the current data and those of Kirchner et al. (2000) indicated that a total of 8 800 anglers spent 173 000 days angling on the Namibian coast during the 1997/98 season. These aggregate angling numbers were used to calculate aggregate economic values for the recreational shore fishery, which are presented in Table VIII. There are two different sets of values because of the two valuation methods used. As can be seen, there is a minor difference between the aggregated consumer surpluses (N$23.6 and 26.9 million). The fact that two completely different methods give quite similar results indicates validity in these methodologies, giving reason to believe that these estimates are close to the “true” values.

The annual direct economic use, made up of the aggregated consumer surplus and expenditure, was estimated to be N$49.9–54.9 million. Only the consumer surpluses of Namibians accrue within Namibian society, whereas those of foreigners are lost to it. This means that the estimated annual economic use attributable to Namibia was some N$38.1–48.2 million.

The value added to the Namibian GNI was estimated to be N$11–15 million, or 48% of expenditure.

Table VII: Estimates of price elasticity of demand for angling trips among recreational shore-anglers in Namibia in 1998

<table>
<thead>
<tr>
<th>Model</th>
<th>r^2</th>
<th>Mean price elasticity</th>
<th>Median price elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel cost model with second stage demand function</td>
<td>1.00</td>
<td>-0.16</td>
<td>-0.15</td>
</tr>
<tr>
<td>Lin-log model*</td>
<td></td>
<td>-0.16</td>
<td>-0.15</td>
</tr>
<tr>
<td>Contingent valuation model with derived demand function</td>
<td></td>
<td>-0.32</td>
<td>-0.21</td>
</tr>
<tr>
<td>Linear model†</td>
<td>0.73</td>
<td>-0.71</td>
<td>-0.58</td>
</tr>
<tr>
<td>Lin-log model†</td>
<td>0.93</td>
<td>-1.03</td>
<td>-1.02</td>
</tr>
<tr>
<td>Reciprocal model†</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Multiple regression
† Simple regression

DISCUSSION

Seen in an historical context, the Namibian recreational angling subsector has never been considered as an important or a substantial part of the total fishery sector. However, two studies, this one and that of Kirchner et al. (2000), suggest that it does indeed provide significant economic value and income within Namibia. According to the Central Bureau of Statistics in Namibia, the whole fisheries sector in Namibia contributed some N$391 million in value added to the gross national income in 1996. The gross value added of the recreational fishery in 1998 (Table VIII) was most likely between N$11 million and N$15 million, a share of 2.8–3.8% of the value added in the Namibian fishery sector in 1996. The impact of sector expenditures on gross national income, as described by Kirchner et al. (2000), is of course quite a lot higher as a result of multiplier effects within the economy, but this impact has not been considered here.

Only the Namibians’ consumer surplus is beneficial for the Namibian economy. That of foreign visitors is lost to the country and it behoves Namibia to try to capture it. Ways in which this might be achieved might include implementing a fishing licence system, imposing other indirect taxes on anglers, or soliciting donations from anglers towards a conservation trust fund. The current findings suggest that demand in the recreational shore fishery is price inelastic, meaning that imposition of new costs on anglers is unlikely to deter them from the activity. This finding is supported by that of McGrath et al. (1997), who found the price elasticity of demand in the South African recreational marine shore fishery also to be very low. Further support comes from the broader tourism sector. Several studies on wildlife tourism in Africa and elsewhere have found low price elasticities (Navrud and Mungatana 1994, Barnes 1996).

Kirchner et al. (2000) did not actually measure consumer surplus for the recreational fishery, but used empirical data from elsewhere in the Namibian tourism sector (Barnes et al. 1997) to estimate it. They obtained estimates for annual consumer surplus considerably lower than those given here (N$8.6 million, compared to around N$25 million). The present study incorporated methods identical to those of Barnes et al. (1999) and, with corroborating evidence from Botswana (Barnes 1996), it seems possible to conclude that consumer surpluses in the recreational

Table VIII: Economic values for the recreational shore fishery in Namibia

<table>
<thead>
<tr>
<th>Model</th>
<th>Value added to GNI (N$ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel cost model with second stage demand function</td>
<td>11–15</td>
</tr>
<tr>
<td>Lin-log model*</td>
<td></td>
</tr>
<tr>
<td>Contingent valuation model with derived demand function</td>
<td></td>
</tr>
<tr>
<td>Linear model†</td>
<td></td>
</tr>
<tr>
<td>Lin-log model†</td>
<td></td>
</tr>
<tr>
<td>Reciprocal model†</td>
<td></td>
</tr>
</tbody>
</table>
fishery are significantly larger, relative to trip costs, than they are among the broader nature-based tourism sector.

Although two completely different methods were used, with different cost figures, the end result was almost exactly the same aggregated consumer surplus, which is a key economic value for policy analysis. This of course provides convergent validation and adds to the weight of the findings. Given that there are few other comparable studies, this is important. Further, the measures of aggregate angler expenditures reported here are close to that measured by Kirchner et al. (2000) in an entirely different survey carried out just before the present one. Present estimates, N$23 million and N$31 million, more or less conform with that of Kirchner et al. (2000), namely N$30 million.

The total willingness to pay of the recreational angling subsector, i.e. total expenditure plus total consumer surplus, consists entirely of direct use values. The contingent valuation part of the questionnaire was not specifically designed to collect information on non-use values. However, an indication of the non-use values of the fishery can be found in the willingness to pay toward a coastal conservation trust fund. As stated, anglers were willing to contribute some N$1 million per year in aggregate for this. Anglers may be willing to pay for conservation of the resource so they can use it in the future (option value), or simply be willing to contribute toward its continued existence without intending to return and use it (existence value).

Holzhauzen and Kirchner (1998) provide evidence to show that, with kob, angling cpue is significantly higher in areas closed to recreational angling (but open to linefish boats). This fact suggests that anglers do indeed affect stock levels in a negative way. In detailed studies on the kob population, Kirchner (1998) also provided evidence for a decline in stocks. As stated by Kirchner et al. (2000), current daily bag limits for anglers are liberal. The evidence in this paper concerning the determinants for willingness to pay and price elasticities corroborates the earlier evidence. Therefore, sharp reductions in bag limits may well be feasible and may not reduce the numbers of anglers.

This study has shown that marine recreational angling in Namibia has significant value as a component of the total fisheries sector in Namibia. The value added by all productive activities within the recreational angling subsector amounts to between 3 and 4% of the fisheries sector. Catch rates are high relative to those elsewhere in southern Africa, the experience is rated highly by both local and foreign anglers, and there is potential for expansion if sound policies are adopted.

Clear evidence has been assimilated to invoke consideration that a marine conservation trust fund be established with the purpose, inter alia, of capturing some of the foreign consumer surplus. This economic value is currently lost to the Namibian economy and could be used to develop the resource and recreational angling further. In addition, there is now information to support the establishment of a fishing licence system, not only because of the income it would generate, but also to facilitate management and collection of statistics. It would permit more systematic monitoring and control of the number of anglers and how much they catch, and hence allow management of off-takes.

This is a preliminary study and further, more detailed, more specific research is definitely needed for the angling sector. As examples, it would be useful to determine more values specific to the different market segments, and what effect quality variation would have on the demand for angling trips. In this study, angling success seemingly did not determine the number of trips, but more specialized studies would examine this finding more thoroughly. For methodological reasons, it would be interesting to run a conjoint travel cost and contingent valuation analysis, as de-
scribed by Cameron (1992). The two methods presented in this paper yielded similar results regarding consumer surpluses, and it would be of great interest to corroborate this through further work.

ACKNOWLEDGEMENTS

We thank the Swedish International Development Agency (SIDA) for funding the field survey. Dr G. Köhlin assisted in securing funding and with essential advice. Mr V. Kazapua, and Mesdames S. Pahl, R. G. Köhlin assisted in securing funding and with essential advice. In the Ministry of Environment and Tourism, Permanent Secretary Tangeni Erkana, Drs P. Tarr and A. Leiman and C. Brown, and Messrs H. Fourie and R. Braby provided support, assisted with the logistics of fieldwork, and gave access to public campsites. Dr A. Leiman and an anonymous reviewer provided valuable comments. The time of JIB was provided as part of the World Wildlife Fund (US) LIFE Programme, through funding from the United States Agency for International Development (USAID) under terms of Agreement No. 623-0251-A-00-3135-00. The opinions expressed are those of the authors and do not necessarily reflect those of SIDA or USAID.

LITERATURE CITED

