
Pelagic fish, such as sardine (Bensam 1964, Blaxter
and Hunter 1982), anchovy (Hunter and Goldberg
1980, Hunter and Macewicz 1980), horse mackerel
and mackerel (Hunter and Leong 1981) spawn serially
throughout a prolonged spawning season. The Cape
anchovy Engraulis capensis also exhibits this repro-
ductive strategy (Melo 1994a), spawning every 7–10
days between September and February each year
(Shelton and Hutchings 1990, Melo 1994b). Energy
for this intensive reproductive strategy is obtained from
fat reserves and feeding during the spawning season
(Hunter and Goldberg 1980). E. capensis spawn mainly
on the western Agulhas Bank (Hampton 1992), where
they feed predominantly on copepods (James 1987).
Because the biomass of copepods in that region is rela-
tively small, compared to other regions of the Agulhas
Bank (Pillar 1986, Verheye et al. 1992, Hutchings et
al. 1995, Richardson et al. in press), anchovy are
sometimes food-limited (Peterson et al. 1992). Food
limitation causes resorption of developing oocytes, a
condition known as ovarian atresia (Hunter and
Leong 1981, Melo 1994a), and results in a decrease in
spawning frequency and in the number of eggs pro-
duced (Hunter and Goldberg 1980). Therefore, anchovy
require continuous food throughout their spawning
season for sustained serial spawning (Melo 1994a,
Richardson et al. in press), especially when body fat
reserves become depleted (Hutchings 1992).

To measure the food available to anchovy spawners,
copepod biomass has been determined during the
mid-season spawning peak in November (Shelton and
Hutchings 1990). Food availability throughout the
spawning season may provide an early forecast of

recruitment, although the current time-series is too
short to quantify this relationship (Cochrane and
Hutchings 1995). Within-season changes of factors
such as food availability, which may affect spawning
success and hence recruitment of anchovy, were
investigated during two seasons of the South African
Sardine and Anchovy Recruitment Programme
(SARP, Painting 1993). This note aims to answer the
following questions:

ii(i) Is a mid-season estimate of food availability rep-
resentative of the entire season?

i(ii) Is there a significant interannual difference in
food availability?

(iii) If the current sampling strategy is inadequate,
how can it be improved?

MATERIAL AND METHODS

Sampling was conducted monthly between August
1993 and March 1994 (1993/94 season) and between
September 1994 and March 1995 (1994/95 season) on
the western Agulhas Bank aboard the South African
F.R.S. Algoa and F.R.S. Africana and the Norwegian
vessel, Dr Fridtjof Nansen. Generally, two cross-shelf
transects were sampled, except in November 1993 and
November 1994 when five and four were sampled
respectively. Each transect consisted of six stations 10
miles apart, but occasionally seven stations were sam-
pled on a transect. Not all stations were sampled each
month as a result of adverse weather conditions, and
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the September 1993 data were excluded from analy-
sis because of the paucity of stations sampled. No
sampling took place in January 1995.

Zooplankton in the upper 200 m was collected by
means of a vertically towed Bongo net fitted with nets
of 200-µm mesh. Samples were preserved in 5%
buffered formalin. Copepods were identified to species
and counts were converted to dry mass.m–2 using liter-
ature-derived values of body mass (Peterson et al.
1992, Verheye et al. 1992) and from knowledge of
volume filtered and depth of tow. Data are presented
by mass rather than numerically to provide a better
measure of the potential food environment.

To analyse within-season changes in copepod bio-
mass, a one-way Model I ANOVA, with month as the
independent variable, was conducted for each spawning
season. To identify significant differences between
months, a posteriori multiple comparisons were com-
puted using Tukey’s HSD test. The representivity of
the November estimate to the entire season was assessed
by comparing the t-test results between November
1993 and 1994 with those of all data from each
spawning season. Copepod biomass data were log-
transformed to reduce heteroscedasticity and to
improve normality. The assumption of homoscedas-
ticity for the ANOVA and t-tests was verified using
Levene’s test (Milliken and Johnson 1984, in StatSoft
1996).

The capability of the sampling programme to detect
within-season differences in copepod biomass was
assessed by power analysis, a useful technique when
there is no significant difference among treatments
(Cohen 1988). Because power is the probability of
rejecting a null hypothesis that is false, high power is

desirable (Cohen 1988, Peterman 1990, Searcy-
Bernal 1994). Power was determined from standard
tables and is a function of the Type I error (α), average
sample size (nav) and the standardized effect size. The
standardized effect size is the effect of the treatments
(months) on the response variable (copepod biomass).
The bigger the effect size (i.e. the greater the differ-
ence among months), the easier it is to detect a differ-
ence and the greater power to reject a false null
hypothesis. The standardized effect size (f)  according
to Cohen (1988) is

f = 
σm—σ ,

where σm is the standard deviation of the treatment
means and σ is the overall standard deviation.

When there are unequal sample sizes in each treat-
ment, the following is applied:

––––––––––
Σ
k
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σm = √—————         ,
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where k is the number of treatments, ni is the number
of samples in each treatment i, mi is the mean of each
treatment i, m is the overall mean and N is the total
number of samples.

Average sample size (nav) is calculated from the
equation

∑
k
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A power analysis is only conducted if no signifi-
cant difference is found. Power analysis also provides
information concerning the number of samples
required (nav) to obtain a desired level of power for
specific values of α, k and f.

RESULTS

There was a two-fold variation in copepod biomass
in both the 1993/94 (827–2 198 mg.m–2) and 1994/95
(1 787–3 628 mg.m–2) seasons. Despite these consider-
able within-season fluctuations, no significant differ-
ences in biomass were found among months in either
season. This was because of the high within-month
variability as a result of the comparatively low biomass
at the inshore station (Fig. 1). Because the biomass at
that station was significantly smaller than at any other
station on the transect (p < 0.0001, F = 19.28, n = 186),
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Fig. 1: Variation of copepod biomass (±SE) with distance
offshore for the 1993/94 and 1994/95 seasons 
combined. Note that both transects for each month
are included. The number of samples is shown in

parenthesis



the inshore data were not included in further analyses.
This is justified when relating copepod biomass to
anchovy spawning success, because anchovy and their
spawning products are mainly concentrated farther
offshore (Anders 1965, Hampton 1992, Fowler and
Boyd in press), where copepod production is higher
and their biomass more consistent (Richardson et al.
in press).

After removing the inshore station from the analysis,
the effect of month was significant during 1993/94 
(p < 0.01, F = 3.74, df = 76, Fig. 2a). The multiple
comparisons showed that the only significant differ-
ences among months (p < 0.05) were that the biomass
in January 1994 (946.74 mg.m–2) was lower than in
August 1993 (2 357.37 mg.m–2), November 1993 
(2 098.42 mg.m–2) and December 1993 (2 623.35
mg.m–2). In the 1994/95 season there was no signifi-
cant difference in copepod biomass among months 
(p > 0.05, F = 1.90, df = 69, Fig. 2b).

Because there was no significant difference among
months in 1994/95, the power of the analysis was
determined (Equation 1). The power value was 62%
(α = 0.05, k = 6, f = 0.357, nav = 12.5), which is below
the commonly accepted minimum of 80% (Cohen
1988, Searcy-Bearnal 1994). Therefore, if a real dif-
ference in the magnitude observed existed between
months in 1994/95, there was nearly a 40% chance of
incorrectly finding no difference. If a power of 80%
was stipulated a priori, 15 stations each month would

be required to detect differences in copepod biomass
of the magnitude observed in 1994/95.

Over the entire season, the mean copepod biomass
was significantly lower (p < 0.001) in 1993/94 
(1 893.61 mg.m–2, SE = 139.46 mg.m–2, n = 83) than
in 1994/95 (2 816.15 mg.m–2, SE = 220.06 mg.m–2,
n = 75). In contrast, there was no significant differ-
ence in copepod biomass between November 1993 
(2 098.42 mg.m–2, n = 24) and November 1994 
(3 024.62 mg.m–2, n = 22).

DISCUSSION

A benefit of knowledge of within-season food
availability is that critical periods can be identified.
For example, poor food availability in January 1994
caused a sharp increase in gonad atresia in anchovy, a
decrease in spawning and a shortening of their spawn-
ing season (Richardson in prep.). Such conditions
may have been exacerbated by the late onset of
spawning as a result of the recruits from the previous
year being considerably smaller than normal
(Hampton and Barange 1996). The level of copepod
biomass in January 1994 was similar to that of
November 1988, which was reported to be responsi-
ble for the recruitment failure of 1989 (Peterson et al.
1992, Melo 1994a, Cochrane and Hutchings 1995).

Richardson et al.: Food Availability to Anchovy during Spawning Season1997 115

Fig. 2: Monthly variation in copepod biomass (±SE) for (a) 1993/94 and (b) 1994/95. The overall mean for each
season is represented by a dotted line. The number of samples is shown in parenthesis



Given that within-season estimates provide a better
indication of food availability and spawning success
than one mid-season estimate, improved forecast of
anchovy recruitment is possible. The shortened dura-
tion of spawning also increases recruitment variabili-
ty, because prolonged serial spawning dampens the
effect of unpredictable early-stage survival (Shelton
1987).

Within-season information of the food environment
also allows additional insight into the underlying
mechanisms controlling anchovy spawning success.
For example, spawning success of anchovy has been
related to the area of 16-19ºC water throughout its
spawning season, a consequence of the associated
high food production and consistency of the food
resource (Richardson et al. in press). This type of
relationship necessitates monitoring over the correct
spatial scales and can be elucidated by investigating
within-season variability.

Given that food availability is important to the
spawning and recruitment success of anchovy, a sam-
pling strategy is recommended here for future investi-
gations of the within-season variation in copepod bio-
mass. First, sampling should not be done close
inshore, because it inhibits the detection of differ-
ences between months and is not necessary for
assessing the food environment of anchovy. Second,
based on the power analysis for the 1994/95 season, a
minimum of 15 stations should be sampled each
month to obtain a power of 80%. This necessitates the
inclusion of another five-station transect to the cur-
rent sampling programme, if the inshore station is
excluded.

The results have shown that a single estimate of
copepod biomass is an inadequate measure of food
available during the entire spawning season of anchovy.
A sampling interval of one month may provide a rea-
sonable estimate of fluctuations of copepod biomass;
this period is similar to the developmental period from
egg to adult for Calanus agulhensis (Peterson and
Painting 1990), the dominant copepod of the Agulhas
Bank region. Further, it has been suggested that cope-
pod biomass is maintained on the western Agulhas
Bank by slow diffusive (Peterson et al. 1992) and
advective (Largier et al. 1992) input from the eastern
Agulhas Bank, which may operate over a time-scale
of one month.
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