
Ecosystem models are by definition simplifications
of the real situation. Ecosystems are characterized by
a high degree of complexity, spatial and functional
heterogeneity, non-linearities, and important stochastic
elements. Most phytoplankton production models
consist of a physical model coupled to one or several
biological submodels (Woods and Onken 1982, Wolf
and Woods 1988, Slagstad and Støle-Hansen 1991,
Hansen and Eilertsen 1995). The biological models
that interact with the physical model are usually used
to calculate changes in total phytoplankton vegetative
biomass with time, when moved by the vertical mixing
coefficient through gradients of irradiance and nutrients.
Loss rates are affected by sinking and grazing, as well as
by respiration. Such models respond with biomass in-
creases whenever light and mixing conditions favour net
growth, in accordance with Sverdrup’s (1953) concept;
thus biomass tracks the environment but it is not adap-
ted to it in a Darwinian sense (Wyatt and Jenkinson
1987). 

In many models, blooms are described as bulk in-
creases in chlorophyll a or carbon, and the size and
quantitative composition of the pre-bloom stocks that
provide inocula are not taken into account. Yet, many
diatoms and dinoflagellates form resting stages. Gran
(1912) first proposed that diatom blooms are initiated
after resuspension and germination of bottom-
dwelling spores, a view that was later supported by
Kashkin (1964), Garrison (1981, 1984), Kuznetsov
(1992), Hansen and Eilertsen (1995) and Marcus and

Boero (1998). The dynamics of benthic seed beds of
dinoflagellate cysts may also regulate bloom dynamics
(Wyatt and Jenkinson 1997, Eilertsen and Wyatt 1998).
Germination of these dormant stages is probably 
regulated by endogenous biological clocks (Anderson
and Keafer 1987, Eilertsen et al. 1995, McQuoid and
Hobson 1995). During the vegetative phase, modulation
of mixing rates and other environmental factors 
attributable to the algae themselves may affect growth
(Jenkinson and Wyatt 1992, Wyatt and Jenkinson
1993). In addition, sexual processes are involved in
many diatom and dinoflagellate life histories, and
these can interrupt the momentum of vegetative
growth. It is therefore suggested here that internally
programmed life history strategies, as well as species-
specific environmental requirements, should be taken
into account when modelling phytoplankton population
dynamics. 

In this paper, the role of resting stages in the popu-
lation dynamics of a spring bloom is investigated. The
distributions of diatoms of the genus Chaetoceros,
Skeletonema costatum and the dinoflagellate Alex-
andrium tamarense are first described in space and
time. Then, the means whereby the magnitude of
pelagic and benthic initial stocks can influence phyto-
plankton biomass and the amplitudes of blooms is
examined by simulation. Only data from coastal and
shallow habitats were used, because the significance
of phytoplanktonic pelagic-benthic coupling in deep-
water environments is unknown. 
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MATERIAL AND METHODS

Data from the Arctic, the central and Atlantic sectors
of the Barents Sea, and the coastal waters of northern
Norway were used in the analysis (Fig. 1). Details of
the surveys conducted in those regions are presented
in the Appendix.

Sediment samples containing diatom spores were
collected at Tromsøysund (85 m depth) in the vicinity
of Tromsø (Fig. 1) and stored in the dark at 5°C.
Germination was induced in the cultures using f/20-
autoclaved seawater (Guillard and Ryther 1962),
under daylengths of 7 and 12 h specified by the use
of daylight tubes. All cultures were provided with
equal integrated irradiance.

The physical model

A modified 1D version of the 3D Blumberg-Mellor
model was used (Mellor and Yamada 1982, Blumberg
and Mellor 1987, Mellor 1991, Hansen and Eilertsen
1995). Input data to the model were meteorological
parameters (air temperature, atmospheric visibility,
humidity, cloud cover), sea surface temperatures, and
tidally driven mixing values computed from data in
Gjevik et al. (1990).

Surface heat flux components at the air-sea inter-
face used as input to the model are described in Gill
(1982). Sensible heat (Qh) was modelled according
to Brown (1990), latent heat (Qh) as in Smith et al.
(1983) and net long-wave radiation (Qb) following
Henderson-Sellers (1986).

Wind stress (r) was calculated using the formula r =
CDρv 2 (Gill 1982), where ρ is air pressure (from 
meteorological data), v is wind speed (meteorological
data) and CD is the drag coefficient (CD = 1.1 × 10-3

for v < 6 m.s-1, and 103 × CD = 0.61 + 0.063 for 
6 m.s-l< v <22 m.s-l).

Visible short-wave solar irradiance (W.m-2) for
clear sky was computed following Frouin et al. (1989).
After input of atmospheric visibility, regression coef-
ficients for maritime atmospheres, the solar zenith
angle was computed for each geographical position
and time following Iqbal (1983). The irradiance
model was calibrated against measurements collected
during cruises conducted along the coast of northern
Norway (Eilertsen and Holm-Hansen 2000). Con-
version of measured irradiance (from quanta.m-2.s-1

to W.m-2), calculation of cloud cover corrected irra-
diance, diffuse attenuation coefficient (k), and albedo
followed the regressions given in Eilertsen and
Holm-Hansen (2000).

The biological model

The governing equation, ignoring advection, that
describes the spatial and temporal evolution of phyto-
plankton biomass (biological model), is from Slagstad
and Støle-Hansen (1991):

∂B ∂ ∂B ∂B
—— = ——  KH ——   – w —— + (P – φr) B  , (1)
∂t ∂z ( ∂z ) ∂z

where B is phytoplankton concentration (mgChl a.m-3)
at depth z and time t, w is sinking velocity, P is growth
rate and φr is loss rate. KH is the coefficient of vertical
eddy diffusion (m-2.s-1).

The functional relationship between light and photo-
synthesis used in the biomass equation is according
to Webb et al. (1974):

Chl
P =   ——   PB (1 – e-aQs(p) / PB)      ,       (2)( C   )

where PB is maximum photosynthetic rate (mgC.mgChl
a-1.h-1), α is photosynthetic efficiency (mgC.mgChl
a-1.h-1.W.m-2) and Qs(p) is PAR (W.m-2) at depth z.

Model runs

The physical inputs for the Barents Sea simulations
were hydrographic (sea temperature and wind:
Blumberg-Mellor model) and meteorological para-
meters (air temperature: Blumberg-Mellor model;
visibility, cloud cover, wind-irradiance model) collected
during cruises and from the Norwegian Meteorological
Institute. All irradiance and wind-mixing parameters
were calculated in one-hour increments for the entire
sampling period, and data for the periods between
meteorological observations and measurements of
sea temperatures were obtained by linear interpolation
from adjacent points. Only one location in the central
Barents Sea was modelled.

The biological input parameters used for the Barents
Sea simulations were similar to those used by Hansen
and Eilertsen (1995), i.e. αB = 0.12 mgC.mgChl 
a-1.W.m-2, PB = 1.7 mgC.mgChl a-1.h-1, φr =
0.05.day-1, w = 0. The Chl : C ratio = 0.017 and Z0 =
0.01 (bottom roughness parameter). The biological
models were run with two pelagic (Phaeocystis
pouchetii and diatoms) and one bottom compartment
(diatom seed stock). 

Because, in the Barents Sea, P. pouchetii and small
quantities of Thalassiosira sp. are also present during
the spring bloom, the relative contribution of diatom
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species to total biomass was approximated, using 1.6
and 14 pg Chl a.cell-1 for Chaetoceros and Thalas-
siosira species respectively (Hegseth 1992). The initial
pelagic stock was computed following the same proce-
dure. Mean values of all vegetative diatom cell counts
were for March (0.000048 µgChl a.l-1). The simulations
were first performed with the initial pelagic stock
evenly distributed. Runs were then performed in
which the pelagic stock was retained and spores, re-
presented by viable Chl a (as in the pelagic stock),
were added to the lowest grid of the model as a sinu-

soidally time-varying influx of biomass from 
1 March each year, regulated by site-specific tides
(Gjevik et al. 1990). This influx was started each
year with a value of 0.5 µgChl a.l-1 and increased in
increments of 0.5–10 µgChl a.l-1. The maximum
biomass influx to each simulation was set at a phase
angle of 90°, corresponding to spring tides.

Alexandrium simulations were made for an area in
the North Sea where toxic blooms of that genus are
frequent (Wyatt and Saborido-Rey 1993). Wind
speed and cloud cover were kept constant at 1 m.s-1

and 0.6 (cloud cover c.4.8 on 0 –8 scale) respectively.
Input temperatures were taken from Colebrook (1979).
The biological coefficients used were αB = 0.13
mgC.mgChl a-1.W.m-2, PB = 3.5 mgC.mgChl a-1.h-1,
φ = 0.05 day-1, Chl : C ratio = 0.025 and Z0 = 0.01
(Eilertsen and Wyatt 1998). The sinking rates (w) of
diatoms and Alexandrium cysts at the start of each
simulation were 0 and 0.1 m.day-1 respectively. All
simulations started with initial diatom stocks (0.1
µgChl a.l-1), evenly distributed throughout the water
column. At the start of the simulation, Alexandrium
cyst stocks were set constant at 2.0 µgChl a.l-1 in the
lowest grid of the model. The decline of the diatom
bloom was simulated by increasing their sinking rate to
5 m.s-1 on 15 April. When the Alexandrium pelagic
stock reached 6 µgChl a.l-1, equivalent to a cell con-
centration where gametogenesis and subsequent en-
cystment begin (Wyatt and Jenkinson 1997), a sinking
rate of 5 m.day-1 was assigned to  Alexandrium, to
simulate settlement of cysts to the sediments. The
water column was inoculated from the cyst bed by
site-specific tidal mixing, simulated as described
above. In the simulations, if gametogenesis concentra-
tions were reached, new cysts were added to the cyst
bed stock; in some simulations the cyst bed was sub-
jected to a specific annual loss rate, varying between 0
and 1. There was no functional nutrient limitation in
the model runs, and a 20-year period (1970–1990),
when data were available on Alexandrium toxicity,
was modelled (Wyatt and Saborido-Rey 1993).

Critical depth calculations

The critical depth (Dcr) in the northern hemisphere
at sites forming a north-south gradient was calculated
following Sverdrup (1953). Cloud cover (0–6 on a
0–8 scale) and corrected subsurface irradiance was
first calculated for the latitudes under study (75–l0°N,
Fig. 1), with visibility = 75 km and humidity = 60%.
Sverdrup’s (1953) equation was then solved iterative-
ly with respect to depth, with compensation light (Ic)
set to a mean value of 1.0 W.m-2 (Platt et al. 199l).
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RESULTS

Pattern of the spring bloom

Owing to the absence of light, winter in the Barents
Sea and northern Norwegian waters is characterized
by very low or negligible phytoplankton concentrations,
typically ranging between 0.01 and 0.05 µgChl a.l-1

(Evensen 1994, Hansen and Eilertsen 1995). The
Barents Sea data show that biomass starts to increase
at the latest around mid April (Fig. 2). For the Arctic
sector, data from the open ocean were used. The patterns
in the Arctic, central and Atlantic sectors of the Barents
Sea were almost identical with respect to the timing
of the spring bloom (Fig. 2). The rate of increase in

biomass and maximum biomass levels varied between
years. This could be attributed to variations in the
numbers of different Chaetoceros species – numerically
one of the most important genera in the region, after
P. pouchetti (Evensen 1994) – which was more con-
sistent during the years of study.

In addition to Chaetoceros species, small quantities
of P. pouchetii were observed in April in the Arctic
sector of the Barents Sea, and Thalassiosira spp. were
present from May onwards. Along the coast of northern
Norway, blooms can begin as early as the end of
March (Fig. 3). The blooms there are initiated with
C. socialis mixed with P. pouchetii.

Negligible winter stocks as well as late March or
early April spring blooms, initiated with Chaetoceros
and Phaeocystis, are also characteristic of other northern
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localities, e.g. Ullsfjorden, Trondjord, Ramfjorden,
Malangen, Skjomen and Vestfjorden (Føyn 1929,
Gaarder 1938, Heimdal 1974, Schei 1974, Beck
1980, Pedersen et al. 1989). In more southerly regions
south of Oslofjorden and the Baltic, spring blooms
sometimes start earlier, usually initiated by S. costatum,

but Chaetoceros spp. appear at the same time as
those in the north. In Trondheimsfjord, S. costatum
may bloom as early as March, whereas in Korsfjord
and Oslofjord the species may bloom as early as late
January (Hasle and Smayda 1960, Dahl et al. 1974,
Sakshaug 1972, Erga and Heimdal 1984). Farther
south, where light intensities are higher and days are
longer, phytoplankton growth can continue throughout
the entire winter season. For example, in Narragansett
Bay there may be large midwinter blooms of S.
costatum (Smayda 1983). It is also typical in these
southern localities for considerable numbers of viable
cells to be present in winter, potentially initiating
new blooms. However, there are no pronounced in-
creases in phytoplankton biomass there at such times.
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(a) the central Atlantic Barents Sea and (b) along the

coast of northern Norway



This contrasts with northern Norwegian waters and
the Barents Sea, where winter phytoplankton concen-
trations are close to or at zero (Gaarder 1938, Hegseth
et al. 1995). 

Succession in Chaetoceros, Skeletonema, Scrippsiella
and Alexandrium

In all northern areas investigated here (and even as
far south as Tunisia – see Kefi 1993), succession begins
with C. socialis, followed by C. debilis and later by
C. laciniosus and C. curvisetus (Figs 4, 5; Table I). If
blooms of S. costatum are excluded, the spring diatom
increase is initiated within a short period of time (be-
tween 14 and 22 March) at all latitudes considered
here.

S. costatum was present throughout the sampling
period in the northern areas. It was also present along
the coast of northern Norway for brief periods in
December and early January, in short chains of vegeta-
tive cells up to 103 cells.l-1 (data not shown). Scrip-
psiella trochoidea was found off northern Norway
from May to October. Alexandrium occurred in low

concentrations in June (Fig. 5). Blooms before mid
March were south of 60°N and consisted of S. costatum
(Fig. 6), whereas Chaetoceros-dominated blooms
began from mid March, when daylength approaches
12 h (Fig. 7).

Environmental variables from north to south

With initial phytoplankton stocks of 0.1–1.0 µgChl
a.l-1 and cloud cover ranging between 0 and 4, the
computed critical depths increased monotonically
from north to south (Fig. 8). The shallowest critical
depths are north, in generally unstratified water
masses where water temperatures are lowest (i.e. 
-1.5°C at Spitzbergen, 78°N) v. 30°C at 10°N (Fig. 9).

Model run for the Barents Sea diatom blooms

Model runs with the initial low pelagic diatom
stock (bottom stock = 0) in the central Barents Sea
showed that the diatom biomass varied around the
low (0.000048 µgChl a.l-1) initial stock, and that there

Eilertsen & Wyatt: Phytoplankton Models and Life History2000 329

J

J

J

J

J

J

J

J
J

J

J

J

JJ

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J40

50

60

70

Jan. Feb. Mar.

I

I

I

I

I

I

I

I I

I

I

I

I

I

I

I

I

J Chaetoceros
I S. costatum

J

J

JJ
J
J
J

J

J JJJ
J J

J

J

J

J JJJ

J

J JJJ

J

7

8

9

10

11

12

Chaetoceros  spp. S. costatum

Fig. 6: Time of onset of spring blooms of Chaetoceros and
S. costatum at various latitudes. Data from sources
listed in App. Tables I and II

Fig. 7: Daylength at time of onset of spring blooms of
Chaetoceros and Skeletonema. Dots represent lo-
cations referred to in App. Table II

Table I: Summary of data from Figs 3and 4. The starting date of the bloom is defined as the date when chlorophyll a values
rose above 0.1 µg.l-1

Area Starting date of bloom Species rank

Arctic Barents Sea 11 April C. socialis, C. debilis, C. curvisetus
Central – Atlantic Barents Sea 22 March C. socialis, C. debilis, C. laciniosus
Coast of north Norway 20 March C. socialis, C. debilis, C. laciniosus, C. curvisetus



was no increase during the run period March–May
(data not shown). The increase in biomass (Fig. 2)
peaked in late April/early May (1–4 µgChl a.l-1). In
order of ranking, the earliest bloom was in 1996, 
followed by 1986, 1989 and 1990, all with similar
timing, and the latest bloom was in 1988. It should
be noted that, although the central Barents Sea was
chosen to be modelled, samples from there showed
similar timing and species composition as those from
the open water Arctic and Atlantic sectors.

When diatoms were fed into the deepest grid of
the model at different concentrations (0–10 µgChl
a.l-1) for each run, it was possible to simulate blooms
that reached realistic densities (Fig. 10). At a constant
bottom concentration of 5 µgChl a.l-1, the simulated
years approximated the observed ranking (Fig. 10).
Blooms started in unstratified water masses, permitting
simulated spore biomass to reach the upper water
layers. Vertical mixing decreased during the run period
as a result of decreasing winds from March to May.
There was increased heat input and slight stratification
from mid to late April onwards.

The abundance of diatoms, and not P. pouchetti,
varied substantially with time, and they contributed
most to the biomass. Therefore, diatoms were the “true”
regulator of bloom timing. It should also be noted that,
because bottom stock was kept constant in all years

(Fig. 10), the irradiance and vertical turbulence (created
by tides, cooling and wind) generated by the model
caused the timing of blooms to vary between years.

Model run for the North Sea Alexandrium bloom

When Alexandrium is modelled, together with a
normal diatom bloom (data not shown) in April in
the North Sea, with a dynamic bottom stock and no
loss or accumulation of cysts from one year to the
next, it was not possible to reproduce the observed
interannual variations of toxicity (Eilertsen and
Wyatt 1998). These simulations generate blooms
every year with peaks of approximately similar magni-
tude after the spring diatom bloom is over, whereas
cyst abundance increases to eight times the original
value (= 1) after 20 years (Wyatt and Saborido-Rey
1993).

The onset and peaks of blooms varied between 3
and 4 days. Timing of the relevant lunar events indi-
cates that bloom timing is controlled by high tides at
full or new moon, i.e. peaks in the flushing of cysts
from the bottom. When the loss rate from the cyst
bed was allowed to vary at a rate of 0.3.year-1, it was
possible to discriminate between bloom and non-
bloom years with some degree of confidence (Fig. 11).
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DISCUSSION

Data from the central and Atlantic sectors of the
Barents Sea and along the coast of northern Norway
were consistent in that Chaetoceros species, which
initiate spring blooms, increase from mid March 
onwards (Fig 4). A similar pattern was found in a
shallow lagoon in Tunisia (36.8°N), where C. socialis
blooms peak in March (Kefi 1993).

The onset of a phytoplankton spring bloom has
traditionally been explained by Sverdrup’s paradigm
(Sverdrup 1953), i.e. for a bloom to occur, the mixed
depth must be equal to or shallower than the critical
depth. The present data indicate that this situation
does not hold for blooms in March north of the polar
circle, where winter darkness prevails for up to three
months. There, the formation of surface stability, as a
consequence of increased air temperature and radiation
and/or freshwater run-off, does not start until the
spring bloom is well under way, or has already ended
(Gaarder 1938, Heimdal 1974, Eilertsen et al. 1989).
Therefore, blooms in March in the polar circle generally
occur in unstratified water (Eilertsen 1993), as has
been reported for areas farther south (Townsend et
al. 1992, Perry et al. 1989). If the critical depth in
the Barents Sea is sufficiently deep to initiate blooms
in March, the photosynthetic coefficients and weather
conditions must be optimal and the water should be
extremely clear. The diatom blooms observed later in
the Arctic sector of the Barents Sea could therefore
be attributed to a shallowing of the critical depth

(Figs 2, 8, 9), caused by low irradiance levels and ice
cover at these latitudes (north of 75°N), and to the
spring bloom following the retreat of the ice edge
(Syvertsen 1991).

Arctic and northerly spring blooms usually start in
waters with very low phytoplankton concentrations
(<0.05 µgChl a.l-1) and an almost complete absence
of phytoplankton stocks (Khromov and Salakhutdinov
1985, Hansen and Eilertsen 1995). In the northern
part of the study area, diatom blooms start in the
deepest and coldest waters with the highest rates of
cooling (Fig. 9), at the shallowest critical depths
(Fig. 8) and from small pelagic stocks. There is no
nutrient limitation in the central Barents Sea and the
increase in biomass is a function of stock size (Kris-
tiansen et al. 1994). Farther south, blooms sometimes
start earlier when day length is <12 h, i.e. before the
vernal equinox. The feature common to these winter-
spring blooms is that they are usually dominated by
S. costatum (Figs 6, 7). The presence of blooms in
unstratified waters have been explained in several
ways, including the possible absorption of sunlight
by phytoplankton cells, leading to increased thermal
stratification (Stramska and Dickey 1993), or reduced
grazing (Smayda 1983, Koseff et al. 1993). There are
no indications that such regulatory mechanisms oper-
ated in the present study area. It is therefore concluded
here that the diatom blooms in the region do not
originate from pelagic stocks that are regulated by
surface mixing and light, as in Sverdrup’s model, but
that some other regulatory factor(s) must be in-
volved.
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Gran (1912) suggested that phytoplankton blooms
are seeded by bottom-dwelling stages. Even small
quantities of bottom sediments are able to produce
dense populations of spring bloom species, after
short periods of time (Itakura et al. 1997). Table II
shows that incubated bottom sediment samples with-
out vegetative cells (diluted 5 000 times) reached
concentrations of > 25 and > 59 × 106 cells.l-1 of 
C. socialis and C. furcellatus respectively after only
11 days. The possibility that spores may seed diatom
blooms has been reported from several other areas:
Karnag Sea (Zgurovskaya and Yakhno 1979), Hiro-

shima Bay (Itakura et al. 1997), the Benguela upwelling
system (Pitcher 1986, 1990) and Monterey Bay
(Garrison 1981). Levasseur et al. (1998) attributed
delayed diatom blooms in the St Lawrence Estuary
in Canada to early stratification, which created a bar-
rier to the upward transport of diatom spores.

The present results, and the observation that northern
Norwegian waters may contain large numbers of
spores prior to the spring bloom (Eilertsen et al. 1995,
Hansen and Eilertsen 1995), indicate that resuspended
spores must be considered a possible alternative in-
oculum to vegetative cells. McQuoid and Hobson
(1995) suggested that increased temperatures leads to
higher rates of germination, but northern surface waters
are considerably colder than the bottom layers (Eilertsen
et al. 1981). Experiments similar to those summarized
in Table II, in which temperature was varied between
2.5 and 6°C, showed no relationship between germi-
nation rates and temperature (Ljungfeldt 2000). This
mechanism is therefore rejected at this stage.

Contrary to diatoms, dinoflagellate blooms can be
seeded from bottom-dwelling cysts without the re-
quirement for resumuspension (e.g. Giacobbe et al.
1996, Ishikawa and Taniguchi 1996). Blooms of
Alexandrium tamarense peak in late May or early
June in many areas, including the North Sea (Wyatt and
Jenkinson 1997), western Mediterranean (Forteza et
al. 1998), the Gulf of St Lawrence (Levasseur et al.
1998), the Gulf of Maine (Franks and Anderson 1992)
and off northern Norway (Fig. 5). Scrippsiella trocho-
idea, on the other hand, is widespread in time and space
and has cysts that germinate year-round (Ishikawa and
Taniguchi 1994), in accordance with the present data
(Fig. 7).
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Table II: Numbers of vegetative cells of selected species in cultures started from 0.04 ml bottom sediment diluted in 200 ml
f/200 medium (Guillard and Ryther 1962). Sediment with spores was collected from Tromsøysund on dates indicated
and stored in the dark at 5°C prior to starting the experiments. Cultures were exposed to daylengths of either 12 or

7 h at 5°C and similar integrated daily irradiance. Experiments lasted 11 days

Number of vegetative cells (cells.ml-1)

Sediment sampled 12 h 7 h

1 Mar. 1993 15 Nov. 1995 1 Mar. 1993 15 Nov. 1995

C. compressus 240 620
C. constrictus 80
C. curvisetus 80
C. debilis 580 820
C. gracilis 440
C. furcellatus 6 300 59 320 61.0 3
C. socialis 14 720 25 720
C. subsecundus 280
C. gracilis 4 7 1.2 14
C. costatum 120 1 860 880.0 1 020



The simulations that most successfully depict
blooms are those in which seed stocks are fed in
from bottom waters. Implicit in this theory is that,
during the onset phase of blooms, a vertically unstable
water column (mixed by the wind) is favourable for
bloom initiation. Thus, the inoculation of the water
column by germination and resuspension of dormant
stages appears to be more of a contributing factor in
the initiation of the spring bloom than conventional
environmental parameters. It is concluded that inocu-
lation strategies are an important component of the
population dynamics of phytoplankton, especially in
determining seasonality and trends in biomass. Some
species, such as the larger species of Chaetoceros
and Alexandrium, appear in the plankton in well de-
fined and narrow time windows – the “staggered germi-
nation times” expressed by McQuoid and Hobson
(1995) – and have few “generations” each year. Other
species, such as S. costatum and S. trochoidea, may
be present throughout most of the year and therefore
have a multitude of generations each year. However,
these observations apply to coastal, shelf and shallow-
water systems; once blooms are initiated they are regu-
lated by combinations of water stability and grazing.

In summary, the present analysis suggests that the
timing and amplitude of the spring bloom are con-
trolled both by the classical mechanisms outlined in
Sverdrup’s (1953) model and by the internal dynamics
of phytoplankton life history strategies. Variations in
the timing of the bloom, viewed as a bulk phenomenon,
are generated in the model described here by the in-

oculation of species with and without precise daylength
requirements for spore or cyst germination, as well as
the existence, in some cases, of residual populations
of vegetative cells. Variations in the amplitude of the
spring bloom depend on classical forcing by mixing
rates and light availability.
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The datasets from the Barents Sea and the coastal
waters of northern Norway (Fig. 1) were collected
during cruises on R.V. G. O. Sars, Lance, Endre Dyrøy,
Johan Ruud and Jan Mayen (App. Table I). Samples
were collected with Niskin and Hydrobios 5–l bottle
at depths of 0, 10, 20, 30 and 50 m. During cruises to
the Barents Sea in March 1989, March and April
1990, April and May 1996, and along the coast of
northern Norway in 1994 –1996 and 1998 (App.
Table I), samples were also taken at 50 m intervals to
the bottom.

Sampling frequencies ranged from one to four weeks.
In the Barents Sea, 12 stations were sampled within
the areas marked on Figure 1 (Atlantic, Central and
Arctic sectors of the Barents Sea). The following para-
meters were sampled at each station: temperature and
salinity (Neil Brown sonde systems), surface and
subsurface scalar irradiance (Lambda Instruments
Model Li 185 quantum meter, 400 – 700 nm, and

from 1996 PUV 500/510, Biospherical Instruments,
UVR in W.m-2 and PAR, 400–700 nm, quanta), and
chlorophyll a (Turner mod. 111 or Turner Designs
fluorometer). Meteorological data were obtained from
the Norwegian Meteorological Institute (2 – 4 day
intervals) in addition to meteorological observations
made on board during the cruises.

For phytoplankton analysis, 100 ml water samples
were preserved in 4 ml 20% formaldehyde, neutralized
with hexamine. Subsamples were counted in 2 ml and
occasionally in 50 ml sedimenting chambers using
an inverted microscope. Cell counts were then com-
piled in a database. For each sampling date and station,
the highest cell number from 50 m and above were
extracted for the Chaetoceros species, Skeletonema
costatum and dinoflagellates. Cell numbers was used
in the subsequent analysis, together with the environ-
mental variables (sampling time, depth, temperature,
salinity). Cell numbers were plotted against time of year.
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APPENDIX

App. Table I:  Barents Sea and northern Norway datasets used in the present investigation (Fig. 1)

Sampling period and area in the Barents Sea Time period, area (latitude °N, depth, m) off northern Norway

28 May–15 Jun. 1984; II, III 8 Apr.– 9 Oct. 1992, 6 Jan.–30 Sep. 1998, Porsangerfjord (70.5, 180)
18 Jul.–15 Aug. 1984; II, III 7 Apr.–10 Oct. 1992, 29 Sep. 1997, 16 Feb.–28 Sep. 1998, Altafjord (70.2, 180)

1 Apr.–28 Apr. 1986; II 21 Mar.–25 Sep. 1963, 14 Apr. 1964, 12 Oct. 1995, 22 Mar. 1996, 14 Jul.–30 Sep. 1998,
Ullsfjord7 (70.0, 150)

15 Jul.–23 Jul. 1987; II 3 Mar.–20 Oct. 1980, Tromsøysund5 (69.4, 30)
19 Sep.–7 Dec. 1997, 23 Mar.–30 Sep. 1998, Tromsøysund (69.4, 30)

14 Mar.–20 Mar. 1988 20 Mar.–20 Oct. 1980, Ramfjord5 (69.3, 120)
8 Apr.–17 Apr. 1988
27 May–1 Jun. 1988; I, II, III1

13 Mar–20 Mar. 1989 3 May–8 Dec. 1930, 14 Jan.–25 Apr. 1931, Balsfjord4 (69.5, 180)
13 Apr.–12 May 1976, 23 Mar.–31 Aug. 1977, 4 Apr.–10 Aug. 1978, Balsfjord6 (69.5, 180)
12 Apr.–20 Aug. 1992, 6 Mar.–22 Apr. 1993, 8 Jan.–13 Jul. 1998, Balsfjord (69.5, 180)

8 May–13 May 1989; I, II, III1

12 Mar.–18 Mar. 1990 24 Mar.–22 Apr. 1922, 21 Mar.–24 Apr. 1923, 21 Mar.–11 Apr. 1924, 30 Mar.–8 May 1926,
17 Apr.–29 Apr. 1990 Lofoten3 (68.3, 200)
10 May–16 May 1990; I, II, III 9 Apr.–13 Apr. 1996, Lofoten (68.3, 200)

23 Apr.–29 Apr. 1996 16 Mar–23 May 1977, 13 Mar.–7 May 1978, 30 Mar.–14 May 1979m Skjomen (68.2, 150)
15 May–25 May 1996; II, III 14 Mar.–26 May 1970, 10 Mar.–6 May 1971, 21 Mar.–3 May 1972, Skjomen2 (68.2, 150)

30 Sep. 1998; I

1Evensen (1994), 2Schei (1974), 3Føyn (1929), 4Gaarder (1938), 5Beck (1980), 6Eilertsen et al. (1981), 7Heimdal (1974), 8Kefi (1993)
I = Atlantic (71.5–73.0°N, mean depth 220 m)
II = Central (73.0–74.5°N, mean depth 330 m)
III = Arctic (74.5–76.0°N, mean depth 400 m)
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App. Table II: Locations referred to in Figure 1. The sources listed provide information on the north-south gradients in species
composition, timing of spring bloom and environmental variables (note that all refer to inshore localities)

Reference
Years investigatednumber Location Source

(see Fig. 1)

01 Svalbard 1985,1986 Eilertsen et al. (1989)
02 Ullsfjord 1963, 1964 Heimdal (1974)
03 Trondjord-lagoon 1987 Pedersen et al. (1989)

Balsfjord 1930,1931 Gaarder (1938)
Balsfjord 1976–1978 Eilertsen et al. (1981)
Malangen 1930, 1931 Gaarder (1938)

04 Vestfjorden 1922–1927 Føyn (1929)
Skjomen 1970, 1971 Schei (1974)

05 Trondheimsfjord 1963–1966 Sakshaug (1972)
06 Lindåspollen 1975 Lännergren and Skjoldal (1975)

Korsfjord 1977 Erga and Heimdal (1984)
Boknafjorden 1981 Erga (1989)

07 Hardangerfjord 1955, 1966 Braarud et al. (1974)
08 Baltic 1967–1969 Bagge and Niemi (1971)

Baltic 1973–1976 Ackerfors and Lindahl (1975)
Edler (1979)

09 Oslofjord 1957, 1958 Hasle and Smayda (1960)
Oslofjord 1973 Dahl et al. (1974)

10 Loch Etive 1970, 1971 Wood et al. (1973)
11 Irish West Coast 1971 Dooley (1973)
12 Celtic Sea 1975 Pingree et al. (1976)
13 Kiel Bight 1972 Von Bodungen et al. (1975)

Kiel Bight Smayda (1983)
14 Dutch Coast 1973 Kat (1977)

Galway Bay, Wadden Sea 1969–1985 Cadée (1986)
Eastern Scheldt 1971 Bakker and Vegter (1978)

15 English Channel 1975–1976 Holligan and Harbour (1977)
16 English Channel 1978, 1979 Gros and Ryckaert (1983)
17 Ría de Vigo 1955 Margalef (1958)
18 Bou Grara (Tunisia) 1991 Kefi (1993)
19 Cochin Backwater 1969 Smayda (1983)
20 Auke Bay 1985–1989 Ziemann et al. (1991)
21 Monterey Bay 1976, 1977 Garrison (1981)
22 Nova Scotia 1977 Conover and Mayzaud (1984)
23 Narragansett Bay 1976, 1977 Smayda (1983)

Narragansett Bay 1982 Rines and Hargraves (1987)
24 Vancouver Harbour 1976, 1977 Stockner and Cliff (1979)


