PROMOTING ACCESS TO AFRICAN RESEARCH

African Journal of Range and Forage Science

Log in or Register to get access to full text downloads.

Remember me or Register



DOWNLOAD FULL TEXT Open Access  DOWNLOAD FULL TEXT Subscription or Fee Access

Determining fPAR and leaf area index of several land cover classes in the Pot River and Tsitsa River catchments of the Eastern Cape, South Africa

Anthony R. Palmer, Andiswa Finca, Sukhmani K. Mantel, Onalenna Gwate, Zahn Münch, Lesley A. Gibson

Abstract


Determining the quantum (both annual maxima and minima) and the temporal variation in the leaf area index (LAI), and the fraction of photosynthetically active radiation (fPAR), are three fundamental biophysical characteristics of the plant canopy that should parameterise ecophysiological models of water use (evapotranspiration) and carbon sequestration. Although Earth observation provides values and time series for both these parameters, in-field validation of these values is necessary. Following a very wet summer season, we conducted field surveys of several land cover classes within two quaternary catchments in the Eastern Cape province, South Africa, to determine maximum values of LAI and fPAR that occur within each of these land cover classes. To assist in up-scaling these point measures to the landscape, we present a regression relationship between Landsat 8 NDVI and LAI measured using an Accupar Ceptometer (r2 = 0.92). Peak wet season LAI varied from extremely high (>7.0) under the canopy of invasive black wattle (Acacia mearnsii) trees to ~2.0 under the canopy of a Eucalyptus plantation. Ungrazed native grassland displayed an intermediate LAI value of 3.84. The black wattle stand absorbed 97% of the available PAR, whereas the mature Eucalyptus plantation only absorbed 66% of PAR.

Keywords: agroforestry, ecosystem ecology, remote sensing




http://dx.doi.org/10.2989/10220119.2017.1306582
AJOL African Journals Online