Possible association and co-existence of schistosome infection and prostate cancer: A systematic review

DOI: 10.29063/ajrh2020/v24i4.19

Emilia T. Choto1, Takafira Mduluza2, Elopy N. Sibanda3, Francisca Mutapi4 and Moses J. Chimbari1

University of KwaZulu-Natal, School of Nursing and Public Health, College of Health Sciences, Howard College, 269 Mazisi Kunene Road, Berea, Durban, 4041, South Africa; Biochemistry Department, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe; Asthma, Allergy and Immune Dysfunction Clinic, Harare, Zimbabwe; Centre for Infection, Immunity and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Charlotte Auerbach Road, Edinburgh, United Kingdom; NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Charlotte Auerbach Road, Edinburgh, United Kingdom.

*For Correspondence: Email: emiliachoto@gmail.com; Phone: +263777836474

Abstract

Male genital schistosomiasis (MGS) may result in eggs lodged in the prostate causing persistent inflammation that may play a major role in prostate carcinogenesis. Globally, prostate cancer (PCa) is one of the most common cancers and the global distribution of PCa overlaps with that of schistosomiasis infections, suggesting a probable causal relationship. Objectives of this review were to assess evidence of co-existence of schistosomiasis and PCa and possible causal association between the two diseases. Relevant literature published between 1950 and 2019 yielded 20 publications on schistosomiasis and PCa co-existence. Schistosoma (S.) haematobium and S. mansoni were associated with MGS manifestation and mostly prostate adenocarcinoma diagnosis. Effects of prostatic MGS infection progressed over time with high Schistosoma egg burden thought to contribute to the development of PCa. Causal association and mechanistic pathways of MGS on PCa development and the role of Schistosoma eggs on the development of PCa remains unestablished. (Afr J Reprod Health 2020; 24[4]:185-197).

Keywords: Schistosomiasis, prostate cancer, bilharzia, prostatic schistosomiasis, male genital schistosomiasis (MGS)

Introduction

Schistosomiasis

There are twenty neglected diseases including schistosomiasis in 149 countries, mostly in tropical countries. Schistosomiasis is caused by helminths of the genus Schistosoma. Six Schistosoma species, namely S. haematobium that causes urogenital schistosomiasis, S. mansoni, S. japonicum, S. intercalatum, S. mekongi and S. guineensis that cause intestinal and hepatic
Schistosomiasis is a parasitic disease caused by trematode worms that inhabit the venous plexus surrounding organs of the pelvis. The eggs released by the adult worms can become deposited in various locations in the body, including the bladder, bowel, and male reproductive organs. Urogenital schistosomiasis is caused by the eggs of the Schistosoma haematobium species, which is the most prevalent form of the disease in humans.

Urogenital schistosomiasis

Urogenital schistosomiasis is caused by the eggs released by the S. haematobium paired adult trematodes that inhabit the venous plexus surrounding organs of the pelvis, causing damage to the urinary and genital tissues. Male genital schistosomiasis (MGS), first described in 1911 by Madden, is a manifestation of urogenital schistosomiasis that is associated with the presence of ova in the genital organs. Some of the ova penetrate and lodge in the vessel walls of nearby tissues, leading to the development of chronic granuloma formation and eventually damage organs resulting in various complications.

Schistosomiasis and cancer

Schistosomiasis results in persistent inflammation and is associated with an increased risk of various types of cancer, including prostate cancer. Leutscher et al. in 2000 reported the presence of schistosome ova in 43% of the semen samples indicating that genitals are commonly sites for ova deposition in men with urogenital schistosomiasis. Consequently, leukocytospermia up-regulates the cytokine, tumor necrosis factor- alpha (TNF-α) which may induce sperm DNA fragmentation that may cause infertility. Anecdotal data suggest that ova deposition in the prostate gland may be associated with the development of prostate cancer.

Prostate cancer

Prostate cancer (PCa) is a heterogeneous group of malignant tumours and these tumours can be identified and classified using the Gleason's grading system. It is a standard histologic and the most prognostic PCa clinical identification system used to characterize how aggressive PCa cells appear microscopically. Acinar adenocarcinomas are the most common type of PCa that have prostate carcinomas variants such as ductal, mucinous, signet ring cell and small cell carcinoma. Other types of PCa include urothelial carcinoma, sarcomas and lymphomas. PCa is the most common cancer in many countries such as USA, Australia and Zimbabwe. PCa has a high morbidity and mortality affecting millions of men all over the world. It is commonly diagnosed in older men because the disease progresses slowly and rarely shows clinical symptoms until later in life. Symptoms of PCa include haematuria, frequent urination, nocturia, dysuria, urinary obstruction, and discomfort during urination, the need to suddenly urinate and pain in various bones where cancer would have spread. Risk factors for PCa include genetic predisposition, family history of PCa, ethnic origin, older age, history of sexually transmitted diseases specifically gonorrhea and syphilis, history of prostatitis, lack of ejaculation and chemical exposure through occupation. In countries where schistosomiasis is endemic, the diagnosis of PCa may be delayed by the presumption that symptoms are due to schistosomiasis and the diseases may co-exist.
Schistosomiasis infection causes inflammation that could indirectly play a role in prostate carcinogenesis leading to tumorigenesis in the bladder35. Analogous path mechanisms have been described for schistosomiasis associated bladder cancer. Authors have described a sequence involving an immunological response to \textit{Schistosoma} miracidial soluble antigens that may lead to chronic cystitis and squamous metaplasia and to tumorigenesis in the bladder35,36. The biochemical impact of schistosomiasis infection results in decreased carcinogen metabolizing enzymes such as glutathione S-transferases (GST) and NDMA-N-demethylase that are responsible for detoxifying androgen compounds such as \textit{N}^-nitrosoamines37,38. Decreased enzymes promote carcinogen persistence and could contribute to the evolution of bladder cancer36,37. \textit{Schistosoma haematobium} worm/eggs have been reported to release catechol estrogen molecules that downregulate estrogen blocking receptors thus creating a permissive of invasive cancer development38,39. These molecules were also reported to have high affinity for DNA resulting in DNA adducts that contribute to cancer evolution40. Inflammation usually causes granulomatous lesions that could block venules and promote production of reactive oxygen species (ROS)41. An increase in the formation of DNA single strand breaks, due to oxidative damage and higher inducible nitric oxide synthase was found in bladder squamous cell carcinoma (SCC) associated with schistosomiasis than non-schistosomiasis-associated cancers42. None of these events due to schistosomiasis infection have been linked to PCa development mechanisms. Figure 1 summarizes the possible events that could trigger cancer development following schistosomiasis infection.

In 2012, the WHO classified \textit{S. haematobium} infection as group a 1-carcinogen agent43 associated with bladder cancer, which accounts for more that eleven thousand deaths per year8. Considering that MGS affects the prostate gland, could analogous mechanisms be at play in the evolution of prostatic carcinoma? It is against this background that we conducted this review to assess the current state of knowledge about schistosomiasis and PCa co-existence.

Objectives of this review were to assess evidence of co-existence of schistosomiasis and PCa and possible causal association between schistosomiasis infections and PCa. Furthermore, we identified gaps for future studies to be conducted to elucidate the nature of association of schistosomiasis infection and the development of PCa.

\section*{Methods}

\textbf{Search strategy and selection criteria}

A systematic review based on scientific articles published from 1950 to 2020 was conducted. Because initial literature review indicated that there was not much literature on the subject matter, we decided to conduct the search in a long timeframe (1950-2020) to include the largest body of published work on the subject. The literature search was done in PubMed, Web of Science, Google scholar, Scopus and EBSCOhost databases using the Boolean operator “AND” using the following key words sequentially: “schistosomiasis AND prostate cancer”, “bilharzia AND prostate cancer”, “prostate adenocarcinoma AND schistosomiasis, and “prostate adenocarcinoma AND bilharzia, “prostate carcinoma AND bilharzia”, “prostate carcinoma AND schistosomiasis”. Secondary source articles were identified through a snowball process of checking references in articles identified through the search and assessing them for inclusion in the review. Articles were included if they matched the following criteria: (i) published in a peer reviewed journal, (ii) reported on both PCa and schistosomiasis (iii) case study/series cases reported (iv) population studies (articles with a defined sample size) on co-existence of schistosomiasis and PCa (v) published in English. Articles were excluded if (i) they were reviews only, (ii) did not report on schistosomiasis and PCa exclusively, (iii) reported on just PCa only and (iv) reported on just schistosomiasis eggs found in the prostate gland.

\textbf{Data extraction}

Data extraction from studies was performed by two authors ETC and TM. The following information was extracted for each selected article: (i) first
Article selection

The review process involved five stages to select manuscripts exclusively on schistosomiasis and PCa illustrated by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) diagram (Figure 2). Twenty full-text articles were deemed eligible for the review.

Analysis of assembled literature

Online database search produced 88 publications using the main search terms: schistosomiasis AND prostate cancer (Figure 2 and Table 1). Four additional articles were identified through the snowball process. After screening through the five stages described above 20 articles were included for full review. These included four original research studies, ten case series/study reports, five case studies that included a review and 1 case study and a systematic review. Of the 20 publications on MGS and PCa identified in the period 1955-2020, only 4 reports were published prior to 1990. There was an increase in the publications after the year 2000. Supplementary Figure 1 shows the year and the number of publications on the co-existence reviewed. Thirteen (65%) articles on the co-existence of *S. haematobium* ova and PCa were published between 1955 and 2019; 5 (25%) articles on *S. mansoni* were published in 1985, one (5%) article was on mixed *S. haematobium* and *S. mansoni* infections while another 1 article could not identify the species. The publications reviewed reported prostatic schistosomiasis from 9 schistosomiasis endemic countries (Brazil, Kuwait, South Africa, Tanzania, Angola, Egypt, Ghana, Nigeria and Zambia), 2 non-schistosomiasis endemic countries (Canada and Unites States of America) and from Iraq a country where schistosomiasis was eradicated. Overall, the articles reviewed were reported from 12 countries in 4 continents, Africa [n = 7; 58%], Asia [n=2, 17%], North America [n=2, 17%] and South America [n=1, 8%]. Table 1 and Table 2 summarize the articles reviewed from different countries.

Results

Search strategy and selection criteria

A systematic review based on scientific articles published from 1950 to 2020 was conducted. Because initial literature review indicated that there was not much literature on the subject matter, we decided to conduct the search in a long timeframe (1950-2020) to include the largest body of published work on the subject. The literature search was done in PubMed, Web of Science, Google scholar, Scopus and EBSCOhost databases using the Boolean operator “AND” using the following key words sequentially: “schistosomiasis AND prostate cancer”, “bilharzia AND prostate cancer”, “prostate adenocarcinoma AND schistosomiasis, and “prostate adenocarcinoma AND bilharzia, “prostate carcinoma AND bilharzia”, “prostate carcinoma AND schistosomiasis”. Secondary source articles were identified through a snowball process of checking references in articles identified through the search and assessing them for inclusion in the review. Articles were included if they matched the following criteria: (i) published in a peer reviewed journal, (ii) reported on both PCa and schistosomiasis (iii) case study/series cases reported (iv) population studies (articles with a defined sample size) on co-existence of schistosomiasis and PCa (v) published in English. Articles were excluded if (i) they were reviews only, (ii) did not report on schistosomiasis and PCa exclusively, (iii) reported on just PCa only and (iv) reported on just schistosomiasis eggs found in the prostate gland.

Data extraction

Data extraction from studies was performed by two authors ETC and TM. The following information was extracted for each selected article:
Choto et al. Schistosomiasis and prostate cancer

Figure 1: Possible events that could lead to development of cancer due to schistosomiasis

(i) first author, (ii) year of publication, (iii) study population (if any), (iv) study location (v) summary of the findings, (vi) schistosomiasis species and (vii) PCA histology diagnosis.

Article selection

The review process involved five stages to select manuscripts exclusively on schistosomiasis and PCA illustrated by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) diagram (Figure 2). Twenty full-text articles were deemed eligible for the review. Four additional articles were identified through the snowball process. After screening through the five stages described above 20 articles were included for full review. These included four original research studies, ten case series/study reports, five case studies that included a review and 1 case study and a systematic review. Of the 20 publications on MGS and PCA identified in the period 1955-2020, only 4 reports were published prior to 1990. There was an increase in the publications after the year 2000. Supplementary Figure 1 shows the year and the number of publications on schistosomiasis and prostate cancer co-existence reviewed. Thirteen (65%) articles on the co-existence of *S. haematobium* ova and PCA were published between 1955 and

Table 1: Case reports of MGS and PCa

<table>
<thead>
<tr>
<th>Screening/Eligibility</th>
<th>Publications identified through the following databases:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PubMed: (n = 41) Google scholar: (n = 47) Web of Science: (n = 15) EBSCOhost: (n = 21) Scopus: (n = 31)</td>
</tr>
<tr>
<td></td>
<td>Total publications identified (n = 155)</td>
</tr>
<tr>
<td></td>
<td>Publications after duplicates removed (n = 74)</td>
</tr>
<tr>
<td></td>
<td>Publications screened after abstract was read (n = 31)</td>
</tr>
<tr>
<td></td>
<td>Full text publications assessed for eligibility (Case series or studies that can include a review and population studies) (n = 25)</td>
</tr>
<tr>
<td></td>
<td>Full text publications assessed for eligibility (n = 29)</td>
</tr>
<tr>
<td></td>
<td>Publications not found secondary sources removed (n = 27)</td>
</tr>
<tr>
<td></td>
<td>Full text publications assessed for eligibility (n = 20)</td>
</tr>
<tr>
<td></td>
<td>Studies included in the analysis (n = 20)</td>
</tr>
<tr>
<td>Publications excluded not matching inclusion criteria (n = 43)</td>
<td></td>
</tr>
<tr>
<td>Duplicate publications removed (n = 81)</td>
<td></td>
</tr>
<tr>
<td>Full texts excluded for being review publications only (n = 6)</td>
<td></td>
</tr>
<tr>
<td>Secondary publications identified from reference section (n = 4)</td>
<td></td>
</tr>
<tr>
<td>Secondary source references full text not found (n = 2)</td>
<td></td>
</tr>
<tr>
<td>Full texts excluded for not reporting on schistosomiasis prostatic cancer cases (n = 7)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: PRISMA flow diagram for reviewed article selection criteria

Figure 3: Number of confirmed schistosomiasis prostatic cancer cases and the schistosomiasis species reported

Table 1: Case reports of MGS and PCa

African Journal of Reproductive Health December 2020; 24 (4):190
Table 2: Population studies reporting on schistosomiasis and prostate cancer

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Author</th>
<th>Country</th>
<th>Year</th>
<th>Sample size</th>
<th>Schistosoma species</th>
<th>PSA levels</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Al Adani</td>
<td>Iraq</td>
<td>1985</td>
<td>-</td>
<td>S. haematobium</td>
<td>-</td>
<td>2 patients with Squamous carcinoma of the prostate</td>
</tr>
<tr>
<td>45</td>
<td>Alexis and Domingo</td>
<td>Brazil</td>
<td>1986</td>
<td>49</td>
<td>S. mansoni</td>
<td>-</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td>46</td>
<td>Tungekar et al.</td>
<td>Kuwait</td>
<td>1986</td>
<td>-</td>
<td>S. haematobium</td>
<td>-</td>
<td>Sarcoma</td>
</tr>
<tr>
<td>47</td>
<td>Godec et al.</td>
<td>USA</td>
<td>1992</td>
<td>49</td>
<td>S. mansoni</td>
<td>-</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td>48</td>
<td>Ma and Srigley</td>
<td>Canada</td>
<td>1992</td>
<td>55</td>
<td>S. haematobium</td>
<td>9 ng/ml</td>
<td>Adenocarcinoma in peri-adipose tissue and seminal vesicles.</td>
</tr>
<tr>
<td>49</td>
<td>Cohen et al.</td>
<td>South Africa</td>
<td>1995</td>
<td>27, 29, 29</td>
<td>S. haematobium</td>
<td>>100 ng/ml</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Viable and calcified</td>
<td>>100 ng/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65 ng/ml</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Basilio-de-Oliveira et al.</td>
<td>Brazil</td>
<td>2002</td>
<td>68</td>
<td>S. mansoni</td>
<td>9.2 ng/ml</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td>51</td>
<td>Bacealor et al.</td>
<td>Brazil</td>
<td>2007</td>
<td>47</td>
<td>S. mansoni</td>
<td>9.4 mg/L</td>
<td>Prostate Adenocarcinoma</td>
</tr>
<tr>
<td>52</td>
<td>Manasseh et al.</td>
<td>Nigeria</td>
<td>2009</td>
<td>70</td>
<td>S. mansoni</td>
<td>17.11 mg/L</td>
<td>Prostate Adenocarcinoma</td>
</tr>
<tr>
<td>53</td>
<td>Mazigo et al.</td>
<td>Tanzania</td>
<td>2010</td>
<td>50, 70, 41</td>
<td>S. haematobium</td>
<td>-</td>
<td>Prostate Adenocarcinoma</td>
</tr>
<tr>
<td>54</td>
<td>El-Hawary et al.</td>
<td>Egypt</td>
<td>2016</td>
<td>71</td>
<td>S. haematobium</td>
<td>10.6 mg/L</td>
<td>Prostatic adenocarcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 mg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.59 mg/L</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Metrogos et al.</td>
<td>Brazil</td>
<td>2017</td>
<td>62</td>
<td>S. haematobium</td>
<td>-</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td>56</td>
<td>Peiffer et al.</td>
<td>USA</td>
<td>2019</td>
<td>Late 40s</td>
<td>S. haematobium</td>
<td>-</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td>57</td>
<td>Mukendi</td>
<td>South Africa</td>
<td>2019</td>
<td>66</td>
<td>S. haematobium</td>
<td>14.39 mg/L</td>
<td>Prostate adenocarcinoma</td>
</tr>
<tr>
<td>58</td>
<td>Lodhia</td>
<td>Tanzania</td>
<td>2020</td>
<td>66</td>
<td>S. haematobium</td>
<td>< 4 mg/L</td>
<td>Prostate adenocarcinoma</td>
</tr>
</tbody>
</table>

Note: "-" data not reported

Table 2: Population studies reporting on schistosomiasis and prostate cancer

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Author</th>
<th>Country</th>
<th>Year</th>
<th>Sample size</th>
<th>Schistosoma species</th>
<th>MGS and PCa outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Shamma et al.</td>
<td>Iraq</td>
<td>1955</td>
<td>2256</td>
<td>S. haematobium</td>
<td>16 cases had prostate and genitalia carcinoma. 3 of these cases had S. haematobium ova.</td>
</tr>
<tr>
<td>60</td>
<td>Mutengo et al.</td>
<td>Zambia</td>
<td>2009</td>
<td>58</td>
<td>S. haematobium</td>
<td>6 patients of the ages 13, 14, 16, 41, 56 and 70 years had MGS. Two patients had ova in the prostate and 1 patient had both MGS and PCa.</td>
</tr>
<tr>
<td>61</td>
<td>Okani et al.</td>
<td>Nigeria</td>
<td>2013</td>
<td>79</td>
<td>S. haematobium</td>
<td>3 patients had schistosomiasis in the prostate and 1 had prostate adenocarcinoma.</td>
</tr>
<tr>
<td>62</td>
<td>Der et al.</td>
<td>Ghana</td>
<td>2015</td>
<td>42 340</td>
<td>S. haematobium</td>
<td>Ova was distributed in the prostate of 3 patients and one case of prostate adenocarcinoma.</td>
</tr>
</tbody>
</table>

2019; 5 (25 %) articles on S. mansoni were published in 1985, one (5 %) article was on mixed S. haematobium and S. mansoni infections while another 1 article could not identify the species.

The publications reviewed reported prostatic schistosomiasis from 9 schistosomiasis endemic countries (Brazil, Kuwait, South Africa, Tanzania, Angola, Egypt, Ghana, Nigeria and Zambia), 2 non-schistosomiasis endemic countries (Canada and Unites States of America) and from Iraq a

Table 3: Number of patient cases, prostate diagnosis and schistosomiasis species reported

<table>
<thead>
<tr>
<th>Schistosomiasis Species</th>
<th>Prostatic Diagnosis</th>
<th>Number of patient cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. haematobium</td>
<td>Adenocarcinoma</td>
<td>15</td>
</tr>
<tr>
<td>S. mansoni</td>
<td>Adenocarcinoma</td>
<td>5</td>
</tr>
<tr>
<td>S. haematobium</td>
<td>Squamous Cell</td>
<td>2</td>
</tr>
<tr>
<td>S. haematobium</td>
<td>Sarcoma</td>
<td>1</td>
</tr>
<tr>
<td>S. haematobium</td>
<td>Unspecified</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

Supplementary Figure 1: Year and number of publications on schistosomiasis and prostate cancer coexistence reviewed

country where schistosomiasis was eradicated. Overall, the articles reviewed were reported from 12 countries in 4 continents, Africa [n = 7; 58 %], Asia [n=2, 17 %], North America [n=2, 17 %] and South America [n=1, 8 %]. Table 1 and Table 2 summarize the articles reviewed from different countries.

Discussion

Co-existence of MGS and prostatic carcinoma has only been reported in 20 publications in the last 7 decades. MGS has been primarily reported as a manifestation of urogenital schistosomiasis but MGS morbidity due to *S. mansoni* species has been reported as well.45,47,50,51 Cases with confirmed MGS associated prostatic cancer did not demonstrate a causal association with carcinogenesis, suggesting this observation may be co- incidental rather than causal. Some patients developed clinical symptoms long after they had been treated for schistosomiasis due to the presence of schistosome ova in prostate. The reported cases had different clinical symptoms implying that no symptoms are unique for schistosomiasis associated prostatic cancer. Whereas, viable or calcified or degenerated tissue lodged schistosomiasis eggs can be linked to prostatic cancer, the presence of *Schistosoma* eggs is not invariably associated with carcinogenesis.56,63

All but five cases of prostatic cancer have been associated with urogenital schistosomiasis (Table 3) possibly due to the close proximity to the prostate gland to where the *S. haematobium* adult worms reside inside the body. However, cases of intestinal schistosomiasis can possibly result in MGS because the worms and or the eggs may end up in ectopic locations such as the spinal cord64 and the genital area. This could be so because the adult worms may travel against venous blood flow entering collateral vessels and deposit their eggs at the end venules.65 The presence of *Schistosoma* eggs in the prostate of individuals without cancer diagnosis has been reported severely over the years and across continents.11,63,66-69 Even though PCa was not reported in other cases of intestinal schistosomiasis species, *S. japonicum* ova were found in the prostate gland in 2013 by Yu et al.70 The relevance and value of PSA measurements in the screening and or monitoring of prostatic cancer has been subject to debate. Some of the schistosomiasis prostatic cancer cases assessed in this review had high levels of PSA.48,49,53-55 However, other reported prostatic schistosomiasis cases had high PSA levels and were are not uniquely associated with PCa.12,63,64 It could be so that high PSA could be due to schistosomiasis prostatic inflammation as opposed to or could be the case of prostate cancer. Schistosomiasis associated prostatic cancer can be asymptomatic, hence patients with suspicious symptoms and an elevated PSA in schistosomiasis endemic areas should be investigated. High PSA levels reported in relation to prostatic cancer should prompt clinicians to investigate the possibility of schistosomiasis prostatic cancer.

In South Africa, Cohen et al. showed that in the presence of a large number of *Schistosoma* eggs in the prostate, prostate carcinogenesis could occur even in younger men.69 However, a causal link or association has not been demonstrated. El-Bolkainy71 showed that individuals with *Schistosoma* eggs developed bladder tumors at a younger age than individuals without the *Schistosoma* eggs. It is therefore plausible that in
individuals that reside in schistosomiasis endemic areas, prostatic tumors may begin at an early age because of the inflammatory processes mediated by *Schistosoma* eggs embedded in the prostate.

In 2015, Elfaki investigated the association of schistosomiasis and PCa by measuring the PSA levels of 50 urogenital schistosomiasis infected participants samples. All the samples were reported negative for PSA hence they concluded that there was no association between urogenital schistosomiasis and PCa. It is not known if the patients with schistosomiasis are likely to develop PCa later on in life as a result of schistosomiasis infection. Botelho *et al.* in 2010 reported that *Schistosoma* eggs produce oestrogenic molecules that are highly carcinogenic and this could explain how schistosomiasis infection can induce prostate carcinogenesis.

Moreover, Tuffour *et al.* in 2018 provided evidence on schistosome infections as a potential etiological agent. They found that schistosome egg antigens induce oncogenic phenotypes including oxidative stress, increased proliferation and diminished apoptosis in cultured normal human prostate cells. Additionally, as schistosomiasis becomes chronic, granulomas are formed. Peiffer *et al.* in 2019 associated regions that are adjacent to granulomatous inflammation in prostate such the proliferative inflammatory atrophy to be induced by urogenital schistosomiasis. Hence, granuloma intermediate cells are suspected target cells for prostate carcinogenesis. The possibility of cancer development due to schistosomiasis and HIV virus co-infection

A pilot study by Midzi *et al.*, in 2017 showed a decrease in HIV-1 RNA load in semen of HIV positive men co-infected with urogenital schistosomiasis after praziquantel treatment. Therefore, MGS and HIV co-infected individuals might have an accelerated HIV propagation rate in seminal fluids and plasma which will lead to an increase in viral load and rapid advancement to HIV/AIDS. Schistosomiasis causes constant inflammation, orchestrated by eosinophils and lymphocytes resulting in a great number of activated CD4+ immune cells in the genital fluids. The HIV virus attaches and gains access into other cells leading to an increment in the propagation rate of the virus and destruction of the immune cells that leads to other viral infections. The viruses will in turn cause proliferation of the infected cells leading to neoplasms in the infected host that will eventually become cancerous.

The burden of MGS infection is underestimated because specific manifestations of urogenital schistosomiasis in adults is unnoticed due to inadequate disease surveillance. Certain individuals with MGS could be under diagnosed in relation to the association of schistosomiasis and PCa, hence detailed epidemiological studies are necessary to elucidate the association between schistosomiasis and PCa. Approximately sixty percent of the publications reviewed on schistosomiasis and PCa have been reported in few countries in Africa where schistosomiasis is endemic suggesting that regional variation should be taken into account for prostatic schistosomiasis carcinoma screening. Despite geographical concurrent distribution of the schistosomiasis and PCa there is no substantial evidence to differentiate PCa development between individuals that reside in schistosomiasis endemic or non-endemic countries. The rarity of the number of cases where schistosomiasis is associated with PCa could be due to lack of mechanistic studies that could elucidate the causal associations of schistosomiasis to the development of PCa. Cohen *et al.* speculated that the association between schistosomiasis and PCa could be due to high *Schistosoma* egg burden.

However, the mechanism of how ova lead to PCa remains unknown. MGS might be a co-factor in the aetiology of PCa. Therefore, genetic factors alongside immunological responses to the prostate *Schistosoma* embedded eggs can possibly aid in elucidating the development of PCa due to schistosomiasis infection.

Conclusion

This review of 20 publications of the co-existence of the MGS and PCa was not able to demonstrate a causal association of the two diseases. However, we were able to demonstrate the co-existence of PCa and schistosome eggs in the prostate indicating the need to investigate the contribution of the sequellae.
of schistosomiasis infection with the development of PCa.

Recommendations

Based on the evidence of the co-existence of PCa and schistosomiasis eggs in the prostate, there is need to investigate the association of schistosomiasis infection to the aetiology or as a co-factor of PCa evolution especially in schistosome endemic areas. Examination of prostate tissues should be studied longitudinally and not only at the time of treatment for prostate cancer in schistosomiasis endemic areas to determine the association of the two diseases. History of schistosomiasis infection should be taken into consideration to elucidate the evolution of schistosomiasis infection. Schistosomiasis associated prostatic cancer poses a diagnostic challenge especially if the disease is asymptomatic and relies on clinical outcomes. Thus, there is a need for appropriate diagnostic tools that can detect invasive conditions early and predict the possibility of PCa development. This might help initiate the management and treatment of such co-existing conditions especially in schistosomiasis endemic areas where schistosomiasis infections occur at very early ages whilst the severe effects of the disease might occur at older age.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgements

The authors are grateful to the OAK Foundation and University of KwaZulu-Natal, College of Health Sciences for supporting the student through a scholarship and operational research funds. The work is also commissioned by the National Institute for Health Research, using Official Development Assistance (ODA) funding 16/136/33. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute of Health Research or the Department of Health. The funders had no role in the conception, study design, data collection and analysis, decision to publish or preparation of the manuscript.

Funding

The work done leading to this manuscript was funded by OAK foundation and College of Health Sciences, University of KwaZulu-Natal.

Contribution of Authors

ETC and TM did literature searches. ETC and TM did the analysis and reporting. ETC wrote the manuscript. MC, ENS and FM guided the process of the literature search and manuscript writing. MC and ENS has been involved in revising the manuscript critically for important intellectual content. All the authors read and approved the final of the manuscript.

References

51. Bacelar A, Castro LG, De Queiroz AC and Cafe E.

Schistosomiasis and prostate cancer