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ABSTRACT:- The problem of estimating the variance of an estimator of the population total when
missing values have been filled using a Nearest Neighbour (NN) imputation method is considered.
The estimator is developed assuming a more general model than those considered in earlier studies.
Inan empirical study involving two artificial populations, the proposed estimator isfound to perform

better or as well as other two estimators in the current use.

INTRODUCTION

Consider a population U ={1, 2, 3, .....N}. Associated
with the k — th unit of the population are two variables
(XoY). k=1,2...N,whenx _>0,y,>0. Thevariabley
isunknown and isthe variable under study whilex isthe
covariate assumed to be known for all units of the
population. Suppose that in this sample m units respond
to an item y and n — m do not. Let r denote the set of
responding units and 7 the set of non respondents.

In estimating the population mean Y- N*Zyi ;itisusual

to first fill the missing values using some imputation
method. One commonly used imputation method for item
response is the nearest neighbour (NN) imputation
method. In what follows we consider single value NN

imputation carried out asfollows: Consider unit kO and
supposethat min [x -x, occursfor I =1(k) . Thenthevalue
Y,y is imputed for the missing value y,. The I=i(k)h
responding unit is called the donor for the k-th missing
value. The complete data set is then given by {y, :kO¢

_ Bk if kOr
where Yk = aﬁ(k) if kOr (1)

The usua estimator of the population mean yis given

by

y=i3 Y.

moomd

:%gzyf ;y(k)
TRYIRY,

where F,_is the number of times the K — th responding

(2)

unit isused asadonor. The bias of 3_/ isknown to be small

if the relationship between y and x is linear (Rancourt et
al., 1994).

Let p(.) denote the sampling design; that is p(s) is the
probability of obtaining the sample s. In our case P(s) is
SRSWOR design. Given s, let q (./s) be the response
mechanism, that is q(r/s) is the conditional probability of
obtaining the response set r given s. In practice, the
response mechanism isunknown. In this paper, we assume
that the response mechanism may depend on the covariate

values (x :: kOs)but not on the values 3y, :kos. The total
error of
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where )_/ is the sample mean when there is no non-
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response. Thus bias and mean squared error of y are given
.S

by

Bias%’@z E, EEq@: - Y@S% “
MSE E&% Equ%E"%’EZ

=EE@_Y%§Y—Y%
5Byl By By B

ho

B .3 (5)
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% NO —1%@'k ¥D+E°E“é’ }ZEI
+2E,E Y-y Dy-yd
VS/\M + VIMP + 2\]MIX (6)
Theterms V, ., V., and V| are defined by the terms in

equation (5) respectively. The operators Ep and Eq are
expectations with respect to the sampling design p(s) and
response mechanism q(1/s) respectively. In this paper, we

propose bias-robust estimation of MSE %}’%iven by

equation (5).
ESTIMATION OF MEAN SQUARED ERROR

A number of methods of estimating the mean squared error
in the presence of imputed data have been proposed in the
literature. A naive method is to treat the imputed values
as if they are observed values and then compute the
variance estimates using standard formula. As early as the
1950s, Hansen et al., (1953) recognized that treating
imputed values as observed values can lead to under
estimating of variances of estimators if standard formula
are used. The under estimation may become appreciable
as the population of imputed values increases. Rubin
(1978) introduced multiple imputation to account for
inflation in the variance due to imputation. The problem
with this method when applied to NN imputation is that
there are some difficulties in defining a “proper multiple
imputation” and, therefore, the variance is underestimated.
The third method is based on the Jackknife technique (Rao
and Shao, 1992). To apply this method, the imputed values
must first be adjusted. The appropriate adjustment depends
on the particular imputation method used. In the case of

NN imputation no entirelysatisfactory adjustment has yet
been found. Kovar and Chen (1994) tried the Jackknife
for NN imputation using a less than ideal adjustment,
that is the adjustment ideal for ratio imputation. This
reduced the bias but could not eliminate it.

The fourth approach is the bootstrap (Efron, 1994; Shao
and Sitter, 1996). The bootstrap can be applied to any
imputation method and any estimator. However, it has
two problems. First, it requires that a separate imputation
be carried for every bootstrap iterate taken. Second, the
properties of the bootstrap when applied to NN
imputation are not known. The fifth approach is the model
— assisted approach (Sarndal, 1992). Rancourt et al.,
(1994) applied this approach to NN imputation. These
authors illustrated that the method works well under the
conditions of the assumed model. However, the
performance of the method when the conditions of the
model do not hold was not investigated. Also the
performance of the method as compared to a general
method such as the bootstrap was not studied. Kaufman
(1996) proposed a method for a certain variant of the
NN imputation method. The method is similar to the
model -assisted approach. The only difference is that in
Kaufman’s method a donor for a missing value is
randomly chosen from the two nearest neighbours used.
Therefore, the same problems associated with the model
— assisted approaches are encountered in Kaufman’s
method. In addition, Kaufman’s method introduces a
donor selection variance component in the total variance.
Therefore, in general Kaufman is less efficient than
Sarndal’s method (Fan, et al., 1998).

More recently, Montaquila and Jernigan (2002) has
proposed a new approach, called the “All — cases
imputation variance Estimator”. The authors propose to
also impute values for the respondents and then use the
imputation variance for the respondents to estimate the
last two terms of equation (5). The method works for
any imputation method, any sampling design and any
statistics used for inference. However, in their empirical
study, Montaquila and Jernigan found that their estimator
does not perform as well as the bootstrap estimator of
Shao and Sitter (1996).

In the next section, we propose an estimator of

MSE@’@ given by equation (5) using a model —

assisted approach. However, the model assumed is more
general that that assumed by Rancourt et al, (1994).
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Consequently, the developed estimator is expected to be
more robust than that suggested by Rancourt et al., (1994).

PROPOSED MEAN —SQUARED
ERRORESTIMATOR

We now turn to the problem of estimating the mean
squared error given in equation (5). The development of
the estimator we propose follows along the lines in the
Rancourt et al., (1994). Consider the model stating that
for k Ou,

=BXk
_15
cov (y yl) a) L 15 (7

where Gﬁ"k@is some smooth function of X, The

components of equation (5) are difficult to estimate.
Consequently, in the model — assisted approach, it is
suggested that the anticipated mean squared error is
estimated instead. Under model (7), the anticipated MSE
is given by

B e -1 g 5B -
“EEES-yE N

= Eg VSAM + Eg VIMP +2 Eg VMIX (9)

Note that we have interchanged the operators EE, and
E.. This is possible because of the assumption we have

made about the response mechanism. The € -expectation

appearing in the true MSE components can easily be
evaluated leading to expressions which depend on 3? and

G@‘k @as the only unknown parameters. Therefore to

estimate the three components of equation (8), all that
we need to provide are the model unbiased estimators of

[3* and G@‘k @ However, this will still not lead to an explicit

estimator since we still have to find expectations of some
terms with respect to the unknown response mechanism.
Following Rancourt et al. (1994), we obtain A —unbiased
estimators of the components of the equation (8). An

estimator g of a parameter @ is said to be A — unbiased

if its anticipated bias is zero i.e.

E.EE. -0 (10)

Since the response mechanism is assumed to be
uncomfounded, this is equivalent to

EngEq@‘GQZO (11)

Therefore, one way of finding an A-biased estimator of
0 is to find one such that

E[D-0=0

We now find the A-biased estimators of the components
of equation (5) using condition (12)

(12)

ESTIMATIONOF V,,,

VSAM:%_ 1N)N1—1§§,1_ y
=(%1‘1N)N1_1§gyf-N¥25

Taking expectation of V, |
obtain

with respect to model (7) we

E Vi = - ygleDgy N Eyg
G-l 0Bk gt
vl P e g
A s o) p s Bl
<G zetps o

We see that in E, V,, the only unknown quantities are
ox,) i=1,2, ..
estimators of o (x,) and [3* respectively under model (7),

then an A — biased estimator of V,  is given by

N and [>. Hence if gx, f? are unbiased
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V=0 iR zek) pan

The estimators &(X,)and 2 are given in section below.

(14)

ESTIMATIONOFV,,,

To find an A —unbiased estimator of V___, we need to find

IMP?

E%};’ - }s’g(see equation 8 above).
o iyl R 3
S LR AP PR R: &

Taking expectations under model (7), we get

EE]V YH- D’ar FkYk+ﬁZFkEYk§_
5 EIRY.EYY.rwyy+EYyE

= #EZFiG(xk)JfﬁZ@Fkxﬂ ‘ZﬁZZFkxk Zxk + Zc(xk)‘”[f@xkﬁé

Oom 4

_ 1 2 . .0 _ DZ+ 5 H

<L EReb)4 B FRxEx ] 3o

- z?FkG(X éXlk ZX"E+ZG(X)
1 ) P 1 a
- Fob) B d 3ot

where d_=x
of Vo

(15)

X Therefore the A-unbiased estimator
is given by

XZ&%ZF%(&F[%ZHZ&%;&(&)E (16)
ESTIMATIONOFV,, .

Here we need EQQ’_};’%_ y

yoy= By v By sy 3y

=B K@y sy B Ay

The symbol Z indicates summation over non sample

values.

Hence

By oy Ay oy R 2vg
NIy Ey -y
=$(%-%)@me+ngy,yk-Zy,Zyk+Zy.ZFkyk-ny—§y.yk§

1 O
-Eggy,ZFkyk-gyigykg (17

Taking expectations of equation (17) under model (7),
we obtain

Ey-yu oy b= B Rt ) )

+B inxk_B ZXiZXk-'-B ZXiZFka
-3 6)+Bx)-8 3 xox.

D 2 2 D
LN%B gx.ZFkxk-B gx.gxkg (18)

On simplification equation (18) becomes
il
g (19
-2 Fool)- Tob B e -xEad

-1
where X = 0 in . Therefore the A — unbiased

estimator of V. is given by

) . . . IS =
v = Vb pot)-Fot ) BEx Fad
O o

(20)
ESTIMATION OF ( (.) AND [?

A number of methods have been suggested for estimating
O (). In this paper, we - propose to estimateJ (.) using
the estimator given in Odhiambo (1995)

The estimator given in Odhiambo (1995) was developed
under very general conditions. Hence it is a more robust
estimator of @ (.) than any other estimator.
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To estimate 3%, consider

o BVE
et

HZYH
“hax

Under model 7

ZG Xi
EG)=p +———=

Bxf

Hence an unbiased estimator of (3% is given by
ZG(X)
T

Finally, from equations (14), (16), and (20), an A — biased

B, = @1

estimator of MSE @'gis given by

V.2V 2V +y

SAM MIX IMP

(22)

SIMULATION STUDY
SMULATION SET-UP

We studied the performances of the estimators V (see
equation 22), the bootstrap estimator (V,) and V, — the
estimator due to Rancourt et al. (1994) in a simulation
study involving the artificial population and two non
response Mechanisms.

The first population was generated as follows: We created
N = 400 pairs (X, Y,) by first generating the X, values
from a gamma distribution with mean 48 and variance
768. The value Y, was generated from gamma distribution
with mean 1.5 X_and variance 0.25 X, . This population
was also used by Rancourt et al. (1994) in their simulation
study. The estimator V, was developed assuming a simple
linear regression model. Therefore it is expected to
perform well in this population.

The second population was generated in a similar manner
as the first with only one difference. The y, value was
generated from a gamma distribution with a variance 0.25
x?, instead of 0.25 x, . This population represents the case

when the model considered in Rancourt et al (1994) fails. It
provides a good situation where the robustness of the
three estimators can be tested.

Two non-response mechanisms were considered: random
and unknown. Previous studies (for example Kovar and
Chen, 1994) have shown that the properties of variance
estimators in the presence of imputed values are more
pronounced when non-response rates are high. Most of
these studies considered 30% non-response rate to be a
high one. We adopt the same in this study. Hence the two
non-response mechanisms were generated using
independent Bernoulli trials with a constant parameter
equal to 0.3 representing the probability of non-response.
In the unknown non-response mechanism case, we just
took the last 30% of the sample values as missing.

Most of the previous simulation studies comparing
variance estimators for imputed data considered
negligible sampling fractions. See for example Kovar and
Chen (1994), Montaquila and Jernigan (2002) and
Rancourt et al. (1994). In this study we consider the case
when the sampling fraction is not negligible.

From each population a simple random sample of size
n=90 was taken. For each non-response mechanism, non-
respondents were generated. Nearest Neighbour
imputation was then performed for the missing values.

Finally, from the completed data set the estimator }} and

the three variance estimators V, V and V, were
calculated. The experiment was independently repeated
1000 times. In the case of V|, 1000 bootstrap iterations
were used while for V., the bandwidth parameter was that
one that minimized the mean squared error and satisfied
Silverman (1986)’s condition.

c 36
J4 shs % . The Epanechnikov’s kernel was used in
4n 2n
this case.

The performances of the three estimators were assessed
using two criteria: the relative bias (RB) and the coverage
rate for the nominal 95% confidence intervals. The
relative biases of V, V| and V, were calculated as

g
MSE%{E

where MSEET}:H— 10002 Ery y, @

1000
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the value of Yy for the ith experiment and V. represents the

value of V, V| and V, for the ith experiment. The 95%
confidence interval was constructed using the standard

normal distribution as Y #1.964/v, . The coverage rate is

then given by CR = IOOX% where T=1000 and t is the number

of times that the confidence interval covers the true mean.
RESULTS

Relative bias (RB) and coverage rate (CR) of V, V, and
\Y

2

Non-r esponse Mechanism

Population Variance Estimator

Random Unknown

RB CR RB CR

1 Vo 0.024 96.0 0.030 95.5
Vi -0.065 92.1 -0.067 92.0

Va 0.112 91.5 0.120 91.2

2 Vo -0.091 96.5 -0.126 94.5
Vi 0.140 93.5 0.177 94.0

V2 0.023 95.0 -0.080 94.5

As the results in the table show, V| underestimates the
MSE in all cases. Rancourt et al. (1994) observed the
same results. Generally, V, tends to overestimate the
MSE. Clearly, between V and V , V is a better estimator
in terms of relative bias. It is somewhat surprising to see
the better performance of V over V| in population 1. As
has been remarked, V was developed assuming a simple
linear regression model. Population 1 follows a linear
regression model. Hence V| should perform best in this
population.

Rubin (1996) emphasizes the fact that rarely is the
variance of an estimator itself an estimand. That is, rarely
is the sole purpose only to estimate the variance of an
estimator. Rather the goal is to obtain valid inferences.
The variance estimator is merely a vehicle used en route
to obtaining valid inferences. Thus in comparing
estimators, it is important to assess the validity of
inferences obtained using the estimators.

Table 1 also compares the coverage rates for the 95%
confidence intervals obtained using the three variance
estimators. The proposed estimators V  tends to yield
confidence intervals with higher coverage rates than those
obtained using the other two estimator

CONCLUSON

We have developed a bias robust variance estimator, V,,
in the case where missing values are imputed using a
nearest neighbour imputation method. The estimator was
developed using more general condition than those used
when developing V. Because of this V is expected to be
more bias — robust than V. Our empirical study confirms
this.

The proposed estimator is not as computationally
intensive as bootstrap. The bootstrap involves drawing
numerous bootstrap samples, imputing independently
within each bootstrap sample, and computing an estimate
for each bootstrap sample. To properly implement this
procedure and ensure its validity for a specified problem,
the validity checks used full — sample imputation must
be used for each bootstrap sample. This can be quite time
consuming and labour intensive. The advantage of the
bootstrap over the proposed estimator is that the bootstrap
can be applied to any sampling design, any imputation
method and any type of estimator while the proposed
estimator is specific to the method of imputation.

In this study, we did not include the more recent estimator
of Montaquila and Jernigan for comparison. The recent
approach has all the advantages of the bootstrap and is
not as computationally intensive as the bootstrap. We are
looking at this problem at the moment.
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