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ABSTRACT: A Monte Carlo study was achieved to assess the relative efficiency of ten non-parametric
error rate estimators in 2-, 3- and 5-group linear discriminant analysis. The simulation design took
into account the number  of variables (4, 6, 10, 18) together with the size sample n so that: n/p  = 1.5,
2.5 and 5. Three values of the overlap, e of the populations were considered (e = 0.05, e = 0.1, e =
0.15) and their common distribution was Normal, Chi-square with 12, 8, and 4 df; the
heteroscedasticity degree,    was measured by the value of the power function, 1-β  of the

homoscedasticity test related to  (1-β  = 0.05, 1-β  = 0.4, 1-β  = 0.6, 1-β  = 0.8). For each combination
of these factors, the actual error rate was empirically computed as well as the ten estimators. The
efficiency parameter of the estimators was their relative error, bias and efficiency with regard to the
actual error rate, empirically computed. The results showed the overall best performance e632
estimator. On the contrary, e0, epp,  eppCV and eA recorded the lowest performance in terms of mean
relative error and mean relative bias. The ranks of the estimators were not influenced by the number
of groups but for high values of the later, the mean relative bias of the estimators tend to zero.
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INTRODUCTION

Discriminant analysis is a statistical method of allocation
of an unknown individual to one group, from at least two
foreknown groups, by using a classification rule
previously established on well-known individuals. A
number of classification rules are available and the most
used are linear, quadratic and logistic methods.
 
Many classification rules have been proposed in literature
and the most common is the linear classification rule
(Fisher, 1936).
 
Let us suppose g p-variate populations,

),...,1( gkGk  , with mean vectors, ),...,1( gkk μ
and common covariance matrices, Σ . The linear rule ( LR)

is a Normal-based classification rule for  which

),N( Σμ kF   (McLachlan, 1992):
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The unknown observation vector ix is assigned to kG if:

  klglki  ;,...,1          0),N(,LR Σμx

In the case of data samples, LR can be established by

replacing in (1.1) the parameters, ),...,1( gkk μ  and
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Σ  by their estimates, kμ̂ (k=1,...,g) and kΣ̂ ;  Σ̂  is

considered in (1.1) as the estimated pooled covariance
matrix of the k populations.

Whatever the rule established is, it is subject to a
probability of misclassifications. Then, an actual error rate
is associated with any classification rule established on
data samples in order to evaluate its efficiency. In practice,
it is impossible to precisely determine the actual error rate,
because it is only computed on the actual parameters of
the populations, which are usually unknown. To solve this
problem, some parametric and non parametric estimators
of the actual error rate were established (McLachlan, 1992).
Parametric estimators were established for two normal
homoscedastic groups and the actual error rates estimated,
using some parameters related to the considered samples
such as the estimated Mahalanobis distance between the
two groups. On the contrary, non-parametric error rate
estimators do not depend on any hypothesis of use and
are based on resampling methods. For two-group
discriminant analysis, many comparative studies of error
rate estimators have been done in linear discriminant
analysis, in order to deduce the ones that have the lowest
errors compared with the theoretical actual error rate. A
thorough review of these studies is provided by Schiavo
and Hand (2000). However, in real world problems, more
than two groups are often considered in discriminant
analysis. This paper evaluates and compares, by simulation
technique, the efficiency of ten non parametric error rate
estimators for 2-, 3- and 5-groups submitted to linear
discriminant analysis.

ACTUAL ERROR RATE
 
The actual error rate can be defined as the theoretical
proportion of misclassified observations, obtained by
validating a classification rule established on data samples
to any other observation taken from the same populations.
This error rate is useful in practice because it gives the
expected misclassification rate when a previously
established rule is used.
 
Let us assume two samples, E1 and E2 with p variables and
common size n. The mean vectors and the pooled

covariance matrix are 21    , xx   and S , respectively. Let
us also suppose also that these samples are taken from

normal populations, P1 and P2, with mean vector ( kμ  =1,2).

The actual error rate specific to the group keck   ,   ( 2,1k )

and the overall actual error rate are given by McLachlan
(1975):
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where kp  and   are, respectively, the prior probability
related to the group  and the cumulative function of the
Normal distribution.

The relations (2.1) can only be used in two-group
discriminant analysis when the linear rule is established
on two normal homoscedastic populations. In the other
cases, the actual error rate associated with a classification
rule can be empirically computed, for two groups, by
determining the proportion of misclassified observations
when the rule is established on the samples E1 and E2 and
validated on a couple of large samples, of size 10,000 for
example.
 
 

ESTIMATION OF THE ACTUAL ERROR RATE
 
For more than two groups submitted to discriminant
analysis, only non-parametric estimators can be used to
assess the actual error rate associated with an established
rule; parametric estimators were only conceived for two-
group discriminant analysis. Ten non-parametric error rate
estimators were considered in the study and presented
below.
 
Resubstitution estimator, eA  (Smith, 1947): i.e., proportion
of misclassified observations when the rule was
established and validated on the same samples.
 
Cross validation estimator,  eCV (Lachenbruch, 1967): i.e.,
proportion of misclassified observations when  gn
discriminant analyses are done on gn -1 observations by
removing, at each step, one observation and by allocating
the removed observation to one of the considered groups
on the basis of the rule established on the gn-1
observations.
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1eS and 2eS Estimators (Hand, 1986):
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epp Estimator (Fukunaga and Kessell, 1972):
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The symbols  gkik ,...,1)(τ̂ x  represent the

posterior probability that an individual i   of observations

vector ix belongs to population Gk and is defined as:
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where )(ˆ
ikf x is the value of the estimated density

function at ix for population kG .

eppcv Estimator (Fukunaga and Kessell, 1972): i.e.,
computed by using the relation (3.2) in which the posterior

probabilities,  gkik ,...,1 )(τ̂ x of the observations

vector ix  was determined, using the classification rule

established on gn -1 observations, the vector ix ,  being
removed.

 Jackknife estimator,  (Quenouille, 1949): i.e., computed
by realising  discriminant analyses on gn -1 observations.
For each sample of gn -1 observations, the observation

being removed, the resubstitution estimator, )(ikeA ,

specific to   gkGk ,...,1   , was computed. By assuming,

kAe
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the Jackknife estimator is computed as:
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where keA  is the resubstitution estimator specific to  and
computed from the overall sample.
 
Ordinary bootstrap estimator,  (Efron, 1983): i.e., computed
on 100 bootstrap samples, a sample of size n being taken
with replacement in each initial sample of size n. For each
bootstrap sample, the classification rule is established and

the resubstitution estimator, *
kjeA  100,...,1;,...,1  jgk

specific to kG was computed. The same rule is also used

to compute the proportions, *
kr  of misclassified

observations, the rule being validated on the initial sample.

The bias, ),...,1( gkbk   of *
kjeA  is computed as

follows:
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The overall bootstrap estimator is computed as:
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keA being the resubstitution estimator specific to kG

when the rule is established on the gn  initial observations.

0e Estimator (Chatterjee and Chatterjee, 1983): i.e.,

computed on 100 bootstrap samples )100,...,1(t * ii ,

taken from the initial sample . For each bootstrap sample, a
classification rule is established and the proportion of
misclassified observations of t, which do not belong to

*t i , was computed. The 0e  estimator is the mean of the
100 proportions. 

632e Estimator (Efron, 1983): i.e., computed as follows:

0632.0368.0632 eeAe               (3.7)

SIMULATION DESIGN

Discriminant model
 
We consider the case of 2-, 3- and 5-groups submitted to
linear discriminant analysis and characterized by their
means and covariances matrices. In the case of 2 groups,
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the mean vector,  2 ,1 kkm is:

 IRmm        ;)'0,...,0,(  0; 21 mm .

The covariance matrix,  2  ,1kkΣ , is a diagonal matrix

with  2  ,1kkv , the vector of diagonal elements given
by

)1(1 vv  ;  λ2 vv   where  IRλ  and   )'1,...,1 ,( λ v .

In the case of 3- and 5-groups, the mean vectors,  and
covariance matrices,  are given below:

For 3-groups:

m1= 0; m2 = )'0,...,0,(m m3 = )'0...,0,,0( m ; 1v = )1(v ;

 λ32 vvv  .

For 5-groups

m1= 0; m2 = )'0,...,0,(m m3 = )'0...,0,,0( m ; m4 =

)'0,...0,( m ;  m5 = )'0,...,0,,0( m

)1(1 vv  ; 2v = 3v = 4v = 5v =  λv .

It is known that the linear rule is invariant under a non-
singular linear transformation (McLachlan, 1992). So,
appropriate linear transformations applied to the simple
models proposed above, will help to extend the results of
the study to a large variety of real world problems.

To assess the heteroscedasticity degree of the populations,
a heteroscedasticity parameter   is defined for g
populations submitted to discriminant analysis as:

 =  ΣΣk

g

k




1

ln ,              (4.1)

with kΣ  and Σ , being the covariance matrix of kG  and
the pooled covariance matrix of the g populations
respectively. For data samples, an estimated ̂  can be

computed by replacing kΣ  and Σ  , respectively with

kΣ̂ and Σ̂ .

By considering the discriminant model proposed above, it

can analytically be shown that the parameters g (g = 2, 3

and 5) and  λ (defined in Section 4) are linked by the
following relations:











 












 












 


45

5

5

23

3

32

2

2

λ5
λ)41(

ln)λ(

;
λ3
λ)21(

ln)λ(;
λ2
λ)1(

ln)λ(

      (4.2)

The inverse of these functions helped in choosing the

appropriate values of g  according to λ .

Population features and comparison criteria
 
The factors considered in the assessment of the efficiency
of the non-parametric error rate estimators were the number
g of groups (g = 2, 3 and 5), the common distribution of the
variables of the p-variate populations that is Normal
(named N), Chi-square with 12, 8 and 4 degrees of freedom,
named C(12), C(8) and C(4), respectively. The number p of
variables was 4, 6, 10, 18; three values of the common size
sample, n were considered for each value of pnp /: =

1.5; pn /  = 2.5 and pn /  = 5. For each number g of
groups, four values of the heteroscedasticity degree,

 5 and 3 2, kk of the populations were chosen

from established empirical power function, 1-β   of the

homoscedasticity test related to k  under normality case

(1-β  = 0.05: homoscedasticity; 1- β  = 0.4: low
heteroscedasticity; 1- =0.6: average heteroscedasticity; 1-

β  =0.8: high heteroscedasticity. Table 1 presents for each
number of groups, the mean values related to each of the
four values of 1-β .  Three values of the overlap, e  of the
populations were considered: e  = 0.05 (low overlap); e  =
0.1 (average overlap) and e  = 0.15 (high overlap). The
group-prior probabilities were considered equal and the
overlap was thus equal to the optimal error rate. For each
of the combination of population features described above,
the values of the parameter m (defined in section 4) were
iteratively computed to obtain each of the three values of
the overlap (or optimal error rate) of the populations.
However, the expression (2.3) for the computation of the
overlap e was difficult to manipulate for g > 2 so we used
an empirical approach to compute the overlap, e .
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We present below (without loss of generality), the
computational method of e  for three p-variate populations,

1P , 2P  and 3P , of theoretical density functions 1f , 2f

and 3f . In the discriminant model considered in section 4
the differences between the means vectors were only
carried by the first two variables of the populations. In
such cases, the other variables did not influence the
overlap,  of the populations. So, it can be deduced from
equation (2.3) that, for equal group-prior probabilities:

)(
3
1

321 eeee  with:

Table 1. Values of k  according to the 4 values of 1-β

non-parametric error rate estimators were computed. The
actual error rate ec  was also empirically computed for
each sample by validating the established linear rule on a
large sample of size 10,000g and used to calculate the
Relative Error (RE), the Relative Bias (RB ) and the Relative
Efficiency (REff ) of each estimator:
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In equation (4.4), the symbol min(RE) represents the relative
error of the best estimator for the considered sample. The
Mean Relative Error (MRE), the Mean Relative Bias (MRB)
and the Mean Relative Efficiency (MREff) related to each
estimator were computed for each of the 1728 combinations
of the factors.
 

RESULTS
 
The MRE of the non-parametric estimators for each
combination of the factors were replaced by ranks. For a
given combination of the factors, the ranks of the error
rate estimators were computed, the estimator of the lowest
relative error having the rank 1. The median ranks of the
estimators were calculated for each factor level as well as
their median rank for all the 1728 combinations of factors
and placed in Table 2. It can be noticed that 632e  is the
overall best estimator; the other estimators of good
performance were 2eS  and 1eS . On the contrary, , 0e ,

epp and eArecorded the lowest relative efficiencies. The
ranks of the ten estimators for each level of population
features did not globally depend on the number g of
groups, except 2eS estimator whose relative performance
slightly decreased with increased number of groups. The
population features seemed not to have influenced the
ranks of the estimators. However, eboot  and eppCV
improved their ranks for increased values of the ratio pn /
whereas an opposite trend was observed, not only  in the
case of  eJc , but also  1eS and 2eS , especially for 5-

groups. Moreover, the relative efficiency of eppCV   and
632e became low with the increased overlap of the

populations. The median rank of the estimators for the
levels of population features did not help in analysing the
quantitative difference between their performances.
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In equation (4.3), 1e , 2e  and 3e  represented the group-
conditional error rates of the Bayes rule. The used empirical
approach considered these conditional error rates as the
volume of solids constituted of successive elementary

volumes of width,  dx ( dx  = ii xx 1  ), length, dy ( dy

= ii yy 1  ) and height, the value of the bivariate

probability density function at )(dx,dydx . The same
method was used in the case of 2 and 5 groups.

A total of 1728 combinations of the factors were considered
and for each of them, 100 samples of size gn were
generated from the g populations. For each of them, the 10

g = 2 g = 3 g = 5
1 - β = 0.05 0 0 0
1 - β = 0.4 1.2686 1.6331 2.1446
1 - β = 0.6 1.7009 2.1901 2.8644
1 - β = 0.8 2.1851 2.7979 3.6571
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Boxplots of the mean relative efficiencies (MREff) of the
error rate estimators were presented in Figure 1.

This figure confirms the best performance of 632e , as well

as 2eS , 1eS , eJc ,  eboot   and eCV  with however, a loss
of efficiency of about 28 % of the latter compared to  632e ,
which is equivalent to a mean relative error of 12.8 % for
these estimators for 10 % of relative error for 632e . Except
the resubstitution estimator, eA , that presented a loss of

efficiency of more than 100 % compared to 632e , the other
estimators presented losses of efficiency that vary from 28
% to 70 % compared to 632e . As far as the dispersion of
the MREff of the estimators was concerned, Figure 1 shows
the very low variability of 632e , which maintains its best
performance over the various populations features
considered in this study. Estimators  eCV  , 0e , epp and

eA that present the lowest performance are also the less
stable.
 

Figure 1: Boxplots of the MREff of the estimators

G 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5

Global 1 1 1 2 3 4 4 4 4 5 5 5 5 5.5 6 6 6 5 7 7 6 7 7 8 8 9 8 10 10 10
N 1 1 1 2 2 3 4 3.5 4 4.5 5 5 5 6 6 5 5 5 7.5 8 7 7 7 8 8 9 9 10 10 10
C(12) 1 1 1 2 3 4 4 4 4 4 5 5 5 5 6 6 5.5 5 7 7 6 7 7 8 8 9 9 10 10 10
C(8) 1 1 1 2 3 4 4 4 4 5 5 5 5 5 6 6 6 5 7 7 6 7 7 8 8 9 8 10 10 10

C(4) 1 1 1 2 3 4 4 4 4 5 5 5 5 5 6 6 6 5 7 7 7 7 8 8 8 9 8 10 10 10
e =0.05 1 1 1 2 3 3 4 5 4 5 5 5 5 4 6 6 6 6 6 6 5 8 8 8 8 9 9 10 10 10
e =0.10 1 1 1 2 3 3.5 4 4 4 4 5 5 5 6 6 5 5 5 7 7 6 7 7 8 9 9 8 10 10 10

e =0.15
1-β=0.05 1 1 1 2.5 3 3 4 4 4 5 5 5 6 5 6 6 6 6 7 7 6 7 7.5 8 9 9 9 10 10 10
1-β=0.4 1 1 1 2 3 3.5 4 4 4 5 5 5 5 6 6 6 6 6 7 7 6 7 7 8 8 9 8 10 10 10

1-β=0.6 1 1 1 2 3 4 4 4 4 4 5 5 5 6 6 6 5 5 7 7 6 8 7 8 8 9 9 10 10 10
1-β=0.8 2 1 1 2 3 4 4 4 3 4.5 5 5 5 5 6 5 6 5 7 7 7 7 7 8 8 9 8 10 10 10
n /p=1.5 1 1 1 2 2 3 4 4 3 4 4 4 7 6 6 6 5 5 8 7 7 7 7 7 9 9 9 10 10 10
n /p=2.5 1 1 1 2 3 3 4 4 4 5 5 5 5 4 5 6 6 5 8 8 7 7 7 8 9 9 9 10 10 10
n /p=5 1 1 1 2 4 5 4 4 5 5 6 6 3 4 5 5 6 6 6 4 2 8 8 9 7 9 7 10 10 10

8 9 8.5 10 10 108 8 7 6 7 76 6 6 6 5 54 3 3 5 5 44.5 1 1 2 3 5

632e
2eS 1eS eJc eboot eCV eppCV 0e epp eA

Table 2: Median ranks of the estimators according to the populations features
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The Mean Relative Bias (MRB) helps in appreciating the
direction of the deviation of the estimators’ performance
for 2-, 3- and 5-groups. Table 3 shows that almost all the
non parametric estimators performed well when the number
of groups became more important. For 2- and 3-group
discriminant analyses, 1eS and eJc present the lowest
absolute MRB (2.5 % for 2-groups and 0.1 for 3-groups)
whereas for 5-groups, 632e became the best with 0.2 % of
absolute MRB.
 
The resubstitution estimator, eA , presents the most

optimistic bias whereas 0e presented the most pessimistic
one.

Table 3.  Mean and standard deviation of the MRB of the
error rate estimators

Estimation
-14.9 9 -0.5 5.1 -0.2 3.7

-3.1 5 -5.6 4.9 -6.7 4.7

2.4 5.6 -0.2 4 -1.4 2.8

2.5 5.3 0.1 3.9 -0.6 2.8

31.8 15.1 23.4 8.4 16.3 5.8

5.6 7 2.8 4.8 1.5 3.3

39.6 14.8 -26.3 14.1 -14.6 11.8

26.7 14.9 24.2 13 20.7 10.3

-38.4 21.1 -36.9 17.4 -26.4 16.1

-86.3 11.2 -43.1 16.6 -35.9 14.1

g =2 g =3 g =5
m σ m σ m σ

632e

2eS
1eS

eJc
eboot
eCV
eppCV
0e

epp
eA

DISCUSSION AND CONCLUSION

The estimation of the actual error rate for practical use is
one of the relevant topics in discriminant studies and a
synthesis of the various estimators of the actual error rate
was provided in McLachlan (1992). Most studies have
been done to compare in two group-discriminant analyses
the performance of the error rate estimators, especially
associated with the linear classification rule, and a
synthesis of them was done by Schiavo and Hand (2000).
The originality of our study is that the relative efficiency
of non-parametric error rate estimators can be analysed in
multi-group discriminant analysis. The obtained results
help to point out the overall best efficiency of 632e
irrespective of the number of the considered groups. For
two-group linear discriminant analysis,  many studies come
to almost the same conclusions (Wehberg and Schumacher,
2004; Glèlè Kakaï et al., 2003). Other studies pointed out
the efficiency of this estimator for non-linear classification
rules. Jain et al. (1987), using multivariate normal
distributions in nearest neighbour discriminant analysis,
found that 632e  out-performed all the other estimators

( eCV  , eboot   and 0e ). However, we noticed from the
present study that for high overlap of the populations in
the case of two groups, the performance of this estimator
decreased. Fitzmaurice et al. (1991), using two-group
discriminant analysis concluded that 632e  became less
reliable as the true actual error rate increased above 0.35,
but more reliable as the true error rate decreased. Other
estimators that performed well in the present study were

1eS ,  2eS  and eJc . On the contrary, , 0e , epp , eppCV

and   eA  recorded the lowest performance, in most of the
cases considered in the study.
 
The ranks of estimators were less influenced by the
populations’ features, probably due to the fact that they
were all based on resampling methods that do not replicate
conditions of use. However, the number of groups had a
high impact on the performance of the estimators. The
latter became more efficient as the number of groups
increased.
 
The highest positive relative bias was obtained by eA
whereas 0e  had the highest and negative relative bias.
These results have already been obtained by Wehberg
and Schumacher (2004), Chatterjee and Chatterjee (1983)
and Chernick and Murthy (1985) who qualified eA  and

0e  as the optimist and pessimist estimators, respectively..
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