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ABSTRACT: Weakly nonlinear approximation is used to study the theoretical 
comportment of large-scale disturbances around the inter-tropical mid-tropospheric jet. 
We show here that the Korteweg de Vries (KdV) theory is appropriated to describe the 
structure of the streamlines around the African easterly jet (AEJ) region. The introduction 
of the additional velocity C1 permits to search the stage where the configuration of the 
wave will correspond in this zone to those of Rossby solitary waves. It was also shown 
that the configurations of disturbances can be influenced by this parameter so that we can 
look if the disturbances are in the control or not of their dispersive effects. 
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INTRODUCTION 

 
The Rossby waves are the most important in large-scale 
atmospheric flow processes (Holton, 2004). For their 
analysis, it is usually sufficient to study the horizontal 
structure of waves. Most theories treating the structure 
of these waves are based on linear models which only 
take into account their dispersive behaviour. Nonlinear 
processes are more interesting because they can help to 
explain, for example, the hurricane spiral bands 
observed in the tropical zone (Guinn and Schubert, 
1993), and energy exchanges between different modes of 
the waves (Lenouo et al., 2005). Solitary Rossby waves 
in a zonal flow appear to have been discovered 
(analytically) by Long (1964) and have been studies 
subsequently by Larsen (1965), Benney (1966), 
Redekopp and Weidman (1978), Miles (1979), Hoskins 
and Ambrizzi (1993) and Luo (2004). All invoke 
Rossby’s β-plane model, in which the northerly gradient 
of the vertical component of the earth’s rotation is 
constant. 
 
Many studies have dealt with nonlinear waves and 
particularly solitary waves in the atmosphere, stating 
with works by Tepper (1950) and Abdullah (1955). On 
the theoretical level, nonlinear waves have been 
examined by Lenouo et al. (2005) in the mid-atmosphere 
where the African Easterly waves (AEWs) are 
propagated. In the same region, Dobryshman (1982) 
showed that the Korteweg de Vries (KdV) theory is 

appropriate to describe Rossby solitary waves. But the 
physical interpretation of the results in terms of Rossby 
solitary waves is not evident and the roles that these 
waves could influence the structure and energy of these 
waves have not been examined. Moreover, Huang and 
Zhang (1988) established that the propagation of Rossby 
solitary wave has behaviour closer to those of ridges and 
troughs. They therefore showed that these waves can 
travel long distances in the northern Hemisphere without 
a change both in speed or structure, and for any hour. 
 
The first well known studies of Rottman and Einaudi 
(1993) have helped to identify solitary wave connected to 
internal gravity waves in the atmosphere. They showed 
that these waves are described by KdV equations when 
they move in the upper atmosphere and by the Benjamin-
David-Ono (BDO) equation when they appear in the 
lower level. They therefore correctly analysed the 
observations of Lin and Goff (1988) by using the KdV 
model, whereas the observation of Smith and Morton 
(1984) were better explained by the BDO model. This 
was the first evidence of these types of wave observed in 
the atmosphere and their comparison with theoretical 
models. The solution of the three-dimensional nonlinear 
Charney–Obukhov equation describing solitary pancake 
Rossby vortices was found by Kaladze (2000). Its 
solution was represented in the form of an axially 
symmetric cylindrical monopole (anticyclonic) vortical 
structure moving with constant velocity.   Whereas the 
role of westward-travelling planetary (Rossby) waves in 
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the block onset and the deformation of eddies during the 
interaction between synoptic-scale eddies and an incipient 
block was examined by Luo (2004). This author has 
constructed an incipient block that consists of a stationary 
dipole wave for zonal wavenumber and a westward-
travelling monopole wave with constant amplitude for 
zonal wavenumber.  
 
The role of nonlinear wave was also being studied in 
oceanography. Hence, time series observations of 
nonlinear internal waves in the deep basin of the South 
China Sea are used to evaluate mechanisms for their 
generation and evolution by Qiang and Farmer (2011). 
They showed that internal tides are generated by tidal 
currents over ridges in Luzon Strait and steeper as they 
travel west, subsequently generating high-frequency 
nonlinear waves. Although nonlinear internal waves 
appear repeatedly on the western slopes of the South 
China Sea, their appearance in the deep basin is 
intermittent and more closely related to the amplitude of 
the semidiurnal than the predominant diurnal tidal current 
in Luzon Strait. 
 
In the present study, we will use the weakly nonlinear 
theory to examine the behaviour of the large-scale waves 
around the mid-tropospheric African Easterly Jet (AEJ), 
where the wave is more intense. Considering that the 
vertical extent of this jet is smaller than its horizontal 
extent (Lenouo et al. 2005), we admit in first 
approximation that the motion of the air in this region is 
dominated by the effects of the rotation of the earth. 
Under these assumptions, we will look for the stage 
where the configurations of these are similar to those 
having the form of solitary Rossby waves. This study is 
organised as follows. In Section 2, we will present 
method used to examine the nonlinear vorticity equation. 
In Section 3, the linear and nonlinear solutions are 
discussed whereas conclusion is presented in Section 4. 
 

METHODOLOGY 
 
Basics equations 
 
Rossby solitary waves are sought by using a nonlinear 
vorticity equation in a barotropic model (Dobryshman, 
1982). This equation integrates the horizontal shear in 
mean zonal wind that the profile permits to characterise 
the wave instability. We define a coordinate system 
(x,y,t) where t is the time component and the space 
components x and y are along the direction of wave 
propagation in east and north direction respectively. 
When the flow is no divergent, zonal and meridional 
components of the velocity can be written as a function of 
a streamfunction perturbation ψ as 

yu ∂−∂= /ψ  and  xv ∂∂= /ψ  
Otherwise, in a barotropic model, the evolution of 
streamline is described by the equation (Holton, 2004)  
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with the following boundary conditions: 
 
ψ=0 at y=0 and y=L    (2) 
 
In equation (1), J is the Jacobian operator
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operator, U the mean zonal wind component and β the 
meridional gradient of the coriolis parameter. 
 
The effects of non linearity are introduced through the 
Jacobian term, which is nonlinear. In the case of weak 
amplitude waves, the individual oscillations can be 
represented in the form of linear or nonlinear wave 
superposition. 
 
Theory 
 
A soliton is localised wave, solution to a nonlinear partial 
derivatives equation without change of velocity or profile 
in a weakly dispersive area. By using a multiple scale 
method, we can write a stream function ψ in the form of a 
power expansion in a small parameter є so that 
 
ψ= є ψ1+ є2 ψ2+     (3) 
 
It is necessary to introduce a convenient space and time 
variables ζ and τ, adapted to describe a weakly dispersive 
nonlinear system (Rottman and Einaudi, 1993). In this 
new Galilean reference frame, the transformations of 
Rottman and Einaudi (1993) are given by: 
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2/1 tCx −=∈ζ  and t2/3=∈τ    (4) 

 
where C0 is the phase velocity of the eastward wave. The 
procedure consists in rewriting equation (1) using ζ and τ, 
and then seeks a solution in a power series expansion in 
the amplitude parameter є. Then by collecting terms of 
order )( 2/3∈Ο , we obtain the following linear equation 
in ψ1: 
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Also the terms of order )( 2/5∈Ο  gives: 
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Solutions of equations (5) and (6) are sought in the 
nonlinear waves form A(ζ,τ), modulate by an amplitude 
function φ(y), as given by the relation: 
 
Ψ(ζ,y,τ)=A(ζ,τ) φ(y)    (7) 
 
a)- Determination of φ(y) 
 
By substituting relation (7) into equation (5), we set the 
following eigenvalue equation for φ(y): 

0)(")("
0

=
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−

+ y
CU
Uy ϕβϕ    (8) 

where the prime denotes differentiation with respect to y. 
The boundary conditions are the same as those given by 
relation (2) 
 
φ=0 at y=0 and y=L. 
 
Equation (8) is solved numerically by using GAUSS-
SEIDEL’s relaxation methods. The shape of horizontal 
shear is chosen such that the wind is zero at the 
boundaries. Using centred-difference differentiation, 
equation (8) is rewritten as: 
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where ∆y is the grid size; i=1, 2, …, N and 
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b)- Nonlinear waves 
 
By substituting relation (7) into equation (6), we can 
obtain a nonlinear equation as KdV-equation in the form 
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where parameters an and bn are determined by 
eigenfunctions φ and depend on the profile of U(y) (see 
appendix A for more detail). They are given by the 
following expression: 
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We now examine solutions of equation (10) in the form 
of nonlinear progressive waves (soliton) A=A(ζ+C1τ) 
where C1 is the phase velocity of the soliton which is a 
weak contribution to the principal phase velocity C0.  
 

Thus, the total velocity of the system is: 
 

C= C0 +є C1 
 
The solitary waves, solution of equation (10) is given by 
the following relation (see appendix B for more detail): 
 
A(ζ,τ) = A0Sech2[κ(ζ+C1τ)]   (13) 
 
Where A0=3C1/an is the nonlinear wave amplitude and 
κ=(C1/bn)1/2. Going back to the original variable, we 
finally have: 
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The product of the soliton amplitude and the square of its 
characteristic width are independent of the soliton phase 
velocity C1. It is however proportional to bn and inversely 
proportional to an or є and is expressed as: 
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Since an and bn are given by relation (11) and (12) 
respectively, the only known remaining is є. Figure 1 
shows some profiles of A(x,t)/A0 for different values of 
additional phase velocity C1 and є=0.01. For small C1, the 
figure shows that A(x,t) is nearly constant in space but 
takes the form of a pulse when this parameter becomes 
important. It is to be noticed that this parameter appears 
explicitly in the expression of ∆. Thus, when C1 is set to 
zero, ∆ is even larger and the wave becomes evanescent. 
But as C1 increases, e.g. C1=25m.s-1, the wave propagate 
symmetrically below the plan which passed trough the 
origin where x=Ct. Hence, we can say that the wave 
amplitude A0 grows with the additional phase velocity C1 
(Fig.2).This shows that the wave moves faster as its 
amplitude becomes larger. Fig.2 also shows that the 
soliton characteristic width ∆ decreases with C1. 
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Figure 1: Variations of A(x,t)/A0 in the propagation direction for different values of the additional wind velocity C1. 

 

 
Figure 2: Variations of Amplitude A0 (in solid line) and the width ∆ (in dash line) of the soliton as  

function of the additional wind velocity C1. 
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RESULTS AND DISCUSSIONS 
 
As we know, the solitary wave can be considered only 
when we define a coordinates system which moves with 
the wave at the velocity C, for the soliton to appear 
stationary. At the origin X=0, where X=x-Ct, the 
amplitude solitary wave is maximal. This is due to the 
fact that in the translation X=x-Ct of a non fixed distance 
Ct, the maximum wave amplitude, initially at x=0 stays 
until we are at X=0. 
 
Explicitly, the streamline depends on the soliton phase 
velocity C1 and on the form of the mean zonal wind U(y). 
We adopt in this work a basic flow with a horizontal 
shear as proposed by Rennick (1976) to describe the mid-
tropospheric jet in the West African Tropical zone. Based 
on observations the zonal wind can readily be represented 
in the functional form 
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where U0=20m/s is the maximal value of wind at the 
centre of jet (15°N), L the distance between the Equator 
(y=0) and 30°N latitude (y=L). This jet corresponds to the 
one seen in the atmosphere during summer at an altitude 
of around 3000 m in the Northern African Troposphere. 
The principal phase velocity is found to be 7.0 m/s 
(Burpee 1972, Mass 1979, Lenouo and Mkankam 2008). 
Before examining the influence of the additional wind 
velocity C1 in the present theory, let us first consider the 
case of linear waves. 
 
Analysis of linear effects 
 
In the linear theory case, the solution of equation (1) 
without the Jacobian term is sought in the normal mode: 
Ψ(x,y,t) = Y(y) exp[ik(x-Ct)]   
  (17) 

Where k is the zonal wavenumber, k=2π/λ, λ the zonal 
wavelength; Y(y) is the amplitude function which 
depends only on y and solution to the following equation: 
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This equation differ from equation (8) by the presence of 
the k2 term, but it still must verify the boundary 
conditions Y=0 at y=0 and y=L. The numerical solution 
of equation (18) is found as earlier by the GAUSS-
SEIDEL’s relaxation methods. 
 
Figure 3 illustrates the configurations of streamlines in 
the (X,y) plane obtained from this approximation. We 
note that the region of instability corresponds to the 
depression located between two anticyclonics stones, 
whose centres are along the principal axes of the jet. 
These streamlines have a quasi-concentric form, on the 
one hand symmetric respect of the plan passing X=0 and 
on the other hand to the jet axis. 
 
Nonlinear effects 
 
The streamlines in the case of the weakly nonlinear 
approximation are presented in figure 4 for different 
values of the additional wind velocity C1. We see that this 
velocity has a predominant role in the configuration of 
patterns in the domain under consideration. 
 
For C1=0.05 m.s-1 (Fig.4a), the patterns are essentially 
parallel to the zonal direction. Here, the perturbations are 
swamped by the mean flow and this explains why for 
weak value of C1, one can not observe the track of the 
wave. The air flow can be assimilated in this case to the 
displacement of a solid that presents an axis of 
symmetric. 
 

 

 
Figure 3: Configuration of streamlines in the case of linear approximation with C0=7m.s-1 
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Figure 4: Configuration of streamlines in the case of weakly nonlinear approximation with C0=7m.s-1 and є=0.01 for (a) C1=0.05m.s-1; (b) 

C1=0.5m.s-1; (c) C1=5m.s-1 and (d) C1=25m.s-1. 
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When the value of the parameter C1 is increased, the 
streamlines have a new configuration as shown in figure 
4b. We can deduce that the streamlines tend to unclose 
and stretch in the zonal direction isolating a depression 
centred at the region of maximum shear. The presence of 
a depression characterises the linear effects in the system. 
The fact that it is presently limited to the maximum 
disturbance region shows that these effects are in their 
early stages. This is why the little felt at the boundary of 
the domain, where only weak deformations of streamlines 
are observed. 
 
We can continue to increase the value of the phase 
velocity of the soliton in order to determine a value that 
for which the weakly nonlinear theory, leads to the same 
structure of linear waves as given by normal mode theory. 
Fig. 4c presents the streamlines for C1=5m.s-1. We note 
that all the patterns have concentric ovoidal form around 
the region of maximal instability region where the 
amplitude of the nonlinear wave is high. The difference 
with previous configurations is the fact that these patterns 
are zonally limited at X=±2100 km. Contrary to the 
streamline of Fig.3, the absence of anticyclonic zone here 
is due to the shape of the solitary wave amplitude A(x,t), 
obtained in the weak nonlinear approximation. Since our 
interest is to study the behaviour of wave around the jet, 
this result is not in contradiction with those obtained in 
the case of the linear approximation, but matter confirm 
that the maximum instability of the jet is located in 
depressionnary area. As also shown in the Fig.4c, this 
streamline can be superposed to those given by linear 
approximation (Fig.3). Hence the nonlinear wave is 
strongly governed by its linear effects. The first 
manifestation of the nonlinearity effects appear here, as 
noted by Kadomek (1979), the presence of a weak 
nonlinearity in the system can produce important effects 
capable to countering those due to the dispersion. 
According to the weakly nonlinear approximation, the 
soliton result from a balance between linear and nonlinear 
effects. In other term, it is for the value of C1 equal to 
5m.s-1 that the Rossby soliton may be observed. Its profile 
described by relation (14) is represented in Fig.1. 
 
As the parameter C1 increases, the nonlinear effects grow 
and the wave patterns are concentrated around the region 
where their amplitudes grow (Fig.4d). Here, the 
streamlines tend to stretch along the meridional direction 
while being confined in a small zonal domain. This shows 
that the nonlinear waves became strongly localised. 
 
For energy consideration, we admit the principle that the 
energy of the perturbation is proportional to the square of 
amplitude of the wave. So, for weak values of C1, the 
energy of the wave is dissipated in the space x-Ct. For 
C1=5 m.s-1, we found that the energy spread in the space 
x-Ct but in a reasonable interval compared to the purely 
linear case. However, Fig. 4c shows that nonlinearity, 
though weak, leads to live for the perturbation. 
 

CONCLUSION 
 
We have presented a nonlinear theory to study the 
evolution of perturbation due to the shear mean wind in 
the midtropospheric African jet. Its formulation is 
necessarily complicated, but we have carefully described 
all the stages which permit to obtain the final result, so 
that one can use, in some conditions, these results seem 
applicable to description of Rossby solitary waves. This 
requires the choice of additional wind speed C1. The use 
of Gardner and Murikawa (1965) transformations help us 
to introduce the phase velocity of the soliton C1. Its 
influence on the structure and the amplitude for 
streamline is important. Hence, the weakly nonlinear 
approximation through KdV theory explains how the 
solitary Rossby waves are propagated over West Africa. 
The weakly nonlinear theory leads to the same structure 
of linear waves as given by normal mode theory for C1=5 
m.s-1 where the presence of a weak nonlinearity in the 
system can produce important effects capable to 
countering those due to the dispersion. 
 
In the tropical zone, the cyclones are some time presented 
as the soliton. Its interesting to confront this theory with 
observations since the nonlinear amplitude function 
A(x,t) which is proportional to pressure, presents a 
maximum when the eastern wave propagation arrives at 
X=0. 
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APPENDIX 
 
Appendix A: Determination of parameter an and bn 
 

By substituting relation (7) in to equation (6), we obtain 
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and if we integrate this equation into meridional domain, we have: 
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Appendix B: solution of KdV-equation 
 

To solve the equation (10), we introduce the following Galilee transformation: 
s=ζ-C1τ        (B-1) 
In this new referential where the wave is propagated with the velocity C1, the equation (10) becomes: 
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The integration of (B-2) with respect to s gives 
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By multiplying this last equation by dA/ds and integrating, we have: 
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By setting Ã=anA/(3C1), we obtain the integral: 
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If we assume s0=0, (B-6) can be written as: 
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And at last: 
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