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ABSTRACT: This paper examines the transmission dynamics of HIV/AIDS with screening using 
non-linear incidence. A nonlinear mathematical model for the problem is proposed and analysed 
qualitatively using the stability theory of the differential equations. The results show that the 
disease free equilibrium is locally stable at threshold parameter less than unity and unstable at 
threshold parameter greater than unity. Globally, the disease free equilibrium is not stable due 
existence of forward bifurcation at threshold parameter equal to unity. However numerical results 
suggest that screening of unaware infectives has the effect of reducing the transmission dynamics of 
HIV/AIDS. Also, the effect of non-linear incidence parameters showed that transmission dynamics of 
HIV/AIDS will be lowered when infectives after becoming aware of their infection, do not take part 
in sexual interaction or use preventive measures to prevent the spreading of the infection. Numerical 
simulation of the model is implemented to investigate the sensitivity of certain key parameters on 
the transmission dynamics of HIV/AIDS with screening using non-linear incidence. 
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INTRODUCTION 
 

HIV/AIDS has become a global problem. Its infection 
which emerged in 1981 has become a famous sexual 
transmitted disease throughout the world. It has started 
getting attention as it has become a death sentence and 
fear to a lot of people mainly because there is no cure 
available till to date (Naresh, et al, 2008). 

 
HIV belongs to a class of viruses known as retroviruses, 
which contain ribonucleic acid (RNA) as their genetic 
material. After infecting a cell, HIV uses an enzyme called 
reverse transcriptase to convert its RNA into 
deoxyribonucleic acid (DNA) and then proceeds to 
replicate it using the cells machinery (Anderson and May 
R., 1991). 

 
Early detection of HIV through voluntary screening is 
important for intervention and for reducing HIV 
transmission. Early identification can provide the 
opportunity for timely treatment of infected individuals, 
thus reducing morbidity and mortality. Additionally, the 
decrease in risky behaviour resulting from HIV counselling 

and the reduction in infection due to the use of antiretroviral 
therapy (ART) can translate into a significant benefit from 
reduced HIV transmission (Tole et al, 2009). However, 
increasing the number of people who know their HIV status 
especially among most at risk populations through HIV 
testing and counselling is key to expanding access to HIV 
prevention, treatment and care. The fundamental principle 
of HIV testing is that it must be accompanied by basic pre- 
test information to enable the client make an informed and 
voluntary decision to be tested. 
 
The essential assumption in most classical compartmental 
epidemic models is that the individuals are homogeneously 
mixed and each individual has the same chance of getting 
infected when a small number of infectives are introduced 
to the susceptible populations (Yuan and Wang, 2009). 
The rate of new infections, known as the incidence rate, 
thus takes the bilinear form (mass action). In reality, 
populations may not be homogeneously mixed and thus it 
is more realistic to take heterogeneities in population mixing 
into consideration in modelling the spread of infectious 
diseases. 
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It has been suggested by several authors that the disease 
transmission process may have nonlinear incidence rate. 
This allows one to include behavioural changes and 
prevent unbounded contact rates (Liu et al, 1987; 
Moghadas and Gumel, 2002). A particular example of 

such an incidence rate is given by ( )1s kI Iα β+ , with 

, , , 0s k α β >  (Kyrychko and Blyuss, 2005). 
 
Tripathi et al. (2007) established and analyzed a 
mathematical model on the effect of screening of unaware 
infectives on the spread of HIV infection. However the 
integration of screening using non-linear incidence rates 
was not incorporated. In this paper, it is therefore 
intended to establish and analyze a model which will 
incorporate the aspect of non-linear incidence in assessing 
transmission dynamics of HIV/AIDS with screening. We 
thus study and analyze a deterministic model of 
Transmission Dynamics of HIV/AIDS with screening 
using non-linear incidence rates. The model assumes that 
susceptibles become infected via sexual contacts with 
both types of infectives and individuals will die due to 
disease after reaching the full blown AIDS stage. 
 

MODEL FORMULATION 
 
In modelling the disease dynamics, the population is 
subdivided into four population compartments depending 
on the HIV status of the individuals: The susceptibles or 
HIV negatives ( )S t , HIV positives or infectives who do 

not know whether they are infected 1( )I t , HIV positives 

or infectives who know that they are infected 2 ( )I t  and 

those with full blown AIDS ( )A t  (Tripathi et al, 2007). 
 
In formulating the model, the following assumptions are 
taken into consideration: 
 
(i) The mode of transmission is assumed to be via 

heterosexual contacts as this represents the single 
major primary mode of HIV infection globally, 
 

(ii) Susceptible individuals are considered to be 
heterogeneously mixed, and it is assumed that 
unaware and aware infectives will move to full 
blown AIDS at the rate δ , 
 

(iii) Unaware infectives can be transferred to aware 
infective class after screening by the rate θ . 
 

(iv) Unaware infectives and aware infectives can infect 

susceptibles at different rates 1β and 2β respectively, 
(v) Individuals will die due to disease after reaching the 

full blown AIDS stage by the rate α , 
 

(vi) The population under consideration comprise persons 
with at least 18 years of age, 

(vii) All parameters and variables of the model are 
considered to be positive. 

 
Taking into account of the above consideration, we then 
have the following transfer diagram of the model: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1:  A compartmental model for transmission dynamics of HIV/AIDS
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The model is thus governed by the following system of 
non linear ordinary differential equations: 

 1 1 2 2

1 1 2 2

I IdS N S S
dt N a I N a I

β βλ µ
 

= − + − + + 
 

 

( )1 1 1 2 2
1

1 1 2 2

dI I I S I
dt N a I N a I

β β θ δ µ
 

= + − + + + + 
      (1) 

 ( )2
1 2

dI I I
dt

θ δ µ= − +  

 ( )1 2
dA I I A
dt

δ δ α µ= + − +  

with nonnegative initial conditions 

 (0) 0S > , 1(0) 0I ≥ , 2 (0) 0I ≥ , (0) 0A >  

where 

 λ  is the recruitment rate, 

 α  is the disease (AIDS) related death rate, 

 µ  is the background mortality rate unrelated to 
HIV/AIDS, 

 θ  is the transfer rate from the asymptomatic to 
the symptomatic compartment, 

 δ  is the AIDS progression rate, 

 ( )1, 2i iβ =  are the per capital contact rates for 
susceptible with unaware infectives and aware 
infectives respectively, 

 ( )1, 2ia i =  are non-linear incidence parameters 
with respect to unaware and aware infectives 
respectively. 

 

The total population at any time t  is then given by 

 1 2( ) ( ) ( ) ( ) ( )N t S t I t I t A t= + + + . 

It is reasonable to assume that 2 1β β<  because on 
becoming aware of the infection, one may choose to use 
preventive measures and change behaviour. 

Since the variable A  of system (1) does not appear in the 
first three equations, in the subsequent analysis we can 
analyze qualitatively the following subsystem (Cai et al, 
2009): 

 1 1 2 2

1 1 2 2

I IdS N S S
dt N a I N a I

β βλ µ
 

= − + − + + 
 

 

( )1 1 1 2 2
1

1 1 2 2

dI I I S I
dt N a I N a I

β β θ δ µ
 

= + − + + + + 
      (2) 

 ( )2
1 2

dI I I
dt

θ δ µ= − + . 

In terms of the total population N , the subsystem model 
becomes 

 ( )1
1 1 2

dN N N I I
dt

λ µ µ= − − +  

 

( )1 1 1 2 2
1

1 1 2 2

dI I I S I
dt N a I N a I

β β θ δ µ
 

= + − + + + + 
      (3) 

 ( )2
1 2

dI I I
dt

θ δ µ= − +  

where 

 ( ) ( ) ( ) ( )1 1 2N t S t I t I t= + +  

The system (3) is well posed for ( )1 0 0N > , since 
solutions remain the non-negative initial conditions. 

 

Model analysis 
 

The nonlinear system in Equation (3) will be qualitatively 
analyzed so as to find the conditions for existence of 
stability disease free equilibrium points (Gomes at el, 
2004). Analysis of the model allows us to determine the 
impact of screening and non-linear incidence. Threshold 
condition(s) which govern elimination or persistence of 
HIV/AIDS transmission will be determined and studied. 
Also on finding the reproductive number 0R  one can 
determine if the disease become endemic in a population 
or not. 
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 Positivity of solutions 
 

It is necessary to prove that all solutions of system (3) 
with positive initial data will remain positive for all times 

0t > . This will be established by the following theorem. 

 

Theorem 1 

Let (0) 0S > , 1(0) 0I ≥ , 2 (0) 0I ≥ , . Then solutions 

( )S t , ( )1I t  and ( )2I t  of system (3) are positive 

0t∀ ≥ . 

Proof 

To prove theorem 1, we use all equations of the model 
(3). From the system (3), we obtain the inequality 
expression 

 ( )1
1

dI I
dt

θ δ µ≥ − + +  

which gives 

 ( ) ( ){ }1 exp 0I t C tθ δ µ≥ − + + > . 

As t →∞  we obtain ( )
1

0 1I t≤ ≤ . Hence all feasible 

solution of system (3) enter region ( ){ }1 2,  ,  ,S I IΓ = . 
Similar proofs can be established for the positivity of the 
other solution. 

 

Disease-free equilibrium point (DFE) and its stability 

The disease free equilibrium of the model (3) is obtained 
by setting  

 1 2 0.dI dIdS
dt dt dt

= = =    

     
  (4) 

At disease-free equilibrium, we have 

 1 2 0I I= =  

so that model (3) becomes 

 0N Sλ µ− =     
                  (5) 

Therefore, the disease-free equilibrium (DFE) denoted by 

0E  of the model (3) is given by 

 ( )0 ,  0,  0 ,  0,  0NE S λ
µ

 
= =  

 
, 0µ >  

      (6) 

 

Local stability of DFE 
 

The disease free equilibrium of the model (3) was given 
by 

 ( )0 ,  0,  0 ,  0,  0NE S λ
µ

 
= =  

 
 

       (7) 

In order to assess the local stability of the 0E  established 
by next generation method on the system (3), 
computation of basic reproduction number is essential. 
The basic reproduction number 0R  is defined as the 
effective number of secondary infections caused by 
typical infected individual during his entire period of 
infectiousness (Diekman et al, 1990). This definition is 
given for the models that represent spread of the infection 
in a population. It is obtained by taking the dominant 
eigenvalue (spectral radius) of  

 
( ) ( ) 1

0 0.
ii

j j

V EF E
x x

δδ
δ δ

−
           

  

       (8) 

where 

iF  is the rate of appearance of new infection in 
compartment i , 

iV + is the transfer of individuals into compartment i , 

iV − is the transfer of individuals out of compartment i  by 
all other means, 

0E  is the disease-free equilibrium. 

Consequently 

 

1 1 2 2
1

1 2 2
2

1
0

I S I S
f N a I N a I
f

β β +   + +=   
   

 

 

By linearization approach, the associated matrix at 
disease-free equilibrium is given by 
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( ) ( )

( ) ( )

1 1
0 0

1 2

2 2
0 0

1 2

f fE E
I I
f fE E
I I

δ δ
δ δ
δ δ
δ δ

 
 
 =
 
 
 

F    

      (9) 

which gives 

1 2

0 0

β λ β λ
µ µ

 
 =   
 

F  

and  

( )
( )

11

1 22

Iv
I Iv
θ δ µ
θ δ µ

 + + 
=    − + +   

 

Again by linearization we get 

( ) ( )

( ) ( )

1 1
0 0

1 2

2 2
0 0

1 2

v vE E
I I
v vE E
I I

δ δ
δ δ
δ δ
δ δ

 
 
 =
 
 
 

V

 

yielding 

0θ δ µ
θ δ µ

+ + 
=  − + 

V  

with 

( )( )

1

1 0

1
θ δ µ

θ
θ δ µ δ µ δ µ

−

 
 + + =
 
 + + + + 

V . 

Therefore 

( ) ( )( ) ( )
1 2 2

1

0 0

β λ β λθ β λ
µ θ δ µ µ θ δ µ δ µ µ δ µ−

 + + + + + + +=  
 
 

FV

 

The eigenvalues of 1−FV are 
 

( ) ( )( )
1 20,  β λ β λθ

µ θ δ µ µ θ δ µ δ µ
 

+  + + + + +   

The basic reproduction number for the model (3) with 
non-linear incidence denoted by 0R  is  

( )
( )( )
1 2

0R
β λ δ µ β λθ
µ θ δ µ δ µ

+ +
=

+ + +    (10)
 

Thus the disease free equilibrium of the transmission 
dynamics of HIV/AIDS model (3) with screening and 
non-linear incidence is locally asymptotically stable if 

0 1R <  and unstable if 0 1R > . This can be realized when 

one tries to assess the contribution of 1I  and 2I in terms 

of 1β  and 2β  respectively from equation (10) above. Let 
 
 

( )
1

0aR β λ
µ θ δ µ

=
+ +

 and 

( )( )
2

0bR β λθ
µ θ δ µ δ µ

=
+ + +

    (11) 
 
where 
 0 0 0a bR R R= + .    
                (12) 
It is clear from equations (11) that 0 0a bR R>  which 
implies that for large infective population, the unaware 
infectives 1I  have a significant contribution on the 
transmission of the infection and keep the disease 
endemic in the population via 1β  compared to aware 

infectives 2I  via 2β . 
 
Endemic equilibrium 
 
To find endemic equilibrium, denoted by 

( )* * *
1 1 2 1, ,E I I S , we set the right hand side of each 

equation of the system (3) equal to zero and express the 
other dependent variables in terms of *

1I  at equilibrium 
point and to obtain 

 ( )
*

* 1
2

II θ
δ µ

=
+

, 

Substituting *
2I and *S in the second equation of (3) at 

steady state, we obtain after some calculations that 
*
1I must satisfy the following equation 

 
 
 
 
 

 



36        AJST, Vol. 12, No. 2: August, 2013 

Transmission Dynamics of HIV/AIDS with Screening and Non-Linear Incidence 

  

 
 

( )
( ) ( ) ( )

* *
2 1 1 1

*2 * 2 2 2
1 1 2 2 1 1 2 1 2 1 1 1 1

* N a I N a I N
S

I a a a a I N a N a Na N N N

δ µ θ λ

µ θ β θ β θ µ θ µ δ µ δβ β µ µδ µ

   + + +   =
+ + + + + + + + +

  (12)

 

 
 

( ) ( )* * * *2 *
1 1 1 1 1 0I f I I AI BI C= + + =                      (13) 

where 

 2 2 2 2
1 2 1 2 2 1 1 2 1 2 1 2A a a a a a a a a aβ θ µ θ β θ µ θ δµ θ δβ θ= + + + + +   

  2 1 1 2 2 1a a aδβ θ µβ θ µβ θ+ + +  

 
2 2 2 3 2 2

2 2 1 1 1 1B N Na N a N N a Nβ θ µ θ β δ µ β µ δ µ= + + + + +  

  
2 2

2 1 1 1 1 2Na a N Na N N Naµ θ µ δθ µ θ β θ δ β µθ δµ θ+ + + + + +  

   
2

1 1 2 2 1 2 2 12 2a N N N N Na Naδ µ δβ µ δβ θ µβ θ θβ λ θβ λ+ + + + − −  

 
22 2 2 2 2 2 3 22C N N N N Nµ δ δ µ θ µ µ θµ δ= + + + +  

  
2 2 2

1 1 2N N Nβ λδ β λµ β θλ− − −  

 ( )
*

* 1 1
1 1 *

1 1

If I
N a I
β

=
+  

From equation (13) it can be seen that the root for *
1 0I =  corresponds to the DFE. The relationship ( )*

1 0f I =  

corresponds to the existence of multiple equilibria. The model also exhibits a forward bifurcation for some estimated 
parameters as seen in figure 2 below: 
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 Figure 2 Forward bifurcation in the ( )0 ,  R I  plane
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From the bifurcation figure, it can be seen that, the EE 
point being locally asymptotically stable, the disease can 
invade the population and transmission dynamics can 
persist if no purposive interventional measures are 
subjected to the population for the purpose of reducing 
the disease or if possible to eradicate it. Hence control of 
the epidemic depends on the enhancement of the 
behavioural changes among the subgroups of populations 
where the spreading of the disease occurs and optimum 
use of the available therapy for those infected. 
 
Global stability analysis 
 
The global stability analysis of the epidemic models is 
generally difficult to carry out. Consequently, the 
literature on global analysis of dynamical systems is very 
little. Busenberg and van den Driessche (1990) proposed 
an elegant technique for proving the non-existence of 
certain type of solutions such as periodic orbits, 
homoclinic orbits and polygons associated with SIR 
models. In this regard, using the Busenberg and van den 
Driessche technique it can be shown that the global 
stability analysis of model (3) is given as follows. We set 
 

( ) ( ) ( )
1 1 2 1 2, , : NS I I S I I

µ δ µ δ λ
µ µ µ

 + +
Γ = ∈Γ + + > 

   
( ) ( ) ( )*

1 2 1 2, , : NS I I S I I
µ δ µ δ λ
µ µ µ

 + +
Γ = ∈Γ + + = 

   

( ) ( ) ( )
2 1 2 1 2, , : NS I I S I I

µ δ µ δ λ
µ µ µ

 + +
Γ = ∈Γ + + < 

   
 

Thus *
1 2, , Γ Γ Γ are pair wise disjoint subsets of Γ , and 

*
1 2Γ=Γ ∪Γ ∪Γ . 

Let ( )1 1 2 1 2,  , ,N S I I S I I= + + ∈Γ . From system 

(3), the equation for the total population 1N satisfies 

( )1
1 1 2 .dN N N I I

dt
λ µ δ= − − +    

               (14) 
Consequently, in *

1 2, ,Γ Γ Γ , 

 we have 1 1 10,  0,  0
dN dN dN

dt dt dt
> = <  , respectively. It then 

follows that *Γ  is a positively invariant set in Γ . 
 
Numerical simulations 
 
In order to illustrate some of the analytical results of the 
study, numerous numerical simulations of the model (3) 
are carried out using a set of reasonable parameter values 
given in table 1 below and the following estimated initial 
conditions 1 2500,  250,  100S I I= = =   
 
However these parameters may (or may not) be 
biologically feasible. 

Figure 4.1 below shows variation of the 1,  S I  and 

2I with time when 0 0.7058R = , 
 
 
Table 1: Parameter values used in numerical simulations  

Parameter 
symbol 

Parameter 
value 1( )yr −  
 

Source 

λ  0.0100 
 

Estimated 

µ 0.0200 
 

Tripathi et al 
(2007) 

θ  0.6000 
 

Issa et al (2010) 

δ  0.0500 
 

Nyabadza et al 
(2010) 

α 1.0000 
 

Naresh et al 
(2009) 

1a  0.0900 
 

Estimated 

2a  0.0100 
 

Estimated 

1β  0.8600 
 

Estimated 

2β  0.1500 Tripathi et al 
(2007) 
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In Figure 4.1 it is seen that the number of susceptibles 
and unaware individuals decrease with time. Initially 
aware infective class increase with time and then reaches 
its equilibrium position. This is due to an increase in 
screening rate in which unaware individuals are moved to 
this class by the rate θ . This explains why unaware 
infectives decrease rapidly to zero, susceptibles decrease 
to a certain level but do not diminish to zero. This means 
that we can control the epidemic through promoting 
behavioural change and taking necessary precautions 
while having sexual interaction. 

 
As it can be seen in Figure 4.2, when screening rate 
becomes zero, the infectives who do not know that they 
are infected, continue maintaining sexual relationship in 
the community leading to persistance of the disease as far 
as 0 1R > . But when the rate of screening increases, 
there is a possibility of the disease to cease because 
individuals may use prenventive measures after knowing 
their HIV status. 
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Figure 4.1: General variation of population in different classes 

Figure 4.2 : Variation of unaware infectives with time for different values of θ
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Figure 4.3 reveals that if screening rate θ  is increased, 
aware (symptomatic) individuals also increase. 
Symptomatic infectives after knowing their HIV status 
may change their behaviour and continue surviving and 
thus reduce the AIDS population. It is therefore suggested 
that, to minimize the spread of the disease, the population 
under consideration should be encouraged to attend 
medical screening for the purpose of changing their 
behaviour and use preventive measures. 
 
Figures 4.4 (a) and 4.4(b) above show the role of contact 
rate 2β  of aware HIV infectives and susceptible 
respectively. It can be seen that as aware HIV infectives 
continue maintaining sexual interaction without exposing 
themselves, the susceptible population decrease rapidly 
leading to an increase in aware HIV infectives thus 
increasing transmission dynamics and hence disease 
persists in the population as the number of AIDS 
individuals increase. 
 
The effect of non-linear incidence parameter 1,2ia = , are 
observed in the following figures using the following 
estimated initial conditions 

11500,  700S I= = and 2 300I = . 
 

 Figure 4.5 assess the impact of non-linear incidence 
parameters against susceptibles. As it can be seen from 
the figure, the susceptibles decrease very slowly with 
time for a very high non-linear incidence rate. This means 
that if the infected individuals manage to change their 
behaviour and stop spreading the disease, the epidemic 
can go to extinction as long as very few susceptibles are 
infected. 
 
Figure 4.6 shows that infectives who are not aware of 
their status decrease rapidly whenever saturation effects 
are achieved, that is conditions under which the disease 
can persists in the population are well known to them. 
Intervention strategies are then used to infected 
individuals and behavioural changes are well achieved 
within the society. 
 
The rate of new infection plays a very important role in 
the investigation of disease dynamics. As seen in figure 
4.7, if aware infected individuals do not interact with 
others, that is, non-linear incidence rate is zero, the 
number of infected individuals increase rapidly with time 
hence increasing transmission dynamics. However, the 
speed of increasing changes if infected individuals 
interact with others and positive response to intervention 
programs are effective. 

 

Figure 4.3 : Variation of aware infectives with time for different values of θ .
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Figure 4.4(a) Variation of sucseptibles for different values of 2β

Figure 4.4(b): Variation of aware infectives for different values of 2β
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Figure 4.5: Variation of susceptible individuals for different values of 1,2ia =  

Figure 4.6: Variation of unaware infectives for different values of 1,2ia =  

Figure 4.7: Variation of aware infectives for different values of 1,2ia =  
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Thus, to maintain the spread of the epidemic at control, 
the detected infective individuals should be provided with 
thorough education with respect to their behavioural 
changes so as to either abstain from sexual interaction or 
use preventive measures to stop spreading the infection. 
 

DISCUSSION AND CONCLUSION 
 

In this paper, a non-linear mathematical model has been 
established to study the transmission dynamics of 
HIV/AIDS with screening and non-linear incidence. The 
main objective of the study was to assess the transmission 
dynamics of HIV/AIDS with screening using non-linear 
incidence. In the study it was assumed that there is no 
vertical transmission of the disease and mode of 
transmission is assumed to be via heterosexual contacts. 
Susceptibles are considered to be heterogeneously mixed 
and disease related death rate is assumed to occur to 
individuals after reaching the full-blown AIDS stage. 
Both qualitative and numerical analyses of the model 
were done. Qualitative analysis of the model involved 
computation of the basic reproduction number. The 
model showed that the disease free equilibrium is locally 
stable at threshold parameter less than unity and unstable 
at threshold parameter greater than unity, but globally the 
disease free equilibrium is not stable due existence of 
forward bifurcation at threshold parameter equal to unity. 
Also the model analysis showed the existence of unique 
endemic equilibrium, that is, locally stable under certain 
conditions when the threshold parameter exceeds unity 
due to existence of forward bifurcation at threshold 
parameter equal to unity. The endemic equilibrium is 
found to be globally stable under certain conditions. 
 
A numerical study of the model was performed to see the 
effects of certain key parameters on the spread of the 
disease. The analysis shows that the screening of unaware 
HIV infectives and treatment of screened HIV infectives 
have the effect of reducing the transmission of the 
disease. It is observed that when the screened infectives 
and treated infectives do not participate in the 
transmission of the infection, the AIDS population is 
significantly reduced in comparison to the case where 
there is no screening and treatment. In the absence of 
screening, the endemicity of the infection increases 
results in the increase of AIDS population. 
 
Based on the results of the study, it is concluded that the 
most effective approach that can be used to possibly 
reduce transmission dynamics of the disease and lower 
the incidence rate is emphasis on information campaign 
in order to reduce HIV prevalence. Furthermore people 
should be educated and be aware of preventive measures 
for the the spread of the disease to be under control. Thus, 
education campaign must reach the community at all 
social levels, especially in lower classes and to the high 

risk groups so as to increase the awareness about the 
disease and protection measures so as to enhance the 
control of the disease. The HIV/AIDS eradication 
remains a challenge to all parts of the world particularly 
in most developing countries. Hence, there is a need to 
strengthen the control strategies at hand as well as putting 
more emphasis on the behavioural changes among 
individuals. 
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