
34AJST, Vol. 7, No. 1: June, 2006

African Journal of Science and Technology (AJST)
Science and Engineering Series Vol. 7, No. 1, pp. 34 - 40

TABU SEARCH HEURISTIC FOR UNIVERSITY
COURSE TIMETABLING PROBLEM

Mushi, A. R.

Department of Mathematics, University of Dar es salaam, Box 35062, Tanzania

ABSTRACT:- In this study we have addressed the NP-Hard problem of academic course timetabling.
This is the problem of assigning resources such as lecturers, rooms and courses to a fixed time
period normally a week, while satisfying a number of problem-specific constraints. This paper
describes a Tabu Search algorithm that creates timetables by heuristically minimizing penalties
over infeasibilities. The algorithm is developed with special focus on the University of Dar-as-
salaam and compares the results with a previous manually generated timetable. It has been found
that, the Tabu Search technique gives better results given a careful selection of parameters.

INTRODUCTION

Many types of timetabling problems exist, but most of
them are NP-Hard (Cooper and Kingston, 1996) which
create difficulties in obtaining workable timetables that
meet all the user requirements. Timetabling problems can
be found in employee allocation, transport networks,
educational institutions and many industrial and sports
activities. Specifically in higher educational institutions,
the problem can be divided into course and examination
timetabling. Our interest is on the course timetabling
problem which essentially entails the assignment of
courses, rooms, students and lecturers to a fixed time
period, normally a working week, while satisfying a given
number of constraints. These constraints can be divided
into hard and soft. Hard constraints must be satisfied,
while soft constraints are to be satisfied as much as
possible. Timetabling problems are of much interest
because of their real life applications. We address the
course timetabling problem at the University of Dar es
salaam (UDSM). Many approaches have been suggested
in tackling this problem in other institutions including,
Mathematical Programming (Werra 1985, Daskalaki et al
2004), Constraint logic programming (Abdennadher and
Michael 1999, Panagiotis 1998), Graph Coloring (Miner et
al, 1995), and many heuristic algorithms such as genetic
algorithms (Corne et al 1993, Hiroaki et al 2004, Hitoshi et
al 2002, Vestergaard 1997), Simulated Annealing
(ElMohamed and Fox, 1998) and Tabu Search (White and

Xie 2001). White et al, 2004, applied Tabu Search with
longer term memory to a course timetabling problem,
however their application did not consider room allocation
in the optimization strategy. In our application, rooms are
also a scarce resource and will have to be included in the
optimization strategy. UDSM course timetabling involves
a number of specific constraints which are not common to
other Universities, which makes it an interesting problem
to tackle.

Course timetabling at UDSM

UDSM is under a transformation process which involves
among other issues, the expansion of student enrolment.
Currently there are approximately 16,000 students in four
campuses. Due to the expansion program, it was found
necessary to have a central timetable office at each campus
so as to optimize the use of the available resources. This
paper focuses on course timetabling at the main campus
which is the largest campus involving approximately 15,000
students. There are two semesters per academic year with
approximately 750 courses in each semester, 106 rooms
which include classrooms and laboratories, 650 lecturers,
and 15,000 students to be scheduled on a five days week.
Each day is made up of 13 one-hour time slots starting
from 7.00 a.m. to 8 p.m. giving a total of 65 timeslots for the
whole timetable period. No consideration is given to the
lunch breaks except Fridays which are minimally used to
allow for Muslims prayers.

AJST, Vol. 7, No. 1: June, 2006

Tabu Search Heuristic for University Course Timetabling Problem

35

The current practice is to use a ready-made software
package which provides a set of tools that the timetable
officer can use to simplify the work. The timetable is
essentially created manually, using a set of tools that can
help to detect collisions and suggest suitable timeslots.
This is a long process and a semester timetable takes an
average of three weeks to prepare given that all necessary
data have been entered into the system. The necessary
data includes the student registration details, lecturer-
course assignments from departments, course
requirements, and updated room capacities.

The main challenge is to automate the timetabling process
and come up with a quick and optimized timetable. Due to
unforeseen problems such as untimely data, it is not
possible to ignore the manual process all together; the
output of the automated system will however provide a
highly advanced solution which can easily be modified
by the manual systems afterwards. This automated system
can also act as a very important ‘what-if analysis’ tool to
administrators during decision making processes.

In this project, we use the following terminologies as
applied to UDSM timetabling;
• Course – A set of subject content to be taught to a

particular group of students.
• Event – An assignment of lecturer, room and a course

to a one hour time interval. A course can have several
events according to the number of hours set in the
curriculum.

• Lecture – A set of events of the same course, which
are required to be scheduled together in the same
room and the same time. A lecture can have one or
more events.

• Block – A lecture with more than one consecutive
events.

The hard constraints are as follows;
1. No student can attend more than one lecture at the

same time
2. No lecturer can teach more than one lecture at the

same time
3. No room can occupy more than one lecture at the

same time
4. No room can be assigned a lecture with more

students than its capacity
5. Some courses are scheduled in blocks of more than

one hour, these restrictions must be respected.

The soft constraints include;
1. As much as possible, minimize the use of early

morning (7.00 a.m.) lunch hours (13-14) and late
evening hours (18-20).

2. Specifically minimize the use of Friday 13-14 hour
and 18-20 hour slots to allow for Muslim prayers
and Adventists Sabbath day respectively.

3. Minimize continuous lectures/blocks of the same
course in a day. It is preferred to spread them over
the week as much as possible.

4. As much as possible, evening lectures starting from
18 to 20 hours should be assigned to rooms with
standby generators so as to minimize loss of lecture
hours due to frequent power cuts.

5. Minimize special preferences by lecturers, students
and University administration.

Tabu Search Algorithm

Tabu Search is a global heuristic technique which tries to
avoid falling into local optima by creating a special list
called tabu (Reeves, 1993). Any solution which has been
recently selected is put into a tabu list so that it becomes
‘taboo’ for a short period of time, depending on the length
of the list. This minimises the chance of cycling in the
same solution, and therefore create more chances of
improvement by moving into un-explored areas of the
search space. The work by Glover and Laguna 1997, gives
a comprehensive description of the technique (see also
Glover 1990). The algorithm applied in this project is as
follows;

Tabu Search {
Initialize parameters;
Get Initial Solution (So);
Converged = false;
While Not Converged {

Get a set of solutions S in neighborhood of
So(S∈ N(So))
Moved = false;
While Not Moved {
if S Not Tabu {

Given an objective function f, find σ = f(S)- f(So);
Push S into Tabu list
Moved = true;
if(σ < 0) Accept solution (So = S);
}

Next S ∈ N(So)
}

Converged = Test convergence;
}
return So as the best solution;
}

36AJST, Vol. 7, No. 1: June, 2006

A. R. MUSHI

Representation of the problem

Given a total of n events, a timetable solution is
represented as integer-valued matrix Snx3 of events such
that for each event e, row 0 represents the course, row 1 is
a timeslot and row 2 is a room assigned to event e. We
have chosen this representation because it allows free
representation of lectures of the same course without
binding them to the particular course. This is essential
since most courses have more than one lecture associated
with them.

A course is associated with the number of students
registered (course size), number of units and maximum
number of consecutive hours per each lecture (block size).
Units are used to determine the number of lecture hours
to be scheduled per each course. According to UDSM
curriculum, each course unit is equivalent to one lecture
hour per week. Thus, a 5 unit’s course with a maximum
block of 2 hours per lecture will require scheduling of two
2-hour block of lecture sessions and an additional 1-hour
lecture. This is represented by a matrix Cmx3 of courses,
where the 1st row stores size of the course, 2nd row keep
units and 3rd row is for the maximum block size. Rooms are
represented by an array whose index is room numbers
and the content stores the room sizes.

Given a set of m courses, we define a conflict matrix Mmxm
such that

Mij =




Otherwise
ji

0
 course with clashes course if 1

Courses i and j clashes if they have at least one student
or lecturer in common.

This is clearly a triangular matrix, which can be represented
by a 1-dimensional array where the element (i, j) in lower
triangle of M is mapped by a function

ijjnjih +−−=
2

)1)(2(),(for all i e” j in the array.

Checking for a possible student/lecturer collision between
courses i and j simply involves finding the value of h(i, j).

Cost function
Given a solution s, and a set of k constraints,

minimize ∑
=

=
k

i
ii sfsf

1

)()(λ ,

Each function fi represents one of the constraints and
each λ i is the weight given to the constraint depending on

its importance. The cost function includes both hard and
soft constraints, but higher penalties are assigned to hard
constraints to discourage them from selection.

Constraints

Noting the definition of solution s above, then;
se1 = timeslot allocated to event e
se0 = course allocated to event e
se2 = room allocated to event e

Furthermore;

Let E = set of all timetable events

Then the components which makes up the cost function
can be represented as follows;
i.) No student or lecturer can have two lectures at the

same time.

Note that, courses assigned to two events i and j
have a student/lecturer clash if they belong to the
same timeslot (i.e. si1 = sj1) and Mij = 1. Thus minimize

λ 1f1(s), where f1(s) =
∑

<
=∋∈

ji
SSEji

ij
ji

M
11),(, and λ 1 is a

sufficiently large value.

f1(s) is the total number of collisions associated with
the current solution and a feasible solution must have
f1(s) = 0.

ii.) No more than one event can be assigned to the same
room at the same timeslot. Two courses assigned to
events (i, j) have room clashes if they have been
scheduled in the same timeslot (i.e. si1=sj1) and belong
to the same room (i.e. s i2=s j2).

Let


 =

=
 Otherwise 0

 if 1 22 ji
ij

ss
a , and minimize λ2f2(s), where

f2(s) =
∑

<
=∋∈

ji
ssEji
ij

ji

a
11),(.

In this case λ2 is a sufficiently large value and f2(s)
gives the total number of room clashes in the current
solution. Obviously a feasible solution must have
f2(s) = 0.

iii.) No room can be assigned a course with more students
than the room capacity. Going through all events E

AJST, Vol. 7, No. 1: June, 2006

Tabu Search Heuristic for University Course Timetabling Problem

37

in the solution structure, we calculate the number of
times that a room has been assigned more students
than its capacity.

Let Cap (j) = Capacity of object j, where j is either a course
or a room.
Suppose i = seo, and r = se2, for an event e assigned to
course se0 and room s e2, and define



 >

=
Otherwise

rCapiCapif
bir 0

)()(1
, for some course i

and room r.

Then minimize λ3f3(s), where f3(s)=∑ ∑
∈e Eri

irb
),(

, and λ3 is a

sufficiently large value. f3(s) gives the total number of
courses which have been assigned to rooms with lower
capacity than the course requirement in the current
solution. As in previous cases, f3(s) = 0 is a necessary
condition for feasibility.
iv.) Maximize the distance between two events or block

of events of the same course.
Two events or block of events i and j belong to the same
course if si0 = sj0. Thus for each pair of events (i, j) which
belongs to the same course we would like to maximize
distance between their timeslots i.e. maximize si1-sj1 for i<j.
Since this is a minimization problem, we use the inverse
square function. Thus minimize λ4f4(s), where f4(s) =

∑
<

=∋∈ −
ji

ssEji jiji
ss

00),(
2

11)(
1

, and λ4 is significantly small

compared to values in the hard constraints. Again the
best possible value for f4(s) is 0.
v.) Minimal use of special times.

As much as possible, minimize the use of early
morning (7.00 a.m.) lunch hours (13-14) and evening
hours (18-20). Specifically we give higher penalty for
the Friday 13-14 for Muslim prayers and 18-19 for
Seventh day Adventists. These hours can easily be
enumerated. For instance, Monday slots are 1, 7, 12,
13, and Tuesday slots are 14, 20, 26.
Let H = set of all special timeslots and minimize; λ5f5(s),

where f5(s) = ∑
∈ He

es 1 . In this case, f5(s) gives the sum of all

timeslots for courses which have been assigned to the
less desired times. The weight given to λ5 differs in value
for different times in H. We give more weight to Friday
Muslim and Adventists prayers, followed by lunch time
hours. The best possible value of f5(s) is 0 i.e. when no
examination violates the special times.

vi.) Minimal use of rooms with no standby generator in
evenings.

Let G = set of all rooms fitted with standby generators and
V = set of all evening (18-19) timeslots of the week.

Furthermore, let


 ∉∧∈

=
Otherwise

GsVs ee
e 0

 if 1 21δ . Then

minimize λ6f6(s),

where; f6(s) = ∑
e

eδ , and λ6 is a weight value which is

sufficient to minimize the use of evening rooms with no
standby generators. The function f6(s) calculates the total
number of events which have violated the standby
generator constraint in the current solution s. When all
examinations satisfy this constraint, we expect f6(s) to have
a value of 0.

Initial timetable

It is important to have an easy and quick way of generating
an initial timetable. We simply assign each event to the
earliest possible feasible timeslot and earliest feasible room.
To help reduce the risk of developing an infeasible
solution, both courses and rooms are sorted in
descending order of their sizes. The initial solution is to
be feasible only by satisfying all hard constraints. Note
that, it is not necessary though that initial solution should
be completely feasible, since we penalize higher on hard
constraints in the cost function. An initial solution is
therefore preferred to be as feasible as possible, and any
infeasibility can be tolerated in anticipation of improvement
in the tabu search process.

Tabu variations

To get the best solution in a Tabu Search implementation,
some variations may be necessary for particular problems.
Many of these involves the types of possible move
structures, aspiration criteria, varying the tabu list size,
the use of longer memory, and modifications to the
stopping criteria. This algorithm considered a number of
important decisions on the original tabu search algorithm
which are; selection of the type of moves, aspiration
criteria, and stopping criteria.

Type of moves

Two types of moves have been tested on the algorithm.
The first type of moves is as follows;
1. Select a random event e in the set of all possible

events

38AJST, Vol. 7, No. 1: June, 2006

A. R. MUSHI

2. Select randomly a new timeslot t in the set of all
possible timeslots.

3. Assign the new timeslot t to the event at position e.
If e is a member of a block of events, assign sequential
timeslots including t to all members of the block.

This is identical to several moves described in literature
(Thompson and Dowsland 1996, Reeves 1999). The size
of the neighbourhood associated with this kind of move
is |N(s)| = |e| x (|t|-1), where |e| = total number of events, and
|t| = total number of timeslots.

The second type of moves is the swap of two event
courses as follows;
1. Select randomly two event e1, e2 in the set of all

possible events
2. Find whether it is possible to swap. It is possible to

swap events only if they have the same block size.
3. If possible to swap, then swap course numbers of the

two event blocks otherwise select another set of
events and repeat 1 until swap is successful.

The size of the neighbourhood associated with this kind
of move is |N(s)| = |e|x(|e|-1). This type of move affects
both timeslots and rooms since a course is associated
with both a timeslot and room number.

Aspiration criteria

Sometimes a candidate solution could be in the tabu list,
but would bring large improvement in the solution if
accepted. In this case an aspiration criterion is used, where
a candidate solution with large improvement in the solution
is accepted regardless of its tabu status. We accept any
solution which brings an improvement with a value of

100σ ≤ −

Stopping criteria

Fixed numbers of iterations have a disadvantage that, the
algorithm can run for a long time without improvement
just to complete the set number of iterations. We have
used a stopping criterion which considers the number of
iterations without a change in solution value. The algorithm
stops after running 1000 iterations without solution
change.

Summary of Results

The algorithm was tested on a course timetabling problem

Data Value
Students 8161
Lecturers 607
Rooms 106
Courses 729
Total events 1570
Total timeslots 65

previously solved by manual methods on the 2003/2004
academic year for semester 1. A program is written in C++
and tests run on a 2.4GHz Pentium 4 processor. Table 1
shows data for the specific problem used in the test runs;
Table 1: Data for the tested problem at UDSM

The total number of students does not include first years
since their number is not known at the time of timetable
preparation. A single dummy student is used instead, to
represent first years in each programme since they have
similar core courses per programme. First years normally
pick their convenient optional courses after the release of
the timetable in case of any collision. The total number of
events is the total number of timetable hours required for
all courses in the semester. Table 2 shows the weights
used in the cost function for each type of constraint.

Table 2: Weights used in the objective function

Weight Value Description
λ1 - λ3 100 Hard constraints
λ4 10 Distance between events

4 Friday Muslim prayers
4 Seventh day Adventists
2 Lunch times

λ5

1 Morning and evening times
λ6 3 Standby generators

These weights have been assigned according to our
experience on the user needs. For instance, Friday prayers
are considered to be more important than morning and
evening time constraints, while standby generators in the
evening rooms are less important compared to distance
between events. Table 3 shows the performance of the
algorithm for the two types of moves tested. The rows of

AJST, Vol. 7, No. 1: June, 2006

Tabu Search Heuristic for University Course Timetabling Problem

39

the table show the kind of constraints solved and their
performance in the final solution. Both values are the
average of performances for different randomly generated
values using different seeds in the random number
generator.

Table 3: Performance of the Algorithm

Initial cost: 3094.72
 Time move Course swap
Final Cost 1.74 1,390.80
Student/Lecturer Collisions 0 0
Room clashes 0 0
Room size 0 0
Event Distance 1.74 880
Special time penalties 0 510
Standby generators 0 0
Time (Seconds) 4,684.91 5,057.67
% Improvement 99% 55%

Clearly, time moves performs much better than course
moves with an improvement of 99% from initial solution
compared to 55% on the course swaps. This could stem
from the fact that course moves are too restrictive on the
possible set of moves, as these affects both time and room
allocations. Since the best possible value for each function
in the objective is zero, the best possible objective cost is
zero. The quality of our algorithm is clearly very good as
it closely approach the value of zero. The best solution
was found after 4,684.91 seconds which is about 1 hour
and 18 minutes. This time is quite tolerable in timetable

0

500

1000

1500

2000

2500

3000

3500

1 11 21 31 41 51 61 71 81 91 101

Iterations

C
os
t Time mov e

Course sw ap

Figure 1: Performance improvement by iterations

applications. Figure 1 shows the performance improvement
by iterations between the two types of moves. Clearly,
time moves performs much better and shows a faster
convergence to the best solution than course swaps.

We have also calculated the performance of the manual
solution as it was generated and used in 2003/2004 for
comparison with the automatically generated best
solution. Table 4 is a summary of the performances in
terms of constraint violations. Both cases were feasible
by satisfying all hard constraints.

Table 4: Manual vs Automatic Performances

99%71%% Improvement from Co

1.74912.75Total violation cost

00Standby generators

0659Special time penalties

1.74253.75Course event gaps

00Room size violations

00Room clashes

00Student/Lecturer
Collision

Violations
in automatic

Violations
in Manual

Constraints

99%71%% Improvement from Co

1.74912.75Total violation cost

00Standby generators

0659Special time penalties

1.74253.75Course event gaps

00Room size violations

00Room clashes

00Student/Lecturer
Collision

Violations
in automatic

Violations
in Manual

Constraints

40AJST, Vol. 7, No. 1: June, 2006

A. R. MUSHI

The performance of manual solution is much lower (71%)
compared to the automatically generated solution (99%).
This is caused by more violations of the soft constraints
in the manual than the automatic solution. The automatic
system therefore performs better than the manual system.

CONCLUSION

The aim of the project was to develop a heuristic algorithm
for the automatic generation of solution for the course
timetabling problem at UDSM using tabu search
technique. This has been achieved and demonstrated that
tabu search is a good approach for the course timetabling
problem at UDSM. Tabu search generally performs better
than manually generated solution. It has also been found
that the best move selection in this particular type of
problem is the move of time slots. In addition, the use of
aspiration and stopping criteria are important components
in the success of the algorithm. Also tabu search heuristics
are known to be dependent on careful selection of
parameters. Therefore, further fine tuning of parameters
might bring even better results.

REFERENCES

1. Abdennadher S, Michael M. (1999), University
Timetabling using Constraint Handling rule, Journal
of Applied Artificial Intelligence, Special issues on
Constraint Handling Rules.

2. Cooper T., Kingston J. (1996). The Complexity of
Timetable Construction Problems, Springer Lecture
Notes in Computer Science 1153, pages 283-295

3. Corne D., Fang H., Mellis C. (1993), Solving the
Modular Exam scheduling problem with Genetic
Algorithms, Proceedings of the sixth International
Conference of Industrial and Engineering
Applications of Artificial Intelligence and Expert
Systems, Edinburgh.

4. Daskalaki S., Birbas T., Housos E., (2004), An Integer
Programming formulation for a case study in
University timetabling, European Journal of
Operational Research, Vol. 153, pp. 117-135.

5. ElMohamed M., Fox G. (1998), A Comparison of
Annealing Techniques for Academic Course
Scheduling, Practice and Theory of Automated
Timetabling II, Selected Papers from the 2nd

International Conference, PATAT’97, Edmund Burke
and Mike Carter (Eds.), Lecture Notes in Computer
Science, Springer

6. Glover, F. (1990), Tabu Search: A tutorial, Interfaces
20 (4), pp 74-94.

7. Glover, F., Laguna, M. (1997), Tabu Search, Kluwer
Academic Publishers.

8. Hiroaki U., Daisuke O., Kenichi T., Tetsuhiro M.
(2004), Comparisons of Genetic Algorithms for
Timetabling Problems, Systems and Computers in
Japan, Vol. 35, No. 7, pp 691-701.

9. Hitoshi K., Kondo M., Sugimoto M., (2002), Solving
Timetabling Problems using Genetic Algorithms based
on minimizing conflict heuristics, in Giannakoglou K.,
Tsahalis, Periaux, Papailiou, Fogrty(Eds),
Evolutionary methods for design, Optimisation and
Control, CIMNE, Barcelona.

10. Miner S., ElMohamed S., Hon W. (1995), Optimisation
of Timetabling Solutions Using graph Colouring, In
Timetabling Techniques, North-East Parallel
Architecture Centre (NPAC).

11. Panagiotis S, Vigla E., Karaboyas F., (1998), Nearly
Optimum Timetable Construction through CLP and
Intelligent search, International Journal on Artificial
Intelligence Tools, Vol. 7, No. 4, pp. 415-442.

12. Reeves C. (1993), Modern Heuristic Techniques for
Combinatorial Problems, Blackwell Scientific
Publications, Oxford.

13. Reeves C. (1999). Landscapes. Operators and
Heuristics Search, Annals of Operations Research,
Vol. 86, pp. 473-490.

14. Thomspon J., Dowsland K. (1996). Variants of
Simulated Annealing for the Examinations
Timetabling Problem, Annals of Operations Research,
Vol. 63, pp. 105-128.

15. Vestergaard L., (1997), Solving Timetabling Problem
using Hybrid Genetic Algorithms, Software – Practice
and Experience, Vol. 27(10), 1121-1134.

16. Werra, D. (1985). An Introduction to Timetabling,
European Journal of Operational Research, 19, 151-
162

17. White G., B. Xie (2001), Examination Timetabling and
Tabu Search with longer term memory. In E. Burke
and W. Erben, (Eds.), The Practice and Theory of
Automated Timetabling III, Lecture Notes in
Computer Science 2079, pages 85-103, Springer-
Verlag.

18. White G.M., Xie S. B., Zonjic S. (2004), Using Tabu
Search with longer term memory and relaxation to
create examination timetables, European Journal of
Operations Research, vol. 153, 80-91.

