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ABSTRACT:- The problem of timing recovery in wireless mobile receiver systems is critical. This is
partly because timing recovery functions must follow rapid parameter changes inherent in mobile
systems and partly because both bandwidth and power must be conserved in low signal to noise
ratio communication channels. The ultimate goal is therefore to achieve a low bit error rate on the
recovered information for improving QoS provisioning to terminal mobile users. Traditional timing
recovery methods have over-relied on phase-locked loops for timing information adjustment. However,
associated schemes do not exploit code properties. This leads to synchronization difficulties in
digital receivers separated from transmitters by lossy channels. In this paper we present a soft timing
phase estimation algorithm for wireless mobile receivers in low signal to noise ratios.  In order to
develop a bandwidth and power efficient timing recovery method for wireless mobile receivers, a
raised cosine filter  and a multilevel phase shift keying modulation scheme are implemented and no
clock signals are transmitted to the receiver. In the proposed method, the receiver exploits the soft
decisions computed at each turbo decoding iteration to provide reliable estimates of a soft timing
signal, which in turn, improves the decoding time. The derived method, based on sequential
minimization techniques, approaches the theoretical Cramer-Rao bound with unbiased estimates
within a few iterations.

Key Words: discrete polyphase matched filters, maximum likelihood estimators, iterative turbo
receivers, log-MAP based soft signals, Sequential unconstrained extremization techniques, SOVA
based soft signals.

 

1. INTRODUCTION

In the recent past, most wireless mobile communication
systems have over-relied on classical forward error
correction (FEC) codes to either save bandwidth or reduce
power requirements [1]. However, classical FEC coding
schemes have limited coding gain. Wireless cellular mobile
receivers in a number of recent publications employ data-
aided (DA) synchronizers based on the Viterbi algorithm
for optimum signal detection to achieve accuracy,
reliability and fast speed convergence [2]. However, DA
timing phase recovery is bandwidth and power inefficient
since additional bandwidth and power is needed to
transmit clock signals to the receiver from the transmitter.

For quality of service (QoS) provisioning, the bandwidth
and power conservation, the speed of convergence and a
jitter free timing synchronization is desirable. In low signal
to noise ratio environments, achieving good bandwidth
and power transmission efficiencies as well as a jitter free
timing phase estimation is a challenging task [3]. This is
partly because of spectrally inefficient modulation schemes
and transmission filters which are currently being employed
in most 2nd generation wireless cellular mobile systems [4]
and partly because of computational complexities related
to the system mobility and timing recovery in low SNR
scenarios.  Fortunately, the impressive performance of
turbo codes has triggered the application of this powerful
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coding technique to digital communications in low SNR
environments [5]-[7]. Several receiver functions such as
the signal detection, equalization, demodulation and timing
recovery, are now possible with a combined turbo
decoding algorithm [8]-[10].

Most classical timing phase estimation schemes are
separated from the decoding process with little penalty:
This is in the sense that a timing recovery uses an
instantaneous decision device to provide tentative
decisions that are adequately reliable. The reliable
decisions are used to estimate the timing phase error [11].
Classical timing recovery methods also assume that the
neighbouring symbols are mutually independent at high
SNR and the associated theoretical framework is normally
based on least mean square (LMS) and traditional phase-
locked loops (PLL) [12]. Such a framework is susceptible
to local minima and often presents additional block
processing complexities which fail in low SNR conditions.
Due to operation in low SNR environments, combined
timing recovery and turbo decoding algorithms are
unavoidable in future wireless cellular mobile systems.
 
The results in [13, 14] have shown that classical soft-
input/soft-output (SISO) iterative detection/decoding
algorithms embed timing parameter estimation in the
decoding process. For instance in [14], combined iterative
decoding, equalization and timing error estimation are
performed with modified forward and backward recursions
in the SISO decoders using a per-survivor processing
algorithm [21]. Such methods are reliable but increase the
receiver ’s design complexity with vast memory
requirement. In order to reduce the complexity involved
in designing the decoder structure, soft information
provided at each iteration by a conventional turbo decoder
can be used to derive reliable information on timing error
estimation. This is the essence of the turbo principle
synchronization technique [7] [22]. Though recent
research focused the attention on turbo synchronization
method [9, 10], achieving a fast converging timing recovery
process has been under investigation,. timing phase
vector representations for accurate lower bound variance
estimation has been given less research attention. In order
to improve on QoS provisioning in mobile networks, a
bandwidth and power efficient based timing recovery
method must be investigated.
 
The objective of this paper is to develop a soft timing
recovery method for wireless mobile receivers. The
proposed soft timing recovery method incorporates both
bandwidth and power efficient communication systems
for QoS applications in mobile networks. This goal is
achieved by combining discrete polyphase matched

filtering, a soft iterative demapper and turbo decoder and
a modified Newton-Raphson method. The derived timing
phase estimator variance is investigated for the Cramer-
Rao lower bound.

This paper is organized as follows. Section 1 provided a
broad overview of the problem area, related work and
results achieved by other researchers. In section 2, the
base- band turbo system model is presented. In section 3,
an improved soft timing recovery framework is proposed.
Simulation tests and results are presented in sections 4
and 5. Conclusions are presented in section 6.

2.  MOBILE  COMMUNICATION  SYSTEM  MODEL
 
2.1 The Transmitter System Model
 
In section 2.1, the base band equivalent of a cellular
transmitter model is shown in Figure 1. It consists of
vocoder, turbo encoder, bit interleaved coded multilevel
phase shift modulator and square root raised cosine filter.
The vocoder generates 260 bits of compressed data every
20 ms at a bit rate of 13kbps. The generated bits are passed
on to the turbo encoder in which redundancy bits are
added to check and control channel errors. The considered
turbo encoder comprises two recursive systematic
convolutional encoders (RSC), which are separated with
a pseudo-random -bits interleaver (INT) matrix denoted
as ππ . The interleaver matrix can be assumed to be an
identity matrix without loss of accuracy and also for
computational simplicity reasons. Redundant bits are then
appended to the wireless cellular mobile information bit
sequence according to the information sequence’s
sensitivity to channels errors [2]. The encoder output is
finally punctured to a net code rate of  ½, giving an overall
bit rate of about 45.6kbps. This provides for an increase
in the full bit rate of 22.8kbps standard with classical GSM/
GPRS/EDGE coding techniques. The GSM/GPRS/EDGE
is a time division multiplexing access (TDMA) system
thus time bursts of 0.577ms duration are transmitted via
radio channel. Several time bursts are usually specified in
TDMA mobile networks. Examples include normal burst,
a/an frequency correction burst, a/an synchronization
burst, a/an access burst etc. For instance a normal time
burst has 148 bits and is contained in one time slot. In
principle, every time slot contains 156.25 bits’ duration
including 8.25 bits’ duration for guard band reservation.
This time slot is assigned a single user and can be
multiplexed among eight different users through TDMA
at a specific carrier frequency.  The most important  point
to note here is that in TDMA normal burst, about 26 bit
sequence is conveyed for receiver equalization and other
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estimation functions such as timing recovery. However,
there are bandwidth and power costs involved in such
schemes. In order to mitigate bandwidth and power
constraints and still transmit the same information, a
multilevel phase shift modulation proceeded by a nearly
zero intersymbol interference pulse shaped filter must
be considered.  The multilevel phase shift keying mapper
would give grouped symbols from the interleaved bit
sequence in accordance with the expression [4] [12] and
[15],

 { }
1

.2 1,..., ,
Q

g q
k q

q
a x q Q

=

= ∀ ∈∑ and ∀ ∈x c       (1)

where Q  is the number of coded bits contained in a
symbol, x  is the sequence of multilevel modulation

scheme consisting of Q  bits each and c  is the sequence
of coded bits. The grouping function in (1) is followed by
the bit to symbol mapping represented as,

( )g
k ka aµ= (2)

where ka  and ,µ ,µ  are respectively a thk complex symbol
and a labelling mapping function.

The base band modulated (mapped) symbols are
constrained into channel waveform filter for definite symbol
rate. The time domain and frequency domain raised cosine
filter characteristics are depicted in Figures 2a and 2b.
The raised cosine pulse shaping filter also provides zero

tter base-band system model

Figure 2: Raised cosine filter characteristics.  a) Time domain.   b) Frequency domain

Figure 1: Transmitter base-band system model
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intersymbol interference and an adjustable excess
bandwidth known as roll-off parameter. The roll-off
parameter allows for trade-off between bandwidth and time
domain wave-shape.

Clearly, as the roll-off parameter alpha in Figure 2 varies
from 0 to 1, there is more time-domain tail suppression at
the cost of the increased bandwidth.

In a multipath radio channel, such as the case for GSM/
GPRS/EDGE networks, severe intersymbol inference may
be reduced by choosing about 35% excess bandwidth
parameter. The pulse shaped transmit filter output is
modelled in base band formalism as

( ) ( )k
k

s t a g t kT
∞

=−∞

= −∑ (3)

where ( )g t  is the filter impulse response in time domain

and T  is the symbol period k−∞ ≤ ≤ ∞ , observed over
a large interval.
 
2.2 The Channel Model
 
Since the wireless terrestrial radio propagation of mobile
traffic suffers from delays and attenuations caused by
multipath fading, in section 2.2 the multipath fading is
modelled by a linear time-variant filter characterized by
the complex-valued low-pass equivalent channel impulse
response (CIR) [18, 19],

( ) ( ) ( ) ( )( ).
1

N j tnh t t e t tnc n
n

φα δ τ= −
=
∑ (4)

Here, N is the number of propagation paths modelled as

filter taps, ( )n tα is the amplitude, ( )n tφ  is the phase,

and ( )n tτ  is the timing phase shift, respectively of the

mobile signal passing through an thn radio channel path.

If we hypothesize that in TDMA ( )n tτ  is separated from

( ) ( )1n tτ + at symbol rate then the following statistical

definitions can be assumed:

,d cT T T≤ ≤ (5)

where dT  is the delay spread which must satisfy

( ) ( ) ( )1
, 1,
sup n dn

n n t
t t Tτ τ +

+

 − ≤  (6)

and cT  is the coherence time.

This delay spread described by (6) measures in part the
radio channel scattering effects hence a contribution to
multipath fading. The multipath fading is modelled as
Rayleigh distribution.

On the other hand cT  must satisfy

( ) ( )
, , ;
sup 1,c n n

s n t s t
f t sτ τ

−
− <<   (7)

where cf  is the carrier frequency of the pass-band signal,

( )n tτ  and ( )n sτ  are the timing offsets of the thn path

observed at different times, t  and s  respectively. The
coherence time is thus, the period over which the pass-
band cellular signal essentially remains time invariant.
These statistical definitions presented in (5), (6) and (7)
allow the continuously time varying signal to be assumed
as an ergodic and piecewise-constant stochastic process.
After the above analysis, the transmitted signal in (3) is
convolved with the CIR in (4) and transmitted through an
additive white Gaussian noise for atmospherically
generated interferences.

2.3 The Receiver System Model

In section 2.3, the received signal vector r  assumes the
form

( ) ( ) ( )( ) ( ) ( )
1

.n
N

j t
n n

n
r t t s t t e n tφα τ

=

= − +∑ (8)

Here, ( )n t is the time-variant additive white Gaussian

noise with independent and identical distribution and

variance is 0 / 2.N

( ) ( ) ( ) ( )( ) ( )
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N K

j t
n k n

n k
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−

= =

  = − − +   
∑ ∑

(9)
The goal here is to estimate the timing offsets. The other
nuisance unknown parameters can be grouped together
as followings:

( ) ( ) ( )( ) ( )
1

1 0

N K

n k k
n k

r t A t a g t kT t n tτ
−

= =

 = − − + 
 

∑ ∑
(10)
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where ( ) ( ) ( )nj t
n nA t t e φα= , is treated as a nuisance

parameter in the estimation of the timing delay. The

notation ( ){ }k tτ is a set of time varying thk symbol

timing offset parameter to be estimated over all multipath
channels. In order to collect sufficient statistics for a
decoding module, the received signal is first low pass

filtered by anti-aliasing filter then sampled at a rate of 1/ sT ,

where ( )/ 1sT T α< + satisfying the Nyquist sampling

theorem:

2 /sf T≥  where 1/s sf T=  When L  samples are taken
over each symbol, the total samples of the observation
vector r  will be defined by

( )

( )( ) ( )
1

0

l s

LK

k s k s s
k

r r lT

a g lT kT lT n lTτ
−

=

≅

= − − +∑          (12)

2.4 Discrete Matched filtering for fast timing recovery

In order to achieve the required timing resolution of
M L×  samples per symbol from timing phase-corrected
complex base band signal given in (12), an up sampling of

( )sr lT by a factor of  M  to obtain ( )/sr lT M  must

be performed in section 2.4.  The resulting signal is filtered
via a discrete matched root raised cosine filter whose
output yields [21, 22],

( ) ( )( ) ( )
1

0

/ / / .
MLK

s s s
k

y lT M r l k T M g kT M
−

=

= −∑
(13)

The matched filter output is down sampled to produce L
samples per symbol where one of the samples is as close

to ( )s ky lT τ+  as the resolution allows. The polyphase

decomposition of  ( )/sr lT M  yields only thM  nonzero

values of the FIR filter,

( ) ( ) 0, ,2 ,...,
/

otherwise0,
s

s

l M Mr lT
r lT M

=
= 


           (14)

At initial timing instant, these nonzero values in (14)

coincide with the filter coefficients ( )0g , ( )sg MT ,

( )2 sg MT ...  and the matched filter output may be

expressed as

( ) ( )( ) ( )
1

0

.
LK

s s s
i

y lT r l i T g iT
−

=

= −∑                         (15)

At the next timing instant, the nonzero values in (15)

coincide with the filter coefficients ( )1g ,  ( )1sg MT + ,

( )2 1 ,sg MT +  and the matched filter output is

expressed as

( )( ) ( )( ) ( )( )
1

0
1/ 1/ .

LK

s s s
i

y l M T r l i T g i M T
−

=

− = − +∑
(16)

At the thm  timing instant, the nonzero values in (16)

coincide with the coefficients ( )g m , ( )sg MT m+ ,

( )2 sg MT m+  , . . .

( )( )
( )( ) ( )( )

1

0

/

/ .

s

LK

s s
i

y l m M T

r l i T g i m M T
−

=

−

= − +∑              (17)

From the equations (15) through (17), M  filter-banks have

simultaneously input data samples ( )sr lT  and the

desired timing phase shift of the matched filter output is
selected by connecting the matched filter output to
appropriate filter in the filter-bank. However, the timing
phase shift is unknown and soft decision iterative turbo
receiver is employed to generate reliable estimates [6] [10].
In this sequel, the maximum likelihood estimation of the
desired phase shift from SISO exchanges will be derived.

3. SOFT TIMING RECOVERY FOR MOBILE
SYSTEMS

In this section we show how decoder functions can be
improved with timing recovery with little modifications.
We further introduce the concepts of a low variance design
for a soft timing recovery in digital mobile receivers.

3.1 Estimating timing information

The problem addressed in section 3.1 is the estimation of

[ ]0 1 1, ,... T
Kτ τ τ −=τ subject to a trial [ ]0 1 1, ,... T

Kτ τ τ −=τ  .
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This estimate may be seen as the solution of the
maximization problem

( )ˆ  argmax Λ=τ τ
τ               (18)

Here,

( ) ( ) ln |pΛ =τ y τ               (19)
and

( ) ( )( )| | , ,p p d= ∫y τ a y a τ a
a               (20)

where, ( )p a is a prior probability mass function. The
logarithmic function of second factor of the integrand in
(20) is defined as

( ) ( )
1

ln | ,
0

N
p a y kTk k

k
τ

− ∗= ℜ +
=

 
∑ 

 
y a τ                           (21)

where ( )ky kT τ+ corresponds to a single stage

matched filter output evaluated at  .kkT τ+  In order to
solve for (18), we take the derivative of (19) with respect
to τ  and we equate to zero, namely

( )
( ) ( )

( ) ( )

ln |

| ,
ln | , .

|

p

p p
p d

p

∂ =
∂

∂= =
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a

y τ
τ

a y a τ
y a τ a 0

y τ τ
 (22)

We notice that the evaluation of (22) requires the
knowledge of the priori probabilities, ( )p a of the
transmitted symbols at the receiver. However, in this
problem, we assume that such information can only be
derived from posteriori information. If we invoke Baye’s
rule in the first factor of the integrand in (22), we have a
posteriori conditional probability density function (PDF)
of the transmitted vector a . We can then represent it as

( ) ( )
( ) ( )| ,

| , .
|

p p
p

p
=

a y a τ
a y τ

y τ              (23)

Since vector r from (8), is a function of vector n but n  is
not a function of τ  , we can ignore n  in the following
definition without loss of generality. We had indicated
that the interleaving matrix is an identity matrix in section
2A, hence (23) becomes

( ) ( )( ) ( ) 2

0

| , expp f
N

 − = − = −
  

n

y H τ a
y a τ y H τ a

(24)

The maximum likelihood estimation problem in (18) now
becomes an expectation problem given as follows

( )
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a

y a τ y τ 0a τ

             (25)

Since τ appears in both factors of the expectation problem
in (25), the solution of (25) is non-trivial. According to
[17], an iterative approach that generates a set of values

for  { }1 iˆ ˆ ˆ ˆ. . . . . . nτ τ τ=τ is a possible solution. It is

possible to prove that in the limit as n →∞ the sequence
of the timing estimate converges to a desired solution
[19]. However, the proof is analytically complex.
Fortunately, an iterative receiver employing turbo codes
will help in achieving faster convergence [28].

 Since a fast converging estimator is required for our
problem, the modified Newton-Raphson method in [17] is
applied to (25) to give a numerical solution presented in
[32],
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The choice of sign ± in (26) is described by the
eigenvectors of F for a non-singular matrix solution as
discussed in [32].

The notation ,kη
∗ in (28) defines a priori mean information

complex conjugate variable of the transmitted symbol .ka

The a priori mean information is defined as

( ) ( )( )1 2 1 2, ,..., , ,...,Q Q
k k k k k k k k ka

a x x x P a x x xη∗ ∗
∈Β

= ∑
(29)

where ( )1 2, ,..., Q
k k kx x x  are the Q coded bits in a multilevel

symbol modulation scheme [32].  According to [29], the
soft information demapper computes posteriori
probabilities from bit priori probabilities in low SNR
environments. This is performed as follows,

( ) ( ) ( ) ( )
( )

1 2 1 2, ,..., ... ,Q Q
k k k k k k

Q
q
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q

P x x x P x P x P x

P x

≈

∆= ∏       (30)

The soft demapper also computes soft information defined
by the log-likelihood ratio (LLR) on each a posteriori
probability in order to achieve a wider dynamic range of
decision levels as follows:

( ) ( ) ( )12 12 12| ; | ; ;q q q
k k kx p x e x iλ λ λ= +y y        (31)

Here,
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As shown in [8], the log-maximum a posteriori (Log-MAP)
decoding algorithm of (32) becomes,
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On the other hand, the Viterbi algorithm [30] computes
the SISO from (32), as follows
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             (34)

where 04 /free sd E Nα =  and ∆ are the two path metric
differences in the trellis structure presented in [30].

The a posteriori mean can now be computed from the soft
information,

( )| , ,
m

k m k m kP a
ϑ

η ϑ ϑ τ
∈Β

= =∑ y              (35)

where
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k m k k
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− =
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The a priori mean information in (29) is now approximated
as a posteriori mean information in (35). Equations 33 and
34 present the log-MAP and the soft output Viterbi
algorithm (SOVA) based timing recovery methods,
respectively. The log-MAP and SOVA based timing
recovery equations are substituted in (35) for soft mean
information. The soft mean information generates the soft
timing phase signals as depicted in (26). This is achieved
several iterations by the soft demapper-decoder system.
The reliable soft timing phase signals are attained after
the system has converged. Soft timing phases estimated
in (26) update the discrete polyphase matched filter.

3.2 Updating  timing phase estimates

In section 3.2, we begin the iteration by assuming that the

previous, ( )1 thi − timing offset estimate is zero. The
estimated timing offset finally updates the early and late
samples of the discrete polyphase matched filter outputs
and an optimal synchronization is attained when the early
and late samples become equal [22, 25]. The new timing
estimate will be based on the discrete polyphase matched

filter output  ( ) 1ˆ| is kT
y s

τ −= +  as shown in Figure 3 and the

mean of posterior probabilities ( )1i
kη
− from the previous

iteration.  This phenomenon can be seen in
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In low SNR and assuming a single filter stage case as
given in [33], the expression in (37) is well approximated
by
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and it easy to show that the second derivative in (37) is
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where τ̂∆ is an adjustable advance/delay parameter that

satisfies ˆ0 / 2.Tτ< ∆ <

3.3 Lower Bound on timing error variance

In many cases, the statistics of the observation depend
not only on the vector parameter to be estimated, but also
on a nuisance vector parameter we do not want to estimate
[28]. In order to assess the variance performance of
unknown parameter to be estimated, a Cramer-Rao bound
(CRB) on an error variance of any unbiased estimate is
normally derived [23, 26, 27]. The CRB based synchronizer
has been applied in linearly modulated signals [28].
However, timing recovery in multilevel GSM modulation
schemes with unknown data symbols as nuisance
parameters is still a challenging task.  This task is addressed
in this subsection.

Our goal is to derive a lower bound on timing estimation
error variance given a time-varying timing offset. We firstly
model the timing offset as a random walk as in [33],
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Figure 3: The iterative receiver structure
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Here, ( )20,k ωω σ⊂ Ν are i. i. d. of thk  symbol and 2
ωσ

determines the severity of the timing jitter. The random
walk is chosen because of its simplicity and because of
its ability to model a wide range of mobile channels. We

assume a perfect acquisition by setting 1 0.τ− =  In [18],
the CRB on the timing estimation error variance for a
generic channel was presented.  It was shown that the
CRB is a lower bound on the estimation error variance of
unbiased estimators of deterministic parameters

[ ], .TT τ= ∆τ  In [19], the CRB is given by

( ) ( )2ˆ ,i i iCRBτ τ Ε − ≥ r τ              (41)

where ( )iCRB τ is the thi  diagonal element of the

inverse of the Fisher information matrix ( )J τ . The

( ), thi j element of  ( )J τ is given by

( ) ( )( )
2

ln | .
i j

p
τ τ

 ∂= Ε − ∂ ∂  
rJ τ r τ              (42)

The probability density ( )|p r τ of r , corresponding to

a given value of  τ , is called the likelihood function of τ .

The expectation [ ].Εr is with respect to ( )|p r τ .

Equivalently (42) can be re-written as
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From a detailed proof in [20], we obtain Cramer-Rao bound
as
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      (44)

where σ is the standard deviation of noise and other
parameters retaining their definitions as we have given
earlier.

4.  SIMULATION TESTS

To verify the performance of our turbo aided timing
recovery scheme, we simulated a base band
communication system transmitting an 8-constellation
alphabet for phase shift keying (8-PSK) symbols in
MATLAB. We considered a convolutional turbo code
generator polynomial (23, 33) with punctured net rate of a
½. The interleaver length was set to block sizes of 456 bits
and a square root raised cosine signalling pulse with roll-
off of 0.35 and 31 filter taps was used.  1000 blocks were
transmitted over a Rician distributed flat fading channel
with additive white Gaussian noise (AWGN). The received
signal was passed through an anti-aliasing filter and then
sampled at an incommensurate rate but higher than the
baud rate or the symbol rate. A polyphase matched
filtering structure was embedded at the input of the soft
demapper and the turbo decoder to help with fast iterative
soft timing phase estimation. In order to investigate for
bit error rate (BER) and radio block error rate (BLER)
performance, a Monte Carlo simulation methodology [31]
was performed for GSM communication networks.

5.  RESULTS

In Figure 4, the transmitted symbol is compared to the
output of the received discrete matched filter output. Early,
late and on time samples per filter stage are taken from the
discrete polyphase matched filter bank.

As the symbol sequences enter the filter stages with the
timing phase shifts, the filter output samples are adjusted
based on the soft timing information from the iterative
receiver. For instance, in Figure 4 the received signal is
shifted to the right with a length of samples equal to the
soft timing phase generated from the estimator system.
Further samples per symbol are taken in the next turbo
iteration to compute new timing phase estimates. The new
timing phase estimates adjust the received symbol
sequence and the process repeats for the entire received
symbol sequence.

Results in Figure 5 reveal a typical radio channel BER
performance for wireless mobile networks. For simplicity
in radio channel modelling, multipath flat fading is
described by a Rician K -factor denoted by

2 2
0/ 2K β σ= .  Here, β  and 2

0σ  are the amplitude of
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Figure 4: Matched filter signal for timing recovery scheme

Figure 5: Wireless cellular radio channel performance
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the specular path component (dominant line of sight) and
variance of Gaussian random channel samples with zero-
means, respectively. For instance a zero value of K  means
that there is no line of sight (LOS) between the transmitter
and the receiver. In such scenarios, a Rician channel
distribution is best modelled by a Rayleigh channel
distribution. The Rayleigh channel distribution reveals
severe channel conditions. The BER performance of
synchronizers in Figure 5 is the worst when  equal to
negative infinity. It is necessary that wireless mobile
receivers operating at a low signal to noise ratio i.e. at a
low, require turbo codes to generate reliable soft timing
estimates after many turbo iterations. This ensures a
guaranteed QoS provisioning to end users at the expense
of latency. In voice based receivers, latency is highly
undesirable. Thus the generation of soft timing estimates
is a trade off between number of turbo iterations and
perfect synchronization.

The bit error rate (BER) performance of an iterative soft
timing recovery based on the logarithmic maximum

likelihood a posteriori (Log-MAP) information is depicted
in Figure 6. The soft information based on a combined
maximum likelihood and iterative turbo timing recovery
method outperforms conventional methods. The results
in Figure 6 reveal desirable BER performances: steady
waterfall and minimum error floor region within a short
span of a SNR at low measurements, i.e. 1-2.5dB. The
proposed method yields low BER compared to a data-
aided Viterbi detection based synchronizer and a classical
early-late synchronizer. This is explained by the fact that
in low SNR scenarios, data aided and early-late gate
methods assume that neighbouring symbols of the
received signal are statistically independent and thus the
received signal is deterministic a priori. However, the
assumption fails in severe channel distortions. The
receiver must therefore resort to blind timing recovery
methods. In the proposed method, the unknown a priori
bit probabilities are approximated by posteriori
computations.

Figure 6: Log-MAP based soft timing recovery method for BER
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In Figure 7 the block error rate (BLER) performance of an
iterative soft timing recovery based on the Log-MAP
information is shown. The proposed method outperforms
conventional methods. In the log-MAP based timing
recovery scheme, the BER and BLER perform well at low
SNR, which is highly desirable for wireless cellular mobile
systems. In recent publications data-aided synchronizers
are known to be more reliable than the classical decision-
directed synchronizers, but the BER and BLER
performance indicated by Figures 6 and 7 respectively,
show that the proposed timing recovery scheme yields a
better performance. This is because of stochastic channel
conditions and low SNR environments that make it difficult
for the receiver to extract correct clock signals from the
received sequence. Unlike classical decision-directed
timing recovery methods that give decisions from the
limited dynamic probability range i.e. probability value

range from 0 to 1, the proposed method has a larger
dynamic range for making decisions i.e. soft information
are represented with  probability ratios. Probability ratios
range from 0 to infinity.

The results in Figure 8 show the soft output Viterbi
algorithm (SOVA) BER performance compared to
conventional methods. Like in log-MAP based
synchronizers, the BER performance indicates desirable
start-up, waterfall and error regions. The results indicate
that the proposed method outperforms the conventional
methods and the explanations motivating this observation
are similar to the discussions for Figure 6. However, the
data-aided timing recovery method performed closer to
the proposed SOVA method. This can be explained by the
fact that SOVA based turbo structures yield soft timing
signals from signal sequences similar to simple Viterbi

Figure 7: Log-MAP based soft timing recovery method for BLER
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Figure 8: SOVA based soft timing recovery method for BER

based detectors. However, due to turbo codes, the
proposed timing recovery in SOVA performs well in low
SNR channels compared to the classical forward error
correction codes in conventional methods.

The SOVA based timing recovery BLER performance
compared to conventional methods are depicted in Figure
9. The proposed method provides lower BLER performance
than conventional methods. The early-gate gate timing
recovery yields the worst BLER performance in low SNR.
This is due to the fact that the associated matched filter
aiding the early-late gate timing recovery schemes is sub-
optimal when neighbouring symbols are statistically
dependent in noisy channels. In general, the BER and
BLER of the proposed timing recovery method indicate
good error floor, waterfall and start-up regions as expected.
However, overall simulation results indicate that SOVA
based timing recovery methods yield a degraded BER and
BLER performance in low SNR compared to the log-MAP
methods. The reason behind this can be explained by the
fact that log-MAP timing recovery methods are computed

at individual bit level decision with high and required
resolution to correct channel errors while the SOVA based
timing recovery method operates at symbol level with low
decision resolution. Moreover, bit sequences were
interleaved at the transmitter end before being mapped in
a spectrally efficient digital modulator. This bit level
interleaving corrects error bursts more effectively than
performing the interleaving at symbol level. Since turbo
receivers employ a bit by bit demapper and de-interleaver,
the presence of channel error bursts can easily be
corrected.  This leads to low BER and BLER performance
and consequently improved QoS provisioning to the
terminal mobile users. However, log-MAP based soft timing
recovery methods yield more reliable soft timing signals
at the expense of receiver’s computational and structural
complexities. The complexities constrain the mobile
system’s memory and battery power requirements. Such
requirements are undesirable for mobile system operators.
Thus, SOVA based soft timing recovery methods become
an alternative method to provide QoS demands by both
mobile operators and end users. However due to the
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Figure 9: SOVA based soft timing recovery method for BLER

Figure 10: Estimator variance performance bound
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presence of multiple nuisance parameters characterising
the log-MAP and SOVA based soft timing estimators, the
timing error variance must be investigated. The approach
investigated is the theoretic Cramer-Rao bound (CRB).

In order to verify the Cramer-Rao bound on variance
performance, the results in Figure 10 were obtained. It is
evident that the proposed timing recovery method
operates at low SNR at a tight lower theoretical bound i.e.
CRB. In Figure 10 it is noted that by increasing the number
of iterations, the variance performance improves to a
desirable low value. However, for large normalized timing
offsets i.e. 0.35, the system estimator becomes biased.
This is regardless of any increase in the number of
iterations. This biasness is the condition of timing phase
ambiguity known in blind timing recovery estimators. It
can be exploited as an advantage for cellular wireless
mobile systems which trades off latency for reliability.

6. CONCLUSION

In conclusion, combined synchronization and decoding
of turbo codes give good results in low SNR environments.
In such applications timing recovery is extremely difficult
with traditional methods. Deriving a good timing estimator
function is crucial in both the decoding process and
steady-state sampling phase. Deep channel fading and
multipath effects degrade classical timing recovery
methods, but an iterative soft timing recovery method
improves the BER performance in such conditions. The
mobile service operator requires a less memory-demanding
and computationally intensive system in order to charge
less but still need to make business profits while the
terminal user requires a low cost and much reliable receiver
system. However, satisfying all these conditions in low
SNR would imply trading off QoS improvement in wireless
mobile applications. Fortunately, reduced complexes soft
timing recovery methods are now possible with the
proposed SOVA based soft timing recovery methods. The
overall BER and BLER performances in the above
simulation tests reveal a decrease in BER and BLER with
increase in signal to noise ratio. This is because iterative
soft timing phase estimations generate reliable timing
signals which update the discrete polyphase matched filter
stages. The outputs of the filter stages improve the
demapping and decoding time and leads to faster
convergence. The iterative receiver system’s fast
convergence suits its application to mobile networks
where delay variations are undesirable. However, the
reliability of soft timing phase estimates improves with an
increasing number of turbo iterations. This may cause

latency and a choice on the maximum number of turbo
iterations for good QoS provisioning becomes necessary.
In order to investigate how to choose the optimum number
of turbo iterations, results in Figure 10 indicate that for a
large timing offset estimation, say 0.35 the timing phase
estimator becomes   biased. The biased variance
performance at many iterations for ambiguous timing
phases, aide in the choice of optimum number of iterations
for QoS provisioning. Hence, the proposed soft timing
phase estimation is a viable solution for mobile receiver
applications.  However, the proposed scheme is less
complex than a scheme based on of training pilot
sequences employed in wireless cellular mobile networks.
The complexity involved can be traded-off for both power
and bandwidth efficiencies in cellular applications. In
future, more research should be conducted to mitigate
turbo complexities to suit its application in 3rd generation
mobile networks.
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