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ANALYSISOF VAN DERWAAL EQUATIONNEAR THE CRITICAL POINT
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ABSTRACT:- The van der Waal equation of state is redefined in a functional manner that reveals
some additional critical parameters and presents the ideal gas temperature as a lower limit to the
van der Waal gastemperature. The law of corresponding states is also shown to apply to the lower

limits of reduced temperatures.

INTRODUCTION

An equation of state for a given gas system can be
determined interms of pressure, volume, temperature and
mass of the enclosed gas under consideration. At
sufficiently low pressures, the relations among these
quantitiesare found to satisfy theempirical ideal gaslaw,
that is

PV =N_kT €

where PV, T N_ and Kk are pressure, volume,

temperature, number of particlesand Boltzmann constant
respectively, while the subscript m is introduced to
specify that the parameters are determined or deduced
from experimental measurements. At relatively higher
pressures, measurements are found to relate in manners
that deviatefrom that of Eqn (1). Inan attempt to account
for such deviations, van der Waal took into account the
effects of intermolecular forces? and theoretically
developed general equation of state for gases as 34°

aNZ[0

—2mD[Vm - Nmb] = Nt let 2
Vi O

where a is a factor dependent on the strength of the
attractiveintermolecular forcesand b isafactor dependent
on molecular sizesand therepul siveintermolecul ar forces,

while the subscript t is introduced to indicate that the

0
[+
0

quantities T, N,, K, are theoretically implied values of

temperature, number of particlesand Boltzmann constant
respectively. It hasbeen experimentally verified that the

parameters o and b are constants, that are characteristic
of the system under consideration. For any particular gas
system, the van der Waal equation becomes identical to
theideal gaslaw inthelimit when thevolumeV islarge.

Theformat of Eqn (2) isoften interpreted to imply that in
the determination of T , the parametersP_and Vv, are
independent of a and b. We shall show that this
assumption does not hold in the neighborhood of acritical
point. Inadditionwe shall highlight the relation between
theempirical ideal gastemperature T_ and the theoretically
implied van der Waal temperature T, .

METHOD
Basicformulations

We consider here that, the intermolecular forces
considered in the van der Waal equation are already in
play so that the results obtained from measurements of
pressure, volume and temperature for real gases, can be
represented by the functional forms P(a,b), V(b) and
T(a,b,K), so that Egn (1) becomes

Pa(@,b)V,(b) = N k. T, (@,b, k) ©

Next we seek aform of van der Waal equation, analogous
to Egn (3), in which the characteristic quantitiesa and b
do not appear explicitly. To achievethiswerewrite Eqn (2)
intheform

R(a,b)V;(b) = NkT(@,b,k) @
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where we have made the replacements

B a N 2
and
V,(B) =V,,(b) N, ©

Equation (4) isarepresentation of the van der Waal equation
of statein amanner that preservestheformat of theideal gas
law. Thusfor any volumeV, , wemay combine Eqns(4), (5)
and (6) to obtain

aN? O
b) + V_(b)—N_b] =NKT, (a,b,k
R (@) + o V(0= N,p] =NKT @ 0.
@
which can be rearranged to become
0 NKT, (a,b,k)0
Vi) - N, b+t
O s
2 3 8
V2(b) +a—Nme(b) __aNb =0 ®
P.(a,b) P.(a,b)

ThisisacubicfunctionV_ (b) in and would ingeneral have
three solutions. Graphically, the specia condition when all
the three solutions are equal describes a point of inflection
whichiscalled the critical point and for which we introduce
subscript ¢ hereafter. Thusin the neighborhood of acritical
point, Eqn (8) becomes

Vrr:?c (b) _ %\Imcb + Ntcktcth(a’ b’ klc)g
O P.(@.b) [
aNZ

3 9
V. (b) - aN,b -0 ©)
P.(a,b) P.(,b)

Vi (0) +

Sincethe cubic polynomial

Vi (0) =3V, ()Vir () +

V2 (b)V,.(b) -3 (b) =0 (10)

aso has three equal solutions, we consequently compare
its coefficientst® with those of Eqn (9) to obtain the critical
parameters as

V._(b)=3N_b, (113)
a
P_(a,b)=
(@, D) 2702 (11b)
and
_ SGN
T.(a,bk.) = W (110
from which we obtain thewell established rel ation’
P.(a,bV, (b) _3
) 12

NiekeTe(@:bke) 8

Additional Critical Parameters

On subgtituting Egns(11a), (11b) and (11c) into Egns(3), (4)
and (6) weobtainthefollowing additiona critical parameters

V,.(b) =2N,.Db, (139
4a
P (a,b) =——
tc(a ) 27b2 ’ (13b)
and
Te(a,bk )_W (13¢)

By substituting Eqn (13c) into (11c) we obtain therelation

8EN AT (a,bk )

a,b,
) = TR

14

fromwhichitisclearly evident that if the temperatures T
and T, areequal, then the number of enclosed particlesthat
do participate at the critical point must be such that

ch <N
isauniversal constant.

that is, provided that the Boltzmann parameter

tc ?

If we consider that Eqn (14) applies at points sufficiently
removed fromthecritica point, then wemay write
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Analysisof Van Der Waal Equation near the Critical Point

@ bK)_gm K, DT ' (a,bk.)

3DN K, D
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asageneral relation between the van der Waal's theoretical
temperature T, and the empirically determined temperature
T . Ean (7) therefore becomes

aN? [

0
b V. (b)-N,b
(@) + i V() =N, ]
8 (16)
=S NakoTn(@,0,K,)

Thisisaform of van der Waal equation of stateinwhichthe
pressure, volume and temperature are al experimentaly
mesasured values.

TheLaw of Corresponding States
If weintroduce a dimens onless parameter notation

- _ X
=3, (173

where X _isthe critical value for any X (representing any
specific parameter amongst pressure, volume, temperature,
number of particlesand Boltzmann constant), then we have
forexample,

_ Vu(0)
Vo (0)° m
—= _P.(a,b)
PR =5 @) s
and
= T (a,b,k.)
Tw(a,bk, )=—"—"—""T"

Taking Boltzmann constant as a universal constant, we
therefore set

(18)

sothat on substituting eqns (17b), (17¢), (17d) and (13c) into
Eqgn (16) weobtain

L

ﬁ:’m(ar ) +

as areduced equation of state with all parameters obtained
from practical measurements.
By dividing Egn (15) by (14) we obtain the reduced relation

@7 (b)—3H——N wTm(@ bk )
(19

N om kmDTm(a b,k )
tkt D

T(abk[)— (20)

Sinceintheformulation of van der Waal equation of state, a
theoretical assumptionismadethat al particlesdo participate
at the critical point, such that

N =1, @)
we can by making useof Eqns(18), (20) and (21), reduce Egn
(19) totheform

%(Gbﬁ

whichisthefamiliar law of corresponding states 891, Egn
(22) is applicable universaly to any form of van der Weal
gas, becausethequantities and nolonger appear explicitly.
Thisuniversality has been experimentally confirmed **2 for
many substances. Any two different substances for which

the reduced parameters, ¥ are equal, are said to be in
corresponding states.

ﬁgm(b)—iﬁ— 8T (a,bk)

(22)

DISCUSSIONS

Although the universdlity testsfor thelaw of corresponding
states have been based on Eqgn (22), with the assumption

that T, =T,
need not alwaysbeequal. From statistical arguments, not all

particlesmay simultaneously participate at thecritical point.
Thisimpliesthe condition

,itisclear from Eqn (19) that thetemperatures
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Nm=1- e
and consequently that
Ti(a,b,k)2Tm(a,b,k,) (24

Thus the ideal gas temperature provides the lower limit to
the van der Waal gas temperature.

In addition, we note that in the reduced form, the difference

between thetemperatures 'I_'m and f isminimal, compared

tothat betweenT_and T, . Theminimization of the deference
consequently renders the law of corresponding states to be
in far more exact agreement with experimental resultsthan
thevan der Waalsequation . For very dilute gases, wherewe
can neglect the terms involving a and b, the reduced

temperatures 'rm and 'rt become nontrivialy equal.

Findly, we note that without the definitions introduced in
Egns(4), (5) and (6), the van der Waal equation of state can
equivalently be expressed intheform

O aNz [
0,0 TV, (0) =N, bl =NKT, (a,b,
(0.0 + G V() - Nob] =NkTi (@b k)
(25)
so that the ideal gas law consequently becomes
[R(0,0][V,(0] =NKkT,(0,0,k) @)

Although Eqgn (25) fits the usual interpretations of van der
Weaal equation, the details introduced here imply that this
formulation ishowever inconsi stent with concept of critical
parameters, unless the parameters are themselves

independent of a and b, suchthat P (0,0) = P..(a,b)

and V,.(0) =V_.(b) . This would however lead to an

erroneous conclusion that the effects of intermolecular forces
arenot measurable.
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