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ABSTRACT:- Standard approach for modeling and understanding the variability of statistical data
or, generally, dependant data, is often based on the mean variance regression models. However, the
assumptions employed on standardized residuals may be too restrictive, in particular, when the data
follows heavy-tailed distribution with probably infinite variance. This paper considers the problem
of nonparametric estimation of conditional scale function of time series, based on quantile regression
methodology of Koenker and Bassett (1978). We use a flexible model introduced in Mwita (2003),
that makes no moment assumptions, and discuss an estimate which we get by inverting a kernel
estimate of the conditional distribution function. We finally prove the consistency and asymptotic
normality for the estimate.
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INTRODUCTION

Let { , }tV t Z∈ be a stationary and α-mixing multivariate

time series adapted to the sequence ,tF t−∞< < ∞, of

σ -algebras. Partition it as ( ),t t tV Y X= where the real-

valued response variable tY R∈ is F t  -measurable and

the covariate d
tX R∈  is 1tF − -measurable. For

0 1,θ< < we want to estimate the conditional scale

function of tY  given the pasts 1tF −  assuming that it is

completely determined by tX , i.e. we have

( ) ( )t t t tY X X Zθ θµ σ= +             (1.1)

where ( )tXθµ is the conditional θ -quantile of tY  given

tX . The function ( )tXθσ is the conditional scale

function of tY  given  tX . This function is a product of a

constant and a variable, i.e.,  ( ) ( )t tX b Xθσ σ= where

( )tXσ is the so called conditional volatility, see

Bollerslev et al. (1994), Shephard (1996) among others for
review of models containing such functions and their many
variants and b, a positive constant independent of time

but depends on θ . The standardized residuals tZ are
assumed independent and identically distributed (i.i.d.)
with zero θ -quantile and unit scale. The conditional

functions ( )tXθµ  and ( )tXθσ may be rather arbitrary,

apart from some regularly assumptions, and we want to

estimate the conditional scale function, ( )tXθσ ,

nonparametrically, given that ( )tXθµ is unknown.
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The model (1.1) includes the case of a nonparametic

quantile-scale regression where ( ), ,t tZ X t−∞ < < ∞
are i.i.d. as well as the quantile autoregressive-quantile
autoregressive conditional heteroscedastic (QAR-
QARCH), introduced in Mwita (2003). The corresponding
QAR-QARCH of order d takes the form

( ) ( )1 1, . . ., , . . .,t t t d t t d tY Y Y Y Y Zθ θµ σ− − − −= +

where ( )1, . . .,t t t dX Y Y− −=  is just part of the univariate

time series tY . If we choose ( )1 1, . . ., ,t t t d tX Y Y U− − −= ,

where the random vector tU consists of observations from

other time series than tY available at time t,  then (1.1),
would become a quantile autoregressive-quantile
autoregressive conditional heteroscedastic model with
exogeneous components. Two main applications we have
in mind are a flexible procedure for estimating indicators
for financial market volatility as well as for use in the
calculation of extreme value-at-risk in a heavy-tailed
financial time series data, compare for example, Jorion
(2000). In the latter, the QARCH function estimate could
act as a link between the estimations in the interior and
extreme parts of data, as discussed in Mwita (2003), see
also, McNeil and Frey (2000).

Considering other financial time series models, (1.1) can
be seen as a robust generalization of AR-ARCH- models,
introduced in Weiss (1984), and their nonparametric
generalizations reviewed by Härdle et al. (1997). For
instance, consider a financial time series model of AR(d)-
ARCH(d)-type,

( ) ( ) , 1,2,...t t t tY X X e tµ σ= + =                   (1.2)

where ( )1, . . .,t t t dX Y Y− −= , µ and α  are are arbitrary

and { }te is a sequence of i.i.d. random variables with mean

0 and variance 1. Then (1.2) can be written in the form (1.1)

with ( ) ( ) ( ) ,e
t t tX X X qθ θµ µ σ= +

( ) ( ) e
t tX X Mθ θσ σ=  and ( )( ) 1e e

t tZ e q Mθ θ

−
= − ,

where eqθ  ans eMθ  are θ -quantiles of te  and

( ), e
tM e qθ θ respectively, and

( ) ( ) { }( )0, ZM Z Z Iθ µµ µ θ − ≤= − − , being a

function of any real random variable Z with distribution
function FZ and a real value Rµ ∈ , is the asymmetric
absolute value function whose amount of asymmetry
depends on θ , see Koenker and Bassett  (1978). When

tY  is symmetric and θ =0.5, then ( )2 ,M Zθ µ is an

absolute value function and ( )0.5 tXσ is the conditional

median absolute deviation (CMAD) of  tY . When

( ) 0tXµ =  in (1.2), we have a purely heteroscedastic

ARCH model introduced in Engle (1982) and ( )tXθµ for

0.5θ > , in this particular case, can be regarded as a

conditional scale function at  θ -level.

The concept of scales is well discussed in Huber (1981)
and conditional scale models in the case of
heteroscedastic regression with independent variables,
in Welsh et al. (1994) and Welsh (1996). Because quantiles
are readily interpretable in location-scale models and are
robustly estimable than moments, Koenker and Zhao
(1996) has exploited regression quantiles idea of Koenker
and Bassett (1978) to ARCH settings. Instead of modeling
conditional variance, it focuses on ARCH models for
conditional scale, where the standardized errors are
assumed to be i.i.d. random variables with mean zero and
finite variance.

The nonparametric estimation of  ( )tXθµ  in models

such as (1.1) has been carried out in among others, Franke
and Mwita (2003), which gives the uniform strong
consistency properties of the estimator. The estimation

of  ( )tXθσ , under the assumption that ( )tXθµ is

known, has been carried out in Mwita (2004), which also
gives the asymptotic properties of the estimator. Based

on model (1.1) and given that an estimator of ( )tXθµ  is

( )ˆ tXθµ , we get a nonparametric estimator of

( )tXθσ directly by first estimating the conditional

distribution function of ( )( )ˆ,t tM Y Xθ θµ given tX  and

then inverting it. We use a kernel estimate of Nadaraya
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(1964) and Watson (1964) type for the conditional
distribution. Apart from the disadvantages of not being
adaptive and having some boundary effects, which can
be fixed anyhow (see Hall et al., 1999), it has advantages
of being  a constrained estimator between 0 and 1 and a
monotonically increasing function. This is an important
property when deriving quantile function estimators by
the inversion of a distribution estimator.

In the following section, we propose an estimate of the

QARCH function in (1.1), when ( )tXθµ  is unknown,
and derive its consistency and asymptotic normality
properties which are important for inferences. The technical
results and proofs are postponed to the third section.

QARCH FUNCTION ESTIMATE AND  ITS
ASYMPTOTIC PROPERTIES

We propose an estimate of the QARCH function in model
(1.1) and establish the weak consistency and asymptotic
normality. For that purpose, express (1.1) as

( )( ) ( ),t t tM Y X Xθ θ θµ σ= +

( ) ( )( ),0 1t tX M Zθ θσ −                             (2.1)

and observe that (2.1) is again of the form (1.1), now with

the QAR, ( ) ( )t tX X Rθ θµ σ += ∈ and

( ),0 1t tZ M Zθ= − . If ( )tXθµ  in model (2.1) is

known, we could consider (2.1) as a quantile autoregressive
model with errors not necessarily independent, and employ

same procedure as in Mwita (2004) to estimate ( )tXθσ .

That is we find the function σ such that the following
equation is simultaneously satisfied,

( )( )t t tP Y X X xθµ≤ = =

( )( ) )( ,t t tP M Y X X xθ θµ σ θ≤ = =             (2.2)

Since ( )tXθµ  is unknown, our first task involves

estimating it. Then we compute the quantile residuals and

pass them through the loss function Mθ as in (2.1) and
finally, estimate the QARCH function.

The kernel estimates of the autoregressive function

( )tXθµ  at point x based on a sample

( ), , 1, . . . ,t tY X t n=  from model (1.1), is obtained in two
steps. In the first one, we have to estimate the conditional
distribution function,

( ) ( ) { }tx t t tY yF y P Y y X x E I X x≤
 = ≤ = = =  ,

(2.3)
of Yt given Xt=x, which can be written as the conditional

expectation of { }tY yI ≤  and, therefore, may be estimated by

the standard Nadaraya-Watson kernel estimate

( )
( ) { }

( )
1

1

ˆ t

n
t h t Y y

x n
t h t

K x X I
F y

K x X
= ≤

=

−
=

−
∑

∑                       (2.4)

Here, K(u) is a d-dimensional kernel and

( ) ( )d
h

uK u h K h
−= is the rescaled kernel. For any

( )0,1θ ∈ , the QAR function ( )xθµ is given by

( ) ( )inf{ }xx y R F yθµ θ= ∈ ≥ .

Therefore, we estimate ( )xθµ by the following kernel

estimator

( ) ( ) ( )1ˆ ˆˆ inf{ }x xx y R F y Fθµ θ θ−= ∈ ≥ ≡       (2.5)

where ( )1ˆ
xF θ− denotes the usual generalized inverse of

the distribution function ( )ˆ
xF y  which is a pure jump

function of y.

Let ( )( ),t t tR M Y Xθ θµ=  be the true residuals, when

( )tXθµ  is known, and denote the conditional
distribution function of Rt given Xt as Fx(r), with r being
a fixed value on R+. The true conditional scale function of

tY  given  tX  can be approximated locally by

( ) ( )inf{ }xx r R F rθσ θ+= ∈ ≥             (2.6)

and its kernel estimate obtained as

( ) ( )ˆˆ inf{ }xx r R F rθσ θ+= ∈ ≥           (2.7)
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with ( )ˆ
xF r being an estimator for ( )xF r .  The

asymptotic properties for estimators (2.5) and  (2.7) are
given in Franke and Mwita (2003) and Mwita (2004),
respectively.

When ( )tXθµ  is unknown in model (1.1), we get the

estimated quantile residuals as ( )( )ˆt tY Xθµ−  and the

estimated transformed residuals as

( )( )ˆ ˆ,t t tR M Y Xθ θµ= . We therefore define the

conditional distribution function of ˆ
tR  given tX  as

( )
( ) { }

( )
1 ˆ '

1

ˆ ' t

n
t h t R r

x n
t h t

K x X I
F r

K x X
= ≤

=

−
=

−

∑
∑                       (2.8)

with 'r  being a fixed-real value on R+ in the neighborhood

of r. Therefore we propose to estimate ( )xθσ , in this

case, by the following kernel estimate,

( ) ( )ˆˆ inf{ ' ' }xx r R F rθσ θ+= ∈ ≥                         (2.9)

For sake of simplicity, we have assumed that the
bandwidth h is the same in all directions, but we could
generalize our results in a straightforward manner to

vectors ( )1, . . . , T
dh h of bandwidths. For our asymptotic

considerations, we have to assume that the time series

( ),t tY X satisfies appropriate mixing conditions. There

are a number of mixing conditions discussed in literature,
for example, in the monographs of Doukhan (1994) and
Bosq (1996). Among them α- or strong mixing is a
reasonably weak one known to be fulfilled for many time
series models. In particular, Masry and Tjostheim
(1995,1997) have demonstrated that under some mild
conditions, both ARCH processes and nonlinear additive
autoregressive models with exogeneous variables are
stationary and α -mixing. Thus,   choosing

( )1, . . ., T
t t t dX Y Y− −= in (1.2)  and assuming the time

series tY  to be α-mixing would be an example of a quantile
autoregressive process (1.1) for which

( ) ( )( )( ), , , ,t t t t tY X M Y X Xθ θµ and { }tY yI ≤ are α-

mixing as well.

The following set of assumptions are required for proving

consistency and asymptotic normality of ( )ˆ xθσ . Here

and in the following, ( )g x denotes the stationary

probability density of tX .

(A1) For some compact subset G of Rd there are

0, 0,ε γ> > such that  ( )g x γ≥  for all  x  in

the ε − neighborhood { ;x x u ε− <  for some

}u G∈ .

(A2) ( ),t tY X is stationary and α-mixing with mixing

coefficients ( ), 1,n nα ≥ and there is an increasing

sequence , 1,ns n ≥ of positive integers such that
for some finite A,

( ) ( )2 / 3 ,1  for all 1
2

ns n
n n

n

n ns A s n
s

α ≤ ≤ ≤ ≥

(2.10)

(B1) The conditional density ( )xf µ is uniformly

bounded in x and µ by, say, cf.
(B2) For the compact set G of (B1) and some compact

neighborhood 0Θ  of 0. The set

( ){ }0; ,v x x Gθµ µ µΘ = = + ∈ ∈Θ
is compact too, and for some constant

( )0 00, xc f v c> ≥ for all ,x G v∈ ∈Θ .

(C1)  The kernel : dK R R→  is a nonnegative,
Lipschitz continuous function, satisfying

( )K u K∞≤ for all ( ) ( ), 1, 0u K u du uK u du= =∫ ∫
and ( )2

u K u du < ∞∫
(C2) For all ,r x  satisfying ( ) ( )0 1, 0xF r g x< < > :

i) ( )xF r and ( )g x are continuous and bounded

in ,r x
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ii) ( )g x is twice continuously differentiable, and,

for fixed r, Fx (r)  is twice continuously
differentiable with respect to  x  , where
derivatives are continuous functions of r and the
second derivatives are Hölder-continuous in

x for some , 0c β > and all , ',x x r  i.e.,

( ) ( )
2 2

' ' , , 1, . . . , ,x x
i j i j

F r F r c x x i j d
x x x x

β∂ ∂− ≤ − =
∂ ∂

and analogously for ( )g x

iii) For fixed ( ), xx F r has the conditional density,

( )xf r ,  which is continuous in x  and Hölder-

continuous in ( ) ( ): 'x xr f r f r−

'c r r β≤ −  for some , 0c β >

iv) ( )( ) 0xf xθσ >  for all x .

(C3) The process ( ){ },t tY X  is stationary and α -

mixing with mixing coefficients satisfying

( ) ( )( )2 ,n O n δα − += for some 0δ > .

Assumptions (A1)-(A2), (B1)-(B2) and (C1)-(C2) are
required for proving the uniform convergence of the QAR

function estimate, ( ).xθµ This result is a pre-requisite

for the investigation of the behavior of the QAR  residual
based on model (1.1). Assumption (A1)-(A2), (B1)-(B2)
and (C1)-(C3) are required for proving the consistency

and asymptotic normality of ( )ˆ xθσ

Theorem 2.1. Assume that (A1)-(A2), (B1)-(B2) and
(C1)-(C3) hold. Suppose the sequence of bandwidths

h>0 converge to 0 such that ( ) 1logd
n nS nh s n −= → ∞!

for some ns → ∞ . Let 
1

2 2
n nS h S

−
= + ! . Then the

QARCH function estimate is consistent,

( ) ( )ˆ ,px xθ θσ σ→  and asymptotically unbiased,

( ) ( ) ( )( )
( ) ( )( ) ( )

2

2

ˆ

n x

E x x h B x

O S f x o h
θ θ σ θ

θ

σ σ σ

σ

− = +

+         (2.11)

where ( ) ( )
( )x

B r
B r

f rσ = −

If, additionally, the bandwidths are chosen such that
4dnh + is either 1 or converges to ( )ˆ0, xθσ is

asymptotically normal,

( ) ( ) ( )(( )

( ) ( ))( ) ( )( )
( )( )

2

2

2

ˆ

0,

d

D
n x

x

nh x x h B x

V x
O S f x N

f x

θ θ σ θ

θ
θ

θ

σ σ σ

σ
σ

σ

− − −

 
→    

(2.12)

Here, B(r) and V2 (r) are defined in the bias and variance
expansion for the conditional distribution estimator in
Lemma 3.1 of the following section.

Proof of Theorem 2.1

In order to prove Theorem 2.1, we  require the following
result on uniform rate of convergence of the QAR function

estimate, ( )ˆ xθµ , on a compact set G. The proof can be

found in Franke and Mwita (2003).

Theorem  3.1.  Assume (A1)-(A2), (B1)-(B2) and (C1)-
(C2). Suppose 0→h is a sequence of bandwidths such

that ( ) 1logd
n nS nh s n −= → ∞!  for some ns → ∞ .

Let 
1

2 2 .n nS h S
−

= + !  Then we have

( ) ( ) ( ) 1ˆsup . .n d
x G

x x O S O a s
nhθ θµ µ

∈

 − = +   
  (3.1)

nS will be much larger than 1( )dnh −  and therefore the

rate of convergence of  ( )xθµ will be ( )nO S particularly,
if the bias and variance are balanced.

The following Lemma gives the asymptotic bias and

variance for ˆ ( )xF r which is a Nadaraya-Watson kernel
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estimate for the conditional distribution, ( ),xF r  of

{ }tR rI ≤  given tX x= . Therefore, we omit the proof of

the Lemma which follows standard lines of arguments.

Lemma 3.1  Suppose (C1)-(C3) hold. Then
2 2ˆ ( ) ( ) ( ) ( )x xE F r F r h B r o h − = +              (3.2)

1 2 1ˆvar ( ) ( ) ( ) (( ) )d d
xF r nh V r o nh− −  = + 

where

2

2 2 2

1( ) ( ) ( ) ( )
( )

1 ( ) ( )
2

1( ) ( ( ) ( )) ( )
( )

T T
x

T
x

x x

B r F r u g x uK u du
g x

u F r uK u du

V r F r F r K u du
g x

= ∇ ∇

+ ∇

= −

∫

∫

∫
      (3.3)

The following Lemma follows immediately from Lemma

3.1, using the smoothness assumptions on ( )xF r ,

)(rFx , and a Taylor expansion of  ( )ˆ
xF r around r.

Lemma 3.2. Suppose (C1)-(C3) hold. Then, for any

0,nδ → we have

( ) ( )
2 1/ 2

ˆ ˆ ( )

( ) ( ) (( ) )
x x n x

d
p n p p

F r F r f r

o o h o nh

δ δ

δ −

+ − = +

+ +             (3.4)

We also need consistency of the kernel estimate of the

density of tX . The following Lemma, which gives the
uniform rate of convergence of the Rosenblatt (1959b) -
Parzen (1962)  kernel estimate, ˆ ( )g x for the density  g(x)

of  tX  on the compact set G , follows immediately from
the proof of Theorem 3.3.6 of Györfi et al. (1989).

Lemma 3.3. Assume (A1) and (C1)-(C3). If,  as ,n → ∞
the bandwidth 0h → such that

 1( log )d
n nS nh s n −= → ∞! , then

1
2ˆsup ( ) ( ) ( ) .n

x G
g x g x O S a s−

∈
− = !                          (3.5)

The following Lemma shows that ( , )tM Yθ µ  is not only

convex but also continuous in .Rµ ∈

Lemma 3.4.  Let ( ),y µ be real –valued variables, then

for all y, ( , )M yθ µ is Lipschitz continuous in µ  with
Lipschitz constant 1, i.e,

 ( , ) ( , ') 'M y M yθ θµ µ µ µ− ≤ −  for all , ,y µ µ′
Proof: Note that

{ } { }0 0

( , ) ( , ') ( ' )
(( ) ( ) )y y

M y M y
y I y I
θ θ

µ µ

µ µ θ µ µ
µ µ ′− ≤ − ≤

− = − −
′− − −             (3.6)

for 'yµ µ< < , we have { } { ' 0}0 0, 1,y uyI Iµ − ≤− ≤ = =
and (3.6) becomes

( , ) ( , ') ( ' ) ( ')
( ) (1 )( ' )

M y M y y
y

θ θµ µ θ µ µ µ
µ θ µ µ

− = − + −
= − − − −     (3.7)

For ( ') 0y µ− > and ( ) 0y µ− > , the last two
expressions on the right of (3.7) both imply

)(1 )( ' ) ( , ) ( , ) (M y M yθ θθ µ µ µ µ θ µ µ′ ′− − − ≤ − ≤ − ,

and therefore ( , ) ( , ')M y M yθ θµ µ−  is bounded

from above by at least one of ( ' )θ µ µ−  and

(1 )( ' ).θ µ µ− −  Similarly, for ' yµ µ≤ <  and

'y µ µ< ≤ , we have respectively { }0 0yI µ− ≤ =

implying ( , ) ( , ') ( ' )M y M yθ θµ µ θ µ µ− = − and

{ }0 1yI µ− ≤ = , { }0
1

y
I

µ′− ≤
=  implying

( , ) ( , ') (1 )( ')M y M yθ θµ µ θ µ µ− = − − . Hence

( , ) ( , ') max( ,1 ) 'M y M yθ θµ µ θ θ µ µ µ µ′− ≤ − − ≤ −
which immediately implies the assertion.

Proof of Theorem 2.1:

Making use of the uniform convergence result in Theorem

3.1 and the boundedness in Lemma 3.4, we express ˆ
tR  in

terms of tR  as ˆ ˆ ( )t t t t t nR R R R R O S= − + = +  a.s.,

with the latter term being the bound for ˆ ( ) ( ).x xθ θµ µ−
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The indicator function { }ˆ 'tR r
I

≤  can then be expressed as,

ˆ{ ( ) ( )} { ( )}t n n t nR O S r O S R r O SI I+ ≤ + ≤ +
=  , with ' ( ).nr r O S= +

We first proof that )(ˆ rFx ′  is a consistent estimator for

( )xF r . Let the bound ( ) 0nO S →  as  ,n → ∞  then
by Lemma 3.2, we get

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )x x x x n xF r F r F r F r O S f r′ − = − +      (3.8)

Since the last term depends only on n , the asymptotic

behavior of  ˆ ( )xF r′  will largely depend on the behavior

of  ˆ ( )xF r . Taking expectation and variance on both sides

of (3.8) and using Lemma 3.1, we get the bias
2ˆ ( ) ( ) ( ) ( ) ( )x x n xE F r F r h B r O S f r ′ − ≈ +   , and

1 2ˆvar ( ) ( ) ( ) ( )d
x xF r F r nh V r− ′ − ≈  . In both the

bias and variance, terms of smaller order in probability
have been left out. Because the bias is of order

2( ) ( )nO h O S+ and the variance, of  order

1(( ) )dO nh − ,  the mean squared error is seen to go to

zero as n goes to infinity. Hence ˆ ( ) ( )x xF r F r′ → in

probability, for all dx R∈  and r, with a rate which implies

ˆ ( )xF r′  is consistent. To show that

2ˆ( ( ) ( ) ( ) ( ) ( ))d
x x n xnh F r F r h B r O S f r′ − − −

(3.9)

is asymptotically normal, we proceed as in Theorem 2.1 in

Franke and Mwita (2003), by replacing ˆ ( )xF y by

ˆ ( )xF r′ and ˆvar( ( ))xF y  by ˆvar( ( ))xF r′ . For

consistency of ˆ ( )xθσ , note that the Glivenko-Cantelli
Theorem in Krishnaiah (1990) for strongly mixing
sequences implies

sup ( ) ( ) 0,x xF r F r r R+′ − → ∈  in probability    (3.10)

By the uniqueness assumption (C2 iv) on ( )xθσ , for any

fixed dx R∈ , there exists an 0ε >  such that  ( )δ δ ε=

( )( ){ }min ( ( ) ), 0x xF x F xθ θθ σ ε σ ε θ= − − + − > .

This implies, using the monotonicity of  xF , that

{ }
{ }
{ }

{ }

ˆ ( ) ( )

ˆ( ( )) ( ( ))

2ˆˆ ˆ( ( )) ( ( ))

ˆsup ( ) ( )

x x

x x d

x x
r

P x x

P F x F x

KP F x F x
nh

P F r F r

θ θ

θ θ

θ θ

σ σ ε

σ σ δ

σ σ δ
γ

δ

∞

− >

≤ − >

≤ − > −

′≤ − >

(3.11)

for arbitrary δ δ′ <  and n large enough. Here, because

ˆ ( )xF r  is a pure jump function in  r  with heights equal to

1 ˆ( ) / ( )h tn K x X g x− , we have used ( ( ))xF xθσ θ=

and 
2ˆ ˆ( ( ))x d

KF x
nhθθ σ θ

γ
∞≤ ≤ + , which follows from

Lemma 3.3, assumption (A1) and the boundedness of K

by K∞ . Now, (3.11) tends to zero by (3.10). Hence the
consistency follows.

Finally, to prove that the left hand side of (2.12) is
asymptotically normally distributed with mean zero, let

1 2( ( )) ( ( )) ( ) ( ( ))x n xb B x f x O S h f xθ θ θσ σ σ− −= − −

and 1( ( )) ( ( ))xv V x f xθ θσ σ−= . Let

2ˆ ( ) ( )( ) ( )d
n

x x h bq z P nh z
v

θ θσ σ− −= ≤

( ) 2 1/ 2ˆ( ( ) ( ) )dP x x h b nh vzθ θσ σ −= ≤ + +

As ˆ ( )xF r ′  is increasing, but not necessarily strictly, we

have

( )2 1/ 2ˆ ˆˆ( ( )) ( ( ) ( ) )d
x xP F x F x h b nh vzθ θσ σ −≤ + +

( )nq z≤

( )2 1/ 2ˆ ˆˆ( ( )) ( ( ) ( ) )d
x xP F x F x h b nh vzθ θσ σ −≤ ≤ + +

By the same argument as in (3.11), we may replace

ˆ ˆ( ( ))xF xθσ  by  ( ( ))xF xθσ  up to an error of  1( )dnh −
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at most, and we get, neglecting the 1( )dnh −  –term which
is asymptotically negligible anyhow,

2 1/ 2

( ) ~ ( ( ( ))

( ( ) ( ) ))
ˆ~ ( ( ( )) ( ( )) ( ( )))

n x
d

x

n x x x

q z P F x
F x h b nh vz

P f x F x F x

θ

θ

θ θ θ

σ
σ

δ σ σ σ

−≤ + +

− ≤ −
(3.12)

with 2 1/ 2( )d
n h b nh vzδ −= + . Here we have used

Lemma 3.2 and neglected the terms of order
2( ), ( )no o hδ  and 1/ 2(( ) )do nh −  which are small

compared to nδ . Horvath and Yondell (1988), see also
Mwita (2003) have shown that the empirical conditional
distribution estimator is asymptotically normal. This
follows also under similar conditions from a functional

central limit theorem for ˆ ( )xF y  of Abberger (1996-

Corollary 5.4.1 and Lemma 5.4.1). Therefore, with

( )r xθ θσ= , we get

2ˆ ( ( )) ( ) ( ) ( ) ( )
( )

d x n x n xF r O S F r h B r O S f rnh
V r

θ θ θ θ

θ

+ − − −

2( ) ( ) ( ) ( )
( )

d x n n xf r h B r O S f rnh
V r

θ θ θ

θ

δ− − −≥

2 1/ 2 2( ).( ( ) ) ( ) ( ) ( )~
( )

d
d x n xf r h b nh vz h B r O S f rnh

V r
θ θ θ

θ

− + + −Φ 
 

( )z= Φ

By our choice of b and v and our condition on the rate of
h. this proves the theorem.

CONCLUSION

We have shown weak consistency and asymptotic
normality of the nonparametric QARCH function estimate

where, up to the term ( ) ( )( ),n xO S f xθσ the form of

asymptotic variance is the same as for the Nadaraya-

Watson estimator for ( )xθµ . For sake of simplicity, we
have restricted ourselves to Nadaraya- Watson estimate
of the conditional distribution function as the basis for
the QARCH function estimates. Our results may be

modified in straightforward manner to cover also the more
general local polynomial estimates (Fan and Gijbels, 1996).
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