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ABSTRACT:- Sandard approach for modeling and understanding the variability of statistical data
or, generally, dependant data, is often based on the mean variance regression models. However, the
assumptions employed on standardized residuals may be too restrictive, in particular, when the data
follows heavy-tailed distribution with probably infinite variance. This paper considers the problem
of nonparametric estimation of conditional scal e function of time series, based on quantileregression
methodology of Koenker and Bassett (1978). We use a flexible model introduced in Mwita (2003),
that makes no moment assumptions, and discuss an estimate which we get by inverting a kernel
estimate of the conditional distribution function. We finally prove the consistency and asymptotic

normality for the estimate.
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INTRODUCTION

Let {V,, t [0 Z} beastationary and a-mixing multivariate
time series adapted to the sequence F,,—00 <t <oo, of
O -adgebras. Partitionitas V, = (Yt, Xt)wherethereaj-
valued response variable Y; L] Ris F, -measurable and

the covariate X, R’ is F_, -measurable. For
0< 0 <1, we want to estimate the conditional scale
function of Y, given the pasts F,_, assuming that it is

completely determined by X, i.e. we have

Y, =1 (X)) +0,(X,)Z, (1.1)

where U, (Xt)istheconditional 6 -quantileof Y, given

X. The function 0, (Xt) is the conditional scale
function of Y, given X. Thisfunction isa product of a
constant and avariable, i.e., O, (Xt) =bo (Xt )where

G(Xt) is the so called conditional volatility, see

Bollerslev et al. (1994), Shephard (1996) among othersfor
review of models containing such functionsand their many
variants and b, a positive constant independent of time

but depends on @. The standardized residuals Z, are
assumed independent and identically distributed (i.i.d.)
with zero @-quantile and unit scale. The conditional

functions U, (Xt ) and O, (Xt ) may berather arbitrary,
apart from some regularly assumptions, and we want to

estimate the conditional scale function, Oy (Xt) ,

nonparametrically, given that [, (Xt ) isunknown.
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The model (1.1) includes the case of a nonparametic

quantile-scale regression where (Zl, Xt),—oo <t <o

are i.i.d. as well as the quantile autoregressive-quantile
autoregressive conditional heteroscedastic (QAR-
QARCH), introduced in Mwita (2003). The corresponding
QAR-QARCH of order d takestheform

Y =l (Y Yig) + 0 (YY) Z

where X, = (Yt_l, ...,Yt_d) isjust part of the univariate

timeseries Y, . If wechoose X, = (Yt_l, A ,Ut_l) :

wheretherandom vector U, consists of observationsfrom

other time series than Y, available at time t, then (1.1),

would become a quantile autoregressive-quantile
autoregressive conditional heteroscedastic model with
exogeneous components. Two main applicationswe have
in mind are aflexible procedure for estimating indicators
for financial market volatility as well as for use in the
calculation of extreme value-at-risk in a heavy-tailed
financial time series data, compare for example, Jorion
(2000). In the latter, the QARCH function estimate could
act as alink between the estimations in the interior and
extreme parts of data, as discussed in Mwita (2003), see
also, McNeil and Frey (2000).

Considering other financial time series models, (1.1) can
be seen as arobust generalization of AR-ARCH- models,
introduced in Weiss (1984), and their nonparametric
generalizations reviewed by Hardle et al. (1997). For
instance, consider afinancial time seriesmodel of AR(d)-
ARCH(d)-type,

Y, =pu(X)+o(X)e, t=12,..

where X, = (Yt_l, ..

(1.2)
.,Yt_d) , Uand g arearearbitrary

and {q} isasequenceof i.i.d. random variableswith mean
Oandvariance 1. Then (1.2) can bewrittenintheform (1.1)

He (%)= (X)) +o (X)),

-1

0, (X)=0 (X )M¢ and Z, =(g —cf)(M¢) .

where ¢, ans M, are @-quantiles of & and

with

M, (q : qg) respectively, and

Mo (Z.1)=(Z =) (6 -1y g ). being a
function of any real random variable Z with distribution
function Fz and areal value (1 R, isthe asymmetric
absolute value function whose amount of asymmetry
dependson @, see Koenker and Bassett (1978). When

Y, is symmetric and §=0.5, then 2M, (Z,/J)is an
absolutevaluefunctionand O 5 (Xt ) isthe conditional
median absolute deviation (CMAD) of Y;. When
u (Xt) =0 in (1.2), we have a purely heteroscedastic

ARCH mode! introducedin Engle(1982) and U, (Xt )for

0 > 0.5, in this particular case, can be regarded as a

conditional scalefunctionat @ -level.

The concept of scalesiswell discussed in Huber (1981)
and conditional scale models in the case of
heteroscedastic regression with independent variables,
inWelsh et a. (1994) and Welsh (1996). Because quantiles
arereadily interpretablein location-scale modelsand are
robustly estimable than moments, Koenker and Zhao
(1996) hasexploited regression quantilesidea of K oenker
and Bassett (1978) to ARCH settings. Instead of modeling
conditional variance, it focuses on ARCH models for
conditional scale, where the standardized errors are
assumed to bei.i.d. random variableswith mean zero and
finitevariance.

The nonparametric estimation of [, (Xt) in models

such as(1.1) hasbeen carried out in among others, Franke
and Mwita (2003), which gives the uniform strong
consistency properties of the estimator. The estimation

of O, (Xt) , under the assumption that U, (Xt)is

known, hasbeen carried out in Mwita (2004), which also
gives the asymptotic properties of the estimator. Based

onmodel (1.1) and given that an estimator of [/, (Xt) is
/fle(Xt), we get a nonparametric estimator of
g, (Xt) directly by first estimating the conditional

distribution functionof M, (Yt e (X )) given X and
then inverting it. We use a kernel estimate of Nadaraya
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(1964) and Watson (1964) type for the conditional
distribution. Apart from the disadvantages of not being
adaptive and having some boundary effects, which can
befixed anyhow (seeHall et al., 1999), it has advantages
of being a constrained estimator between 0 and 1 and a
monotonically increasing function. Thisis an important
property when deriving quantile function estimators by
theinversion of adistribution estimator.

In the following section, we propose an estimate of the

QARCH function in (1.1), when L, (Xt) is unknown,

and derive its consistency and asymptotic normality
propertieswhich areimportant for inferences. Thetechnical
results and proofs are postponed to the third section.

QARCH FUNCTIONESTIMATEAND ITS
ASYMPTOTICPROPERTIES

We propose an estimate of the QARCH functionin model
(1.1) and establish the weak consistency and asymptotic
normality. For that purpose, express (1.1) as

Mo (Y 1 (X)) =04 (X,) +
Oy (Xt)(Me (Zt’o) _1)

and observethat (2.1) isagain of theform (1.1), now with
Uy (X,)=0,(X,)OR, and

Z, =My (Z,,0)=1.1f py(X,) in model (2.1) is

known, we could consider (2.1) asaquantile autoregressive
model with errorsnot necessarily independent, and employ

2.1)

the QAR,

same procedure asin Mwita (2004) to estimate O ( X, ) .

That is we find the function g such that the following
equation is simultaneously satisfied,

P(Y <y (X)X, =x) =
P(My (Y. 1o (X,))sO[X, =x) =6

Since Ly (Xt) is unknown, our first task involves

(2.2)

estimating it. Then we compute the quantileresidualsand

pass them through the loss function M, asin (2.1) and
finally, estimate the QARCH function.

The kernel estimates of the autoregressive function
ue(Xt) at point x based on a sample

(Y, X,),t=1,...,n frommodel (1.1), isobtainedintwo

steps. Inthefirst one, we haveto estimate the conditional
distribution function,

F (y)=P(Y < y|X =x) =EH 4 [X. &F

23
of Yt given Xi=x, which can be written as the conditional

expectation of I{Yt <y and, therefore, may be estimated by
the standard Nadaraya-Watson kernel estimate
Ky (X - Xt) I{YlS)}

tnzl Ky (X - X )

Here, K(u) isad-dimensional kernel and

Ky (U) =hK (%) is the rescaled kernel. For any

'fx (v)= (2.4)

QD(O,l), the QAR function L, (X)is given by

e (x) =inf{yOR|F, (Y} 6}.

Therefore, we estimate U, (X) by the following kernel
estimator

fy (x) =inf{yOR

F.(yk 6 F*(8) (25

where IEX_1 (9) denotes the usual generalized inverse of

the distribution function IfX (y) which is a pure jump
function of y.

Let R =M, (Yn/Je (Xt)) bethetrue residuals, when

U (Xt) is known, and denote the conditional

distribution function of Ry given Xt as Fx(r), with r being
afixed valueon R+. Thetrue conditional scalefunction of

Y, given X can be approximated locally by

o, (x)=inf{r OR,|F,(rk 6} (2.6)
and its kernel estimate obtained as
8, (x)=inf{r OR|F,(r} 6} 2.7)
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with IfX (r)being an estimator for FX(I’). The

asymptotic properties for estimators (2.5) and (2.7) are
given in Franke and Mwita (2003) and Mwita (2004),
respectively.

When L, (Xt) is unknown in model (1.1), we get the

estimated quantile residuals as (Yt - [y (X, )) and the
estimated

R=M, (Yt,/fle (Xt)) . We therefore define the

transformed residual s as

conditional distribution function of FA§ given X as

{‘leh(x—Xt)I{Rsr}

tnleh (X_ Xt)

A

£ ()=

with ¢ ' being afixed-real valueon R+ inthe neighborhood

(2.8)

of r. Therefore we propose to estimate T (X) , in this
case, by thefollowing kernel estimate,

8, (x)=inf{r' OR|F,(r'k 6}

(2.9)

For sake of simplicity, we have assumed that the
bandwidth h is the same in all directions, but we could
generalize our results in a straightforward manner to

vectors (hl, N )T of bandwidths. For our asymptotic
considerations, we have to assume that the time series

(Yt, X, ) satisfies appropriate mixing conditions. There

areanumber of mixing conditionsdiscussed in literature,
for example, in the monographs of Doukhan (1994) and
Bosqg (1996). Among them a- or strong mixing is a
reasonably weak one known to befulfilled for many time
series models. In particular, Masry and Tjostheim
(1995,1997) have demonstrated that under some mild
conditions, both ARCH processes and nonlinear additive
autoregressive models with exogeneous variables are
stationary and o-mixing. Thus, choosing
X, = (Y Y

=Y, Y )T in (1.2) and assuming the time

series Y, to bea-mixingwould be an exampleof aquantile

autoregressive process (1.1) for which

(wat)’(Me (Yt’”e(xt))*xt)a”d liyey e a-

mixing aswell.

Thefollowing set of assumptionsarerequired for proving

consistency and asymptotic normality of o P (X) . Here

and in the following, g(X) denotes the stationary

probability density of X, .

(A1) For some compact subset G of RY there are

£>0,y >0, suchthat g(X)=y foral x in
the & — neighborhood {X;”X—u” <& for some
ull G}.

(A2) (Yt, Xt)is stationary and a-mixing with mixing
coefficients O (n), N =1, andthereisanincreasing

sequence S ,N2 1, of positive integers such that
for somefinite A,

N st (s,)<Als<s, sg fordln>1
S

(210
(B1) The conditional density fX (/J) is uniformly

bounded in x and U by, say, cf.
For the compact set G of (B1) and some compact

neighborhood @, of 0. The set

o :{V:/Je (X) +u; x UG, U® 0}

is compact too, and for some constant

¢, >0, f (V)2¢, fordl xIG,®

B2

(C)) The kernel K:-RY _, R is a nonnegative,
Lipschitz continuous function, satisfying

‘K (u)‘ <K, forall u,J’K(u)du =1L [uK (u)du=0
and J'||u||2K (u)du<eo

(C2) Foral I, x satistying 0< F, (r) <1,g(x) >0:

) F (r ) and g (X) are continuous and bounded
inr,X
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iy d (X) istwice continuously differentiable, and,

for fixed r, F_(r) is twice continuously
differentiable with respect to X , where
derivatives are continuous functions of r and the
second derivatives are Holder-continuous in

xforsome ¢, B >0andall X, X,r i.e,
2
F(r)--2

_axxj':'(r)sc||x‘x'||ﬂ, ij=1....d,

X

and analogously for g(X)
ii) Forfixed X, F, (r) hastheconditional density,
f,(r) , whichiscontinuousin x and Holder-
f(r)= ()

SC|r—r'|p forsome ¢, 3 >0

continuous in I :

) f,(0s(x))>0foral x.

(C3) The process {(Yt, Xt} is stationary and o -

mixing with mixing coefficients satisfying

a(n)= O(n_(2+5)), forsome § >0.

Assumptions (A1)-(A2), (B1)-(B2) and (C1)-(C2) are
required for proving the uniform convergence of the QAR
function estimate, L, (X) Thisresult is a pre-requisite

for theinvestigation of the behavior of the QAR residual
based on model (1.1). Assumption (A1)-(A2), (B1)-(B2)
and (C1)-(C3) are required for proving the consistency

and asymptotic normality of G (X)
Theorem 2.1. Assume that (Al)-(A2), (B1)-(B2) and

(C1)-(C3) hold. Suppose the sequence of bandwidths
h>0 converge to 0 such that S, =nh? (s, log n)_1 - o0

1
for some §, — . Let § =} +§n§. Then the
is

QARCH function estimate consistent,

g, (X) -"o, (X), and asymptotically unbiased,

EG, (x)-0,(x) = h°B, (09 (X)) +
0(s,) (o, (x))+o(n?)
_B(r)

f.(r)

If, additionally, the bandwidths are chosen such that

(2.12)

where Ba (r)

nhd*4is either 1 or converges to 0,0, (X)is
asymptotically normal,

Vi (8, (x) -0, ()-8, (0, (x)) -
o0 Vz(ag(x))D _
o(s.) f. (0 (¥))) - Nﬁomﬁ “

Here, B(r) and V2 (r) aredefined inthe biasand variance
expansion for the conditional distribution estimator in
Lemma 3.1 of the following section.

Proof of Theorem 2.1

In order to prove Theorem 2.1, we require thefollowing
result on uniform rate of convergence of the QAR function

estimate, /fle (X) , on acompact set G. The proof can be
found in Franke and Mwita (2003).

Theorem 3.1. Assume (Al)-(A2), (B1)-(B2) and (C1)-
(C2). Suppose h — Qisa seguence of bandwidths such

that §, =nh?(s,logn)™ - oo for some §, — 0.

1
Let § =h? +S;§_ Then we have

~ _ 0l0
sup|d, (x) =, (x)| =0(8,) +O 5] as (31
S, will be much larger than (nh®)™ and therefore the

rateof convergenceof U, (X) will be O(S,) particularly,
if the bias and variance are balanced.

The following Lemma gives the asymptotic bias and

variance for IfX (r) which is a Nadaraya-Watson kernel
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estimate for the conditional distribution, F, (r), of

|{Rsr} given X, = X. Therefore, we omit the proof of

the Lemmawhich follows standard lines of arguments.

Lemma 3.1 Suppose (C1)-(C3) hold. Then

EFF(r) - F.(NH=h"B(r) +o(h") (32)
var [F, (= (nh*) *V2(r) +o((nh") ™)
where
B(r) = ﬁ OF, (r)" Ilm g(X)" uK (u)du
1
+= (u"O°F (r)uK (u)du
2,[ (33)

2 _ 1 2 2
\ (f)—m(':x(r) FA(M)[ K™ (u)du

Thefollowing Lemmafollowsimmediately from Lemma

3.1, using the smoothness assumptions on F (r),

F,(r), and aTaylor expansion of IEX (r)around r.

Lemma 3.2. Suppose (C1)-(C3) hold. Then, for any

0, — 0,wehave

F(r+0)-F(r) =a,f() +

0,(6,)+0, (h%) + o, ((nh)™¥2) (3.4)

We also need consistency of the kernel estimate of the

density of X, . The following Lemma, which gives the
uniform rate of convergence of the Rosenblatt (1959b) -
Parzen (1962) kernel estimate, §J(X) for thedensity g(x)

of X, onthecompact set G , followsimmediately from
the proof of Theorem 3.3.6 of Gyorfi et . (1989).

Lemma3.3. Assume (A1) and (C1)-(C3).If, as N — 0o,
the bandwidth | _, Qsuch that

S, =nh’(s,logn)™ - oo, then

sup| (9 - 9(¥)| =0(§*) as (35)

Thefollowing Lemmashowsthat M, (Y;, i) isnotonly

convex but also continuousin UL R.
Lemma3.4. Let (y, /J) bereal —valued variables, then

for all y, M, (Y, M) is Lipschitz continuousin U with
Lipschitz constant 1, i.e,

Mg (y, 1) =M (y, )| <|pt = | forall y, p, 1’
Proof: Note that
Mg (Y, ) =My (y,u) =0(u'-u) -

Y=y =~V =E ) (36)

for p<y<p’, wehave I{y-ust} =0, I{y—u'SO} =1
and (3.6) becomes

My (Y, 1) =My (y, ) =0(u'=p) +(y —p)
=(y-u) - -0)(u'-p)

For (y—pu')>0and (y-u) >0, the last two
expressions on theright of (3.7) both imply

~(L-6)(H'- 1) SMg(y, 1) ~My(y. 1) SB(U -u)
and therefore |M9(y,u)—M9(y,u')| is bounded
from above by at least one of O(u'- ) and
@-6)(u'-u). Similarly, for usu'<y

y<us<p', we have respectively g4 =0

and

implying Mg (y, 4) =Mg(y, u’) =6(u'~p) and

lyusg =11 g =Limplying

My (Y, 1) =M, (y, ") =(2-6)(u —p") . Hence

Mg (Y, 1) =M, (y, 1t)| < max(8,1-6)|u — | <|ut 1/
which immediately impliesthe assertion.

Pr oof of Theorem 2.1:

Making use of the uniform convergenceresult in Theorem

3.1 and the boundednessin Lemma 3.4, we express FA§ in

termsof R as FA§ :F} -R +R =R +0(S)) as.,

with the latter term being thebound for [, (X) = Ly (X).
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Theindicator function I{F;sr} can then be expressed as,

iR rorsysros = lasroy With r'=r +0(S,).

We first proof that Ifx(r’) is a consistent estimator for

F.(r). Let the bound O(S,) - 0 as N — o, then
by Lemma3.2, we get

F () =F (1) =F (1) =F,(1) +O(S)) f,(r) (39)
Since the last term depends only on n, the asymptotic

behavior of IfX (r") will largely depend on the behavior

of Ifx (r) . Taking expectation and variance on both sides
of (3.8) and using Lemma 3.1, we get the bias

EFF. (") -F.(NH=h"B(r) +O(S) f,(1) , and

var fo(r’) =F(NH=(nh")?V3(r) . In both the

bias and variance, terms of smaller order in probability
have been left out. Because the bias is of order

O(h*)+0(S,)and the variance, of  order

O((nh®)™), the mean squared error is seen to go to
zero as n goes to infinity. Hence Ifx(r') - F (r)in
probability, foral x [ RY andr, witharatewhichimplies
Ifx(r') is consistent. To show that
Johe (F, () - F.(1) ~hB(r) ~O(S,) (1))
39
isasymptotically normal, we proceed asin Theorem2.11in
Franke and Mwita (2003), by replacing Ifx(y) by
F.(r)and var(F (y)) by var(F(r)). For

consistency of G,(X), note that the Glivenko-Cantelli

Theorem in Krishnaiah (1990) for strongly mixing
sequences implies

sup|F,(r'") = F, ()| - 0,r OR, inprobability (3.10)

By the uniqueness assumption (C2iv) on g, (X) , for any

fixed x(JRY, thereexistsan g >0 suchthat & = (&)

=min{6 -F,(0,(x) -¢),F, (0, (x) +¢) -§ >0.

Thisimplies, using the monotonicity of F,, that

P{I65 (9 -0, (x)|> ¢

< P{|F,(,(x) = F,(g,(x)| > &

) . 2K
<P{ R0 -F G0 >-21 }
<P{ sp|F,()-F.()|>5" }

for arbitrary &' < @ and nlarge enough. Here, because
Ifx(r) isapurejump functionin r with heightsequal to

1K, (x=X,)/§(x), we have used F,(0,(x)) =6

A 2K,
and O < F,(6,(x)) <6 "‘W,which follows from

Lemma 3.3, assumption (A1) and the boundedness of K

by K, . Now, (3.11) tends to zero by (3.10). Hence the
consistency follows.

Finally, to prove that the left hand side of (2.12) is
asymptotically normally distributed with mean zero, let

b =-B(0,(X) £, (05(x)) —O(S,)h ™, (04(x))

and v=V (0,(X) f (0,(X)) . Let
q,(2) = P/ 22X =00 D
v

= P(G,(X) <0, (x) +h’b +(nh")**vz)

= 12 .. . . .
As Fx(r ) isincreasing, but not necessarily strictly, we
have

P(F. (65(X) < F,(0,() + Wb +(nh") *v2) )
<d,(2)
< P('Ex (69(X)) < ﬁX(UG(X) + h2b+(nhd)—1/zvz) )

By the same argument as in (3.11), we may replace

F.(G,(X)) by F,(0,(X)) uptoanerrorof (nh?)™
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at most, and we get, neglecting the (nhd )‘1 —termwhich
isasymptotically negligible anyhow,

qn(z) - P(FX(UG(X))
< F,(0,(x) + b+ (nh®) Y2v2))

~ P(=3, 1,(05(X) < F,(05(X) = F(0,(2)))

3.12)
with &, =h’b+(nh?)™?vz. Here we have used
Lemma 3.2 and neglected the terms of order
0(3,),0(h*) and o((nh®)™?) which are small

compared to 5n . Horvath and Yondell (1988), see also

Mwita (2003) have shown that the empirical conditional
distribution estimator is asymptotically normal. This
follows also under similar conditions from a functional

central limit theorem for Ifx(y) of Abberger (1996-
Corollary 5.4.1 and Lemma 5.4.1). Therefore, with
fy =0,(X), weget

S Fulta + O(8) = F. (1) ~h*B(r,) ~O(S)) £, ()

V(ry)
> [nhd - fx(re)én _th(rS) _O(Sn) fx(re)
V(ry)
— o3/ fx(re)-(h2b+(nhd)’”2VZ)+hZB(fg)—O(Sn)fx(fe)g
O V(r,) 0
=(2)

By our choice of b and v and our condition on the rate of
h. this proves the theorem.

CONCLUSION

We have shown weak consistency and asymptotic
normality of the nonparametric QARCH function estimate
where, up to theterm O(S, ) f, (09 (X)) , the form of
asymptotic variance is the same as for the Nadaraya-
Watson estimator for U, (X) For sake of simplicity, we

have restricted ourselves to Nadaraya- Watson estimate
of the conditional distribution function as the basis for
the QARCH function estimates. Our results may be

modified in straightforward manner to cover also themore
general local polynomial estimates (Fan and Gijbels, 1996).
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