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ABSTRACT: Many situations ranging from industrial to social via economic and environmental
problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane
approach which lends itself better for standard non-linear programs is exploited with good reasons
for grappling with linear, convex and geometric Semi-infinite programs. For each case, computational
aspectsare discussed and convergence statements established. Smple numerical examples are also
provided for the sake of illustration. The paper ends by briefly comparing the cutting-plane approach
discussed here with other existing approaches and by stressing the necessity of pushing forward a
Decision Support System effectively capable for helping someone faced with a problem that can be
formulated as a Semi-infinite mathematical program.
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INTRODUCTION

Optimisation theory is one of the most important field of
Applied Mathematics. First works on Optimisation theory
traced back to 1696.

Since then works on thisfield include results of foremost
mathematiciansof the 3001 ast years. Bliss, Bernoulli, Bolza,
Caratheodory, Euler, Fermat, Hamilton, Hilbert, Jacobi,
Lagrange, Newton, Welerstrass to mention but afew.

At the moment, the subject has come to maturity and it
constitutes the stumbling block for what is done in
Operational Research, Decision Theory and M anagement
Science.

The basic Optimisation model consists of minimising or
maximising agiven functional under somerestrictionsin
theform of mathematical (in)equalities

Extensionsthat have been madeto thisbasic model include:
Incorporation of several stages in an optimisation
framework: (Dynamic programming / 1 /). Simultaneous
consideration of several conflictual objective functions
(Multiobjective programming / 2 /, / 3 /). Integration of
imprecision inan optimisation framework:

(Mathematical programming under uncertainty /4/,/5/,
118/, /119/,/20/).

Consideration of infinitely many constraints (Semi-infinite
programming/13/,/14/,/16/,/17/, the subject matter of this
paper).

Problemsof finding an optimal solution of amathematical
program with infinitely many constraints arise when
handling many concrete problems. Let us mention, without
any claim for exhaustivity, industrial engineering problems
which many be put into a mathematical programming
framework while depending on aparameter ranging over a
continuum/ 8/, Tchebycheff approximation problems
/71, max-min problemsarising in Gametheory.

The « primum movens » of this paper is to add to the
spectrum of existing techniques for solving Semi-infinite
mathematical programs[7],[8], [9], an approach based on
the cutting-plane philosophy [12].

Apart from methodological aspects, convergence results
arealso established. Simplenumerical examplesareincluded
for the sake of illustration. The paper is organized as
follows: the following section isdevoted to thelinear case.
Section 3 deal swith convex semi-infinite programming while
in section 4 we give some hints for dealing with the
geometric case. The paper ends with concluding remarks
along with a comparison of the cutting-plane philosophy
with other existing approachesand aclaim for implementing
Decision Support System for this problem.
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2 ACUTTINGPLANEMETHOD FORSOLVINGA

j 0 0 _ 0
LINEAR SEMI-INFINITEPROGRAM G:E(D”:? Zd(é 2 b(é £ 1..08 S:D
r=1

2.1. Problem for mulation

and
The problem under scrutiny in this section is the linear H = {xI IR" @Ax3b; x*0}
program: . .
Where A and b are respectively m x nand m x 1 matrices
Cminex chosen so that the condition:
n N
[ - . . Gl Hisfulfilled
(F{)%a:(éx 2h(9 ; i=1..,p;sOS;|S o Istulf
=1 . . . .
5({ >0:r=1..n 2.2. Algorithm for finding asolution of (P, ).

Wheredl IR"; Sisacompact of IR<; and b, (i=1,...,p) The procedure describes by thefollowing flowchart yields

aredlementsof C(S) and cSéstandsfor thecardina of S.  @optima solutionof (R). _
The following result gives ajustification of the stopping

Let now:
start
v
Find an optimal solution
of the linear program:
imincx
(17 ) 1iX 1 g
¢4
Let x“be an optimal
solution of (Pk), Compute:
L =mjn |min (& 22(5)x" - 4,(s)
1 =fu0 [ ( SIS )]
=al(s)a - 5, (s")
YES
r L30
PRINT: Add the constraint:
« x*is an optimal K v v
solution for (Py). » d (31'-‘ (5A)X,- - b, (SA)) 20
to the program (p¥). Let (p ¥*') the
resulting program
Solve the mathematical program (p **).
x ¥ its solution
v v
End k=k+1 >

Fig. 1: Flowchart for solving (P)
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rule used in the above procedure.
Theorem 2.1.

Let x “be an optimal solution of (P<) and assume that:

: L* =min |n|:| a (S)X _b S 0 hen x X
' i=Lp =1 ' ' ! % t X
isan optimal solution for ( PL )

Pr oof:

- Feasibility
k - i (Qyk _
“>00 rrsgg(Zar(s)xr b,(s)% o0=i 1...,p.

Thisimpliesthat:

Y (a(9xk-b(9) 20 08 SO=, L...p

r=1
i.e. x<isfeasiblefor (P ). (1)
- Optimdlity.

Let V (P ) and V (P) denotes the optimal values of
objective functions

(P_)and (P) respectively.
We have that:

V(P)ECXk=V (PY)  (2)

because x * isafeasible solution for (P,)

Furthermore, we havethat thefeasible set of (P, ) isaproper
subset of the feasible set of P*; so:

V(P =Cx*£V(P) (3)
Putting together (1), (2) and (3) we may concludethat x is
anoptimal solutionfor (P, ).

The question that comes now to mind iswhat if L* failsto
become positive or null after a finitely large number of
steps . The following result which gives an asymptotic
behaviour of the above described procedure, address this
question.

Theorem 2.2.

Any cluster point of the sequence (x ¥) , generated by the
above described procedure is an optimal solution of (P, ).

Proof,

Theexistence of acluster point for (x*), isguaranteed by
Bolzano-Weierstrass Theorem.

Now let x* bea cluster point of ( x), . We can find a

subsequence (x ) ; of (x¥) , converging to x *. Suppose
that x * isnot feasiblefor ( P), thenthereissT Sandi, {1,

n
..,m} suchthat ) & ()X <b. (s) ()
r=1
We can then find N T IN such that for k >N we have:
n
Yal(s)x! <b.(s)
r=1

Otherwise by taking limit we would have a contradiction
to(*)

We have also that:

n . . . .
9= 3 a ()¢ -, (57)

r=1
= @igggg(za:(s)xﬁ -n(9 )k iaj(s)xr” —b, —(9 <0
Thisimpliesthat wemay find ¢ - Qsuch that

N B . .

b, (%) =2 a(s*) ¢ za -0 @

Furthermore, as isafeasible solution for ( pX ) we have:
n

b (s9)+ > ak(s?) x" 20 (5)

"
K r=1

Adding (4) and (5) yield:

n
i\ ki ki+1 Kj

> a(s4) (xi" - xf) za » 0 ©

r=1

Put now:

x 9™ — x| = max|x9* - x¥
r

and

_ i
K = maxa’ (s)
ras
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We have from (6) that

nK[x5 - x5 = > alv(s4) (x99 - x4) 20 = 0
: a

. ki+1 _ k . .

i.elX; xran ; for k= N

This contradicts the fact that (x9 ), is a Cauchy sequence
and x” should be afeasible solution for (P,). To show that
X" isalso optimal wemay proceed asin the proof of Theorem
21

2.4, Numerical example

Consider the following simple Semi-infinite program for
the sakeof illustration.

Cmin2x+1
0
(P.)x+s=1 sO[o0/]

>0

Applying the method described in & 2.1, we have by teking:

H:{x/xz%,xz(}

Onmin2x+1
1

(P2)Ex=

2
0

v

0 &I

1
and then X° ==
2

L°= min @5_1 —£<0and x° isnot
As S][O,]] 2 2 an
optimal solutionfor (P,)

Consider now the program:
Omin2x+1
0y
>3
1
(PE) Ok+0>1
0
x=0
We havethat x! = 1; and:

Li=min (1+s1)=0
si[0,1]

Theoptimality criterionismet and then the optimal solution
of (P isx* =1.

3. ACUTTING-PLANEMETHOD FORSOLVINGA
CONVEX SEMI-INFINITEPROGRAM.

3.1. Problem for mulation.

Inthissection we' Il ponder the mathematical program:

0
Hmin f (x)

(P, (692 (i =1, pisOS 0 “i[$e
ExOIR"

Where f is a convex function and g (x,8) i = 1,...,.p are
concave functions with respect to the first argument.

Under these assumptions (P) is a convex program. It is
asoassumedthatf,g,b, (i=1,..., p) aretwicecontinuously
differentiable.

(Pc) may also bewritten as:

Omin A
- f(x 20

(PC')Egi (x,92hb(9);i=01..,p;sO0F] IR";[Sw
BxOIR

This program may be put in the form:
Umincy
(PC")E@;i (v,9)2b(s);i=0L1..,p;s0S] IR[Sw
EyD IR™
Where: c= (1,0,...,0) TA n+1
y= (A, X0 X,)
9o (%9 = A= f(X)
b, (=0
6 (y,9) = gi(x,9);1 >0
Let K= max r‘rﬁxHDg‘(y,s)H and H= {y] IR™
Aisa(p+ 1) xn+ 1) matrix and bl IR

ry g

H isdefined so that the following condition is met:
G={ym "g(y.9 b7 0L..p3 § H

4
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3.2. Algorithm for finding a solution of ( PC")

Theorem 3.1.

n

The following procedure (fig.2) provides a solution for  If an optimal solution y* of ( PC") issuch that:

(P2)

isgiven by thefollowing:

YES

k _ . . k _
A justification of the stopping rulefor the above procedure L _i:ﬂ,np smlsn (gi(y ’S)

an optimal solution of ( PC')

start
v

Find an optimal solution y° of

(PCO)" mincy
yOH

k=0

o

b (S))% 0_then y* is

\ 4
Let v an optimal
Compute

L = mlinD ig(gi(yk's) —b.(S))E

=g, (v*,s*)-h,(s")

L“>0

A

Print:
<<yXisan optimal
solution of (p_y’

end

Add the constraint: .
100 (Y8 +[0,0, (v (v vy b (s)

" "

(P¥) . Let (P*!) theresulting program

v

"

Solve (P*!) Let y**itssolution
v
k=k+1

v

Fig. 2: flowchart of aprocedure for solving ( PC’) .
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The proof of thisresult is similar to that of Theorem 2.1
and istherefore omitted.

3.3. Conver gencestatement.

In what follows, we assume that the sequence ( y*),
generated by the procedure described in section 3.2 isan
infiniteone.

Theorem 3.2
Any cluster point y* of the sequence (y*), is an optimal

solution of ( P, )
Proof:

Theexistenceof acluster point of (y*), iswell guaranteed
by the Bolzano-Weierstrass  Theorem.
Now let y* beacluster point of (y*),. Let usshow first that

y* isafeasible solution of ().

Let (ykj ) j be a subsequence of ( yk ) . converging to y*.

Assume now that y* is not a feasible solution for (p:).
Then thereare s*1 Sand i*1{0, 1, ...,p}

such that: gi*(y*,s*) <b.(s*).

Furthermore by thecontinuity g. thereis N [J |N such
that for kj > N we have gi*(ykj ,s*) < b,*(s*)

We have & so that:

L8 =g, (y".s%) b, (s%) < g, (y¥.s*) -b.(s*) <0.
Thisimpliesusing the archimedian property of A that there
isg > O such that:

b,,(s"")—gim(ykj,skj)za>0 ©6)

K

But we have also by thefact that y¥** isafeasible solution

of (pckiﬂ)" that:
g, (") (¢)+0g, (v &) [y -k 0 ™

Adding (6) and (7) yields:
0,9, (y*) (y9"= vk a >0

Thisimpliesthat:

0<a <0,g, (y9,s4) (v y9)
el ) e v
= M|y -y

whee M =00, " )

Finally we have:

kKi+1 _ K

a
>—>0 for

y Ay kj = N.

This contradicts the fact that (ykj ) . isaCauchy inthe
complete space []" 1]

So what we have supposed is hot true and we have then
established the feasibility y* for (r")

Let us now show that y* is an optimal solution for (p:),
we ha\/ev( PC') <Cy* (8

WhereV( PC') denotes the optimal value of ( Pc') .

n

Furthermore, we have that the D( Pc') 0 D( Pck) by

construction.
Where D(P) denotesthe feasible set domain of the program

(P).
Hencev/(Py) 2 V(P*) = Cy* ©)

Putting (8) and (9) together, we have:

V( PC') e Cy*

and then y* isan optimal solution of (p:).
3.4.Numerical example

Consider the mathematical program:

[minl-x
U
(P) x?-1<5* +s sO[0]

>0

Let H ={x/x <2 ; wehavethat
HOG {x/x* k s%* s;€7 [01]}
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inl-x

(P°) Ix<2

>0

We have: x° = 2;V(|:>C°) = —
L°=-3<0
and then x° is not an optimal solution of (p,).

Construct now (P}

Res

( [Ax <5
H=o0

_9.

We have: x' = 4

C

Construct now ( PCZ):
O
Lminl-x
%sz
|

(7 s 2
0 4
0o 41
= 10
Hx>0

We have the:
_A4 L 2) =

x* = iV(R?) = -

L2 :—410<0

and then x? is not an optimal solution of ( Fg)

Construct now (PC3) :

1
L= 2 0 and x* isnot an optimal solution of ().

—_——
U

)

N

300000000000

—_—
oY
~——

&

3
>
T
x

IN IN

IN
© By gl o ®

i\
+
58
1 =

IN

IN

We have then x> :1;V(|:>C3) =0

and L =0
As Lf: < 0; theoptimum isreached and is:
xX*=1.

4, TheGeometriccase.

Consider the mathematical program:

% (|
S
Mz
O
-

1

i

oy
0

0
H

I
HA
I
1S

f'x1:1=1...P

D:EII:II:II:I
i 3
E I:
X
2
[

Y
o

;] =..n
L, >-051=1...,n,;1=0,1,...p
IR0 O,s [a,8]

Using the transformation:

X = e

]

(P.) may be put in the form:
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El

U o

SN2 3

1N >
N3
50
T O
I

anmfm
H
H
O
(0)]
s
=,

L et being acontinuous one-to-one and monotonic function
(P’ ) isequivalent to the program:

O
m Zvl.qy,l
EPnin Loch e

D n
) D Dzieiilj

) L 0 Il%uay
S

gyj (5§ 1n;¢ >04 L..nA 0L..p
B’ij M ;60 O;s [a,B]

Proposition 4.1.

(P” ;) isaconvex program

Proof: We have just to show that functions involving in

(P” ) are convex.
In other terms, we have to establish the convexity of:

d i“u i
f,(y)= LogZ1 cef
and

ny
fz(y) = |og ZCI (ez"’ijvj' )SQ

i=m+l

To show that f, is convex, take y* and y2in A"
and A[] (0,1) we have to prove that:
fAyt+(1-A)y?) <A fy!) +(@1-2)f(y?).

(10
Let real numbers p and q such that p > 0, q> 0

=A and 1=1—A,
q

<'O\H

Holder inequality we have:

m e _ﬁ
Sleete ]t

=1 0

1 1
O <, .00 <, .0
Za”y]l Za”yjz
w3t o
U HEN U
E S iij}+yiDH
= LogCl c,e"z”a Bt
| 5
0 <,..0 O <, ..L
1 Z“nyj 1 Za‘iyl
<—Log) [te® Hr-Log)Re™ |
IR Hatorge |

and we have established (10). To show that f, (y) isconvex,
we can proceed in asimilar way putting: ¢s” =G .

As( Ps ) isaconvex program, the method developed in

section 3 applies.

From thisdiscussion we can draw thefollowing procedure
for solving ageometric Semi-infinite program.

4.CONCLUDINGREMARKS

Since accurate representations of real-world situation may
result in mathematical modelsinvolving infinitely many
constraints Semi-infinite optimization isan important issue.
Inthis paper we have discussed application of the cutting-
plane philosophy to Semi-infinite mathematical
programming.

The underlying principle of cutting plane methods is to
approximate the feasible set of the semi-infinite program
by finite set closed-half spaces and to solve a sequence of
approximating linear programg 1], [6].

8
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Start

v
Read
aij; aij; by
a,pB
v

Form the geometric
program (Pg )
v
Putxi= € ;j=1,n
and form the program

(Pe)
v

Take the natural logarithm
of pozynomial functions

in(pG')toform (pG')
v

Solve ( pG-) by the method

described infig.2 ;

Let y* = (ylm,---,ﬁ)itssolution
v

Find x' =e’j=1...,n
v

Print x" =(x;,...,x,) isthe

solution of (Pg)

Fig. 3: Flowchart for solving (P,).

Construction of cutting-planes for the linear, the convex
and the geometric cases is carried out by finding
appropriate supporting hyperplanes to the feasible set.

Under not too restrictive assumptions, it has been shown
that either proposed computational schemes generate a
solutionin afinite number of steps, or it generateaninfinite
sequence accumulation points of which are optimal
solutions of the original Semi-infinite program.

The cutting-plane approach discussed in this paper deliver
an exact solutionintwoways. Either thetermination criterion
ismet after afinite number of iterations, or if thisisnot the
case, one may find a solution by finding the limit of a

convergent subsequence extracted from the sequence
generated by the procedure.

This is an advantage over existing discretization
approaches/4/, I'7/, where only an approximate solutionis
guaranteed.

Furthermore, the above-mentioned cutting-plane approach
allowstackling problems having some non-linearity. This
is not possible for the three-phases approach /2/ for
instance.

An interesting line for further investigation is to push
forward a user-friendly Decision Support System
encapsulating discretization methods, three phrases
approaches and the cutting-plane scheme discussed here.

Such a Decision Support System may help in effectively
helping aDecider faced with problem that may be cast into
aSemi-infinite program.

Other linesfor further inquiriesincludetaking into account

conflicting objectivefunctionsinto asemi-infinite program
and incorporating imprecise data into a Semi-infinite
program.
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