NEURO-PROTECTIVE EFFECTS OF CROCIN ON BRAIN AND CEREBELLUM TISSUES IN DIABETIC RATS

Eyup ALTINOZ1, Zulal ONER2, Hulya ELBE3, Nigar VARDI1

1Karabuk University, Health High School, Department of Medical Biochemistry, Karabuk, Turkey.
2Inonu University, Medical Faculty, Department of Anatomy, Malatya, Turkey.
3Inonu University, Medical Faculty, Department of Histology and Embryology, Malatya, Turkey.

Corresponding Author: Phone Number: +90 370 433 0202, E-mail: eyupaltinoz@karabuk.edu.tr

Abstract

Introduction

Diabetes Mellitus (DM) is a common epidemic endocrine disorder. Hyperglycemia induced systemic complications are the main problem of diabetic patients. Hyperglycemia provides more substrate for anaerobic glycolysis which leads to lactic acidosis (Bissels et al. 1994). It has been stated that the tissue damage resulting from hyperglycemia is due to the oxidative injury arising from the increase in the formation of free oxygen radicals (Ercel et al. 1999). Moreover, increase in the formation of free oxygen radicals leads to the depletion of cellular antioxidants, such as glutathione (GSH). The increase of free oxygen radicals and the disruption of defense system make the neurons and astrocytes more sensitive against oxidative damage (Guyot et al. 2000). Previous studies have shown that hyperglycemia induced oxidative stress is the cause of development of several common acute and chronic neuro-degenerative pathologies (Greene et al. 1999; Low et al. 1997).

Oxidative stress causes the increase of free oxygen radicals and/or decrease in antioxidant defense system. The increase in the formation of free oxygen radicals has cytotoxic effects on the membrane phospholipids and leads to the release of toxic substances such as Malondialdehyde (MDA) (Slatter et al. 2000). In addition, free radicals can diffuse into cells and lead to mitochondrial enzyme damage. DNA fractures, disruption of the cellular functions and development of patho-physiology of various diseases (Kristal et al. 1997). Antioxidant defense systems, non-enzymatic free radical scavengers (for example Vitamin E, vitamin C, Uric acid, bilirubin) and antioxidant scavenging enzymes [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)] protect the tissues against oxidative damage (Bonnewfont-Rousselot et al. 2000). The central nervous system contains a higher rate of unsaturated fatty acid and lower rate of antioxidant enzyme and has a high level of oxygen consumption (Somani et al. 1996). Thus, it is potentially sensitive to oxidative damage. Increase in the oxidative stress play an important role in the etiology and pathogenesis of chronic complications in diabetic patients (Baynes et al. 1991). It is assumed that hyperglycemia induced oxidative stress leads to the development of diabetic neuropathy (Greene et al. 1999; Low et al. 1997). Again, it has been indicated that xanthine oxidase (XO) is the potential superoxide source in the streptozotocin (STZ) induced experimental diabetes in rats and this condition may be the reason for diabetic complications (Matsumoto et al. 2003).

Saffron is derived by drying the stigma of the flower of Crocus sativus L. in the family Iridaceae and mainly grown in Iran, Morocco, India, Greece, Turkey, Spain and France. Besides being used as an additive for the foods mainly, it is beneficial as a traditional drug for medical purpose in many diseases including depression, mental disorders and cancer (Schmidt et al. 2007). Crocin (crocetin glycoside), crocetin and safranal are the main active ingredients of saffron (Liakopoulou-Kyriakides et al. 2002). In addition, saffron comprises protein, sugars, vitamins, flavonoids, amino acids, vital minerals and other chemical compounds (Abdullaev 1993). It has been reported that C. sativus has hipolipemic, anti-inflammatory, antioxidant and anticarcinogenic effects (Hosseinpor et al. 2010; Abdullaev 2002). Currently, it has been reported that saffron extract, crocin and safranal have remarkable radical scavenging activities (Assimopoulou et al. 2005).

The purpose of the present study was to investigate the neuro-protective effect of crocin on hyperglycemia induced oxidative stress by measuring MDA, Reduced GSH, XO levels and examining brain and cerebellum tissues morphologically.
Materials and Methods
Experimental Animals
In this study, 30 female Wistar albino rats (Experimental Research Unit of Inonu University Faculty of Medicine, Malatya, Turkey), weighing between 170-200 g, were housed in a room with a mean constant temperature of 21°C, moisture at the rate of 55-60% and a light/dark photo-period of 12:12 (08:00 and 20:00). Animals were fed with standard rat chow and tap water ad libitum. The experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals of Inonu University Animal Ethic Committee.

Experimental Design
At the onset of the study, each rat was weighted and blood samples were taken from tail veins for the measurement of blood glucose levels. The rats were randomly divided into three groups each consisting 10 rats as follows: control (C; non-diabetic rats) group; Diabetes mellitus (DM; STZ-induced untreated diabetic rats) group; Diabetes Mellitus + crocin (DM + crocin; STZ-induced diabetic rats treated with crocin) group. Streptozotocin (STZ; Sigma Chemical Co., St. Louis, MO, USA) dissolved in 0.01 M sodium citrate buffer (pH 4.5) was administered at a single dose of 50 mg/kg body weight via intra-peritoneal (i.p.) injection in both DM and DM + crocin group, but 1 ml sodium citrat buffer was injected via i.p. injection in only C group. Three days after administration of STZ, blood glucose levels of all groups were measured with a glucometer (Accu-Check Active, ROCHE, Germany) in samples obtained from the tail vein by using reagent strip (Accu-Check Active Glucose test strips, ROCHE, Germany). It was observed that blood glucose levels were within normal limits in C group; however, the blood glucose levels were above 270 mg/dl in STZ and STZ + crocin groups and these rats were considered as diabetic. Normal saline was administered in C and DM groups; and crocin (Sigma Chemical Co., St. Louis, MO, USA) dissolved in normal saline was administered in DM+crocin group at a dose of 20 mg/kg/day (Zheng et al. 2007). All the administrations were performed at the same hour and continued for 21 days with a volume of 5 mL/kg body weight/day via gavage. At the end of the study, all animals were anesthetized under the ketamine anesthesia. Trunk blood was collected to determine the blood glucose and HbA1c levels. The brain and cerebellum tissues were removed rapidly and brain tissue was divided into two equal pieces. One of the brain pieces and cerebellum were placed into 10% formaldehyde for routine histo-pathological examination by means of light microscope. The other brain pieces were stored at -80°C for MDA, GSH and XO activity measurement.

Biochemical Analysis
The brain tissue was homogenized in ice within 1 M Tris-HCl buffer (pH 7.5) (includes Protease inhibitor, phenylmethylsulfonyl fluoride, PMSF, 1mM) with homogenisator (IKA Ultra Turrax T25 basic) at 16,000 rpm and at +4°C for 3 minutes. The homogenates were used in the measurement of MDA, GSH and XO. All the procedures were performed at + 4°C. The main principle of the analysis is based on the fact that MDA in the medium reacts when heated with thiobarbituric acid and creates a pink chromogen. The intensity of the pink color is in direct proportion to MDA concentration. MDA levels were assayed spectrophotometrically at 535 and 520 nm in accordance with the method of Ohkawa et al. (Ohkawa et al. 1979). Results were explained as nmol/g wet tissue.

GSH levels were measured with Elman (Elman 1959) method. When GSH reacts with 5,5-dithiobis-2-nitrobenzoic acid, the resulting product provides maximal absorbance at 410 nm. Results were explained as nmol/g wet tissue.

XO activity was studied in accordance with Prajda and Weber (Prajda and Weber 1975) method and absorbance increase in the formation of uric acid from xanthine was recorded at 292 nm (εmax 9.2 x 103). One unit of activity was defined as 1 µmol of uric acid formed per minute, and results were explained as U/g protein.

Protein levels were measured using the Bradford method (Bradford 1976). The absorbance was recorded at 595 nm using a UV-VIS spectrophotometer. Bovine serum albumin (BSA) was used as protein standard.

Serum glucose concentration and HbA1c were performed an Abbott Architect c 1600 automatic analyzer using commercially available kits.

Histological determination
At the end of the study, the cerebrum and cerebellum tissues were placed in 10% formaldehyde and were prepared for routine paraffin embedding. Paraffin blocks were cut at 5 µm thick, mounted on slides, stained with hematoxylin-eosin (H-E). Cerebrum (congestion, perineuronal and perivascular edema) and cerebellum (Purkinje cell degeneration and loss of Purkinje cell) sections were examined for severity of histopathological changes. For this analysis, tissue injury was semiquantitatively graded as (0) normal, (1) mild, (2) moderate, (3) severe, for each criterion. All sections were examined using a Leica DFC280 light microscope and a Leica Q Win and Image Analysis system (Leica Micros Imaging Solutions Ltd., Cambridge, UK).

Statistical Analysis
Statistical analysis was carried out using the SPSS for Windows version 13.0 (SPSS Inc., Chicago, III., USA) statistical program. Results were expressed as mean ± standard error of the mean (mean±SE). Normality for continued variables in groups were determined by the Shapiro Wilk test. The variables did not show a normal distribution (p <0.05). So, Kruskal-Wallis and Mann-Whitney U tests were used for comparison of variables among the studied groups. P <0.05 was regarded as significant.

Results
MDA, GSH and XO levels are presented in Table 1. It was detected that MDA and XO activities increased significantly in DM group (P<0.01) compared with C group. When DM group was treated with crocin, MDA levels and XO activities decreased significantly in DM+crocin group (P<0.01) compared to DM group.
Table 1: Comparison of the effect of crocin on brain MDA and GSH contents and XO enzyme activities among the experimental groups.

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>MDA (nmol/g wet tissue)</th>
<th>GSH (nmol/g wet tissue)</th>
<th>XO (U/g Protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>518±32.2</td>
<td>1127±27.1</td>
<td>0.086±0.007</td>
</tr>
<tr>
<td>DM</td>
<td>795±45.5</td>
<td>987±25.1</td>
<td>0.145±0.015</td>
</tr>
<tr>
<td>DM + crocin</td>
<td>483±29.1</td>
<td>1075±17.6</td>
<td>0.070±0.015</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SE. \(^{a}p<0.01 \) vs Control rats; \(^{b}p<0.01 \) vs DM; \(^{c}p<0.05 \) vs DM.

Diabetes also caused a significant decrease in the GSH levels in DM group (P <0.01). However, when pre-treatment of the DM animals with crocin, GSH levels increased significantly in DM + crocin group (P <0.01) and reached a level that was close to the levels of C group.

Mean blood glucose and HbA1c levels are presented in Table 2. At the end of the study, blood glucose concentration was found to be at normal levels in C group. However, when DM and DM + crocin groups were compared with C group, it was observed that blood glucose concentrations increased significantly (P <0.01). In addition, when DM + crocin group was compared with DM group, blood glucose concentrations decreased significantly (P <0.05).

Table 2: The blood glucose and HbA1c levels of all groups.

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Glucose (mg/dL)</th>
<th>HbA1c (% Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>75±25.5</td>
<td>2.48±0.234</td>
</tr>
<tr>
<td>DM</td>
<td>488±15.38(^{a})</td>
<td>9.33±0.339(^{a})</td>
</tr>
<tr>
<td>DM + Crocin</td>
<td>424±31.23(^{b})</td>
<td>8.66±0.390</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SE. \(^{a}p<0.01 \) vs Control rats; \(^{b}p<0.05 \), compared to DM rats.

It was observed that blood HbA1c levels were normal in C group. But there were significant differences between C and DM groups (p<0.01). On the other hand, it was found that blood HbA1c levels decreased in DM + crocin group compared with DM group, but it was not statistically significant (p > 0.05).

Table 3. The histopathological damage score of all groups.

<table>
<thead>
<tr>
<th>Score</th>
<th>C</th>
<th>DM</th>
<th>DM+crocin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebrum damage</td>
<td>0.12 ± 0.12</td>
<td>6.25±0.36(^{a})</td>
<td>2.25±0.36(^{b})</td>
</tr>
<tr>
<td>Cerebellum damage</td>
<td>0.00 ± 0.00</td>
<td>4.87±0.22(^{a})</td>
<td>2.12±0.22(^{b})</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SE. \(^{a}p<0.0001 \) vs control group, \(^{b}p=0.001 \) vs DM group.

The histopathological damage scores are presented in Table 3. The histological appearance of the cerebrum and cerebellum were normal in C group (Figs. 1a, b). DM group showed some histopathological changes including congestion, perivascular and perineuronal edema in cerebrum (Figs. 2a, b). In addition, we also detected subarachnoidal hemorrhage and congestion in choroid plexus (Figs. 2c, d). Furthermore, in cerebellum, purkinje cell degeneration, loss of purkinje cell and hemorrhagic areas were observed (Figs. 3a, b). In DM + crocin group, histopathological changes in cerebrum and cerebellum markedly attenuated (Figs. 4a, b). There was a significant difference between DM and DM + crocin group (p =0.001, for both).

Discussion

The present study showed that crocin is protective against increased ROS in oxidative stress arising from STZ induced diabetes and contributes to protection of brain and cerebellum tissues.

In accordance with the previous studies, we showed in the present study that STZ induced diabetes mellitus leads to oxidative stress in brain tissue (Low et al. 1997; Ozbek et al. 2003). Previous studies showed that oxidative stress and the secondary lipid peroxidation were increased in DM (Cerutti and Chadi 2000; Marshak et al. 1992; Moosmann and Behl 2002). Diabetes induced hyperglycemia results in
disruption in glucose homeostasis and this condition is the reason for the oxidative stress and lipid peroxidation. As STZ induced diabetes results in hyperglycemia, it is an example to the endogenous chronic oxidative stress (Low et al. 1997). Due to hyperglycemia, the formation of reactive

Figure 1. C group. A. Histological appearance was normal in cerebrum. H-E; X40. B. Choroid plexus, H-E; X20. C. Cerebellum tissue was normal. H-E; X40.

Figure 2. Cerebrum tissues of the DM group. A. Congestion and perivascular edema (arrows), H-E; X20. B. Perineuronal edema (arrow), H-E; X40. C. Subarachnoidal hemorrhage (star), H-E; X40. D. Congestion in choroid plexus (arrows), H-E; X20.
Oxidative stress plays an important role in the brain tissue damage. Brain needs high level of oxygen and unsaturated lipid content. These two features may make the brain tissue a target for the formation of oxygen radicals and lipid peroxidation. The potential oxidative stress sources including diabetes lead to the auto-oxidation of glucose, decrease in the glutathione concentration of tissue, damaged antioxidant enzyme activities and increase in ROS formation (McLennan et al. 1991). The remarkable depletion of antioxidants such as GSH increases the sensitivity of brain tissue against oxidative changes in diabetes.

The pharmacological treatment with antioxidants may protect the brain tissue against ROS increase during oxidative stress. Due to its antioxidant property, crocin may be used as a pharmacological agent in cases that results in cerebral ischemia (Lee et al. 2005). The modern pharmacological studies have shown that saffron extract and active contents of it have anti-tumor effects, radical scavenger properties, hypolipemic effect and memory-improving effect (He et al. 2005; Sugita et al. 1994; Zhang et al. 1994). In addition, it has also been reported that saffron extract regulates cerebral MDA, SOD, CAT, GSH-Px activities and glutamate and aspartate metabolism (Saleem et al. 2006). The most common content of saffron, whose antioxidant effects have been studied, is crocin (Abdullaev 1993). It has been indicated in a study that crocin has an antioxidant feature stronger than α-tocopherol, it inhibits the death of neurons induced by oxidative stress and the formation of lipid peroxidation, and restores SOD activity (Ochiai et al. 2004).

The previous studies have indicated that saffron elevates SOD, CAT and GSH-Px activities and inhibits the lipid peroxidation (Premkumar et al. 2003). Recently, it has been reported that safranal, an active content of saffron, treats the cerebral ischemia-reperfusion induced oxidative stress and decreases the increased MDA levels (Hosseinzadeh et al. 2005). In addition, when crocin was administered as 20 and
Diabetes mellitus is characterized with hyperglycemia and is a disease related to the chronic disorders of carbohydrate, protein and lipid metabolisms. If diabetes is not treated in time, it causes some complications such as atherosclerosis, nephropathy, retinopathy, and neuropathy (Marjani et al. 2010; Shane-McWhorter 2005). In a study conducted by forming diabetes model, the blood glucose of healthy rats has decreased 28% with the intra-peritoneal injection of ethanolic saffron extract and this decrease has been around 40% in diabetic rats (Mohammed et al. 2011). In addition, saffron extract has been reported to have hypoglycemic effect (Mohajeri et al. 2008). It has been observed in our study that the blood glucose concentration and HbA1c levels of the group in which STZ induced experimental diabetes is formed, have increased significantly when compared to non-diabetic group. When crocin treated group has been compared with the untreated diabetes group, blood glucose concentration and HbA1c levels have decreased. These results have shown that crocin has hypoglycemic effect.

When cerebrum and cerebellum were analyzed histo-pathologically, severe histopathological alterations occurred in the DM group such as congestion, perivascular and perineuronal edema in cerebrum. In addition, we also detected subarachnoidal hemorrhage and congestion in choroid plexus. Furthermore, in cerebellum, Purkinje cell degeneration, loss of Purkinje cell and hemorrhagic areas were observed. In DM+Crocin group, histopathological changes in cerebrum and cerebellum markedly attenuated. There were significant differences between DM and DM+Crocin group. These results are in line with Zheng YQ et al. studies (Zheng et al. 2007), which indicated that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in global cerebral ischemia.

In conclusion, the results have shown that STZ induced hyperglycemia leads to significant oxidative stress in the brain and cerebellum. Due to the fact that crocin has an antioxidant and anti-hyperglycemic effects, it can protect the brain and cerebellum tissue against the complications of oxidative stress. However, more studies is needed relating the neuro-protective efficiency of crocin.

References

10. Corte, E.D., and Stirpe, F. (1972). The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem J 126 (3): 739–745.