Fabrication and evaluation of smart nanocrystals of artemisinin for antimalarial and antibacterial efficacy

  • Syed Muhammad Hassan Shah
  • Farhat Ullah
  • Shahzeb Khan
  • Syed Muhammad Mukarram Shah
  • Mohamad Isreb
Keywords: Artemisinin, Nanocrystals, Antimalarial, Antimicrobial activity

Abstract

Background: Nanocrystals have the potential to substantially increase dissolution rate, solubility with subsequent enhanced bioavailability via the oral route of a range of poor water soluble drugs. Regardless of other issues, scale up of the batch size is the main issue associated with bottom up approach.

Material and Methods: Smart nanocrystals of artemisinin (ARM) was produced relatively at large batch sizes (100, 200, 300 and 400ml) compared to our previously reported study by (Shah, et al., 2016). ARM nanosuspensions / nanocrystals were characterised using zeta sizer, SEM, TEM, DSC, PXRD and RP-HPLC. The nanosuspensions were finally subjected to in vitro antimalarial and antimicrobial activity.

Results: The average particle size (PS) for 400 ml batches was 126.5 ±1.02 nm, and the polydispersity index (PI) was 0.194 ± 0.04. The saturation solubility of the ARM nanocrystals was substantially increased to (725.4± 2.0 μg/ml) compared to the raw ARM in water 177.4± 1.3 μg/ml and stabilizer solution (385.3± 2.0 μg/ml). The IC50 value of ARM nanosuspension against P. vivax was 65 and 21 folds lower than micronized 19.5 ng/mL and unprocessed drug (6.4 ng/mL) respectively. The ARM nanosuspension was found highly effective compared to unprocessed drug against all the tested microorganism except E. coli, Shigella and C. albican.

Conclusion: The simple precipitation-ultrasonication approach was efficiently employed for fabrication of ARM nanosuspension to scale up the batch size. Similarly, the solubility, antimalarial potential and antimicrobial efficacy of ARM in the form of nanosuspension were significantly enhanced. Findings from this study can persuade research interest for further comprehensive studies using animals model.

Keywords: Artemisinin, Nanocrystals, Antimalarial, Antimicrobial activity

Published
2017-02-21
Section
Articles

Journal Identifiers


eISSN: 0189-6016