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Abstract
Extreme equity market returns demand the use of specialised techniques for standardised 
treatment that focuses exclusively on rare tail events. Extreme Value Theory (EVT) is used 
in this article to model heteroskedastic stock returns of the All Share Index (ALSI) at the 
Johannesburg Stock exchange (JSE). Daily data of the ALSI at the JSE over the period 
2002–2011 is used. A two-stage modelling framework is proposed. In stage one we fi t an 
Autoregressive Moving Average–Generalised Autoregressive Conditional Heteroskedastic 
(ARMA-GARCH) model to the stock return series. In stage two we fi lter the residuals from 
the ARMA-GARCH model. We then fi t a Generalised Pareto Distribution (GPD) to the 
upper tail of the residual series, and refer to this hybrid as the ARMA-GARCH-GPD model. 
The threshold is estimated using a Pareto quantile plot. Empirical results show that the 
Weibull class of distributions can be used to model daily returns data. The ARMA-GARCH-
GPD model produces more accurate estimates of extreme returns than the ARMA-GARCH 
model. These results are important to risk managers and investors.

Keywords:  Extreme value theory, GARCH, Generalized Pareto Distribution, risk 
management

1 Introduction
It has long been recognised that fi nancial time series data are characterised by a 
number of stylised facts such as persistence, volatility clustering, time-varying 
volatility and leptokurtic data behaviour. Accurate modelling of extreme returns 
is vital to fi nancial risk management. The common assumption in fi nance theory is 
that fi nancial returns are normally distributed. Conversely, several studies indicate 
that most fi nancial time series are fat-tailed (see, e.g., Maghyereh & Al-Zoubi, 2008; 
Guru, 2012; Song and Song, 2012). Risk managers at a stock exchange are interested 
in guarding against the risk of high gains/losses due to the rise/fall in the prices 
of fi nancial assets held by the stock exchange. It turns out that daily returns are 
approximate quantities which must be investigated. This study focuses on modelling 
extreme losses. One method of extracting upper extremes from a set of data is to take 
the exceedances over a predetermined high threshold. This involves the use of Peaks-
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Over-Threshold (POT) distributions such as the Generalised Pareto Distribution 
(GPD) or the Generalised Pareto-type (GP-type) distribution (see Verster & De 
Waal, 2011) and referred to as the Generalised Single Pareto Distribution (GSPD) in 
Sigauke et al. (2012).

49Extreme Value Theory (EVT) is the theory of measuring and modelling extreme 
events. It is especially well suited to describe the fat-tails of the profi t and losses 
distributions typically found in stock returns. It is important to note that EVT relies 
on an assumption of independent and identically distributed (i.i.d) observations. The  
i.i.d assumption does not hold for fi nancial time series data. This can be corrected by 
fi ltering residuals of the return series using time series analysis techniques to get i.i.d  
variables and then apply the EVT method. This study follows a two-stage approach 
proposed by McNeil and Frey (2000), who estimate an ARMA-GARCH model in 
stage one with a view to fi ltering the return series to obtain nearly i.i.d  residuals. 
They applied EVT modelling framework to the standardised residuals in stage 
two. The advantage of the GARCH-EVT combination lies in its ability to capture 
conditional heteroskedasticity in the data through the GARCH framework, while at 
the same time modelling the extreme tail behaviour through the EVT method. The 
GARCH-EVT modelling approach performs better than other models in forecasting 
VaR for various international stock markets (see, e.g., Gencay & Selcuk, 2004; 
Fernandez, 2005; Wagner & Marsh, 2005; Chan & Gray, 2006).

50The article focuses on modelling the distribution of daily JSE price changes and 
the estimation of extreme quantiles by fi tting traditional time series models and 
an EVT distribution. The EVT approach captures the features of the innovation 
distribution well and provides more accurate estimates of risk measures, compared 
to other approaches (Fernandez, 2005). The GPD was fi rst introduced by Pickands 
(1975) in the extreme value framework as a distribution of the sample excesses (or 
exceedances) above a suffi ciently high threshold. EVT is discussed and used in 
literature to estimate high quantiles. The POT method is one of the most widely used 
modelling approaches for fi tting distributions above a suffi ciently high threshold (see, 
e.g., Chan & Gray, 2006; Gilli and Kellezi, 2006; Magheyereh & Al-Zoubi, 2008; 
Castillo & Daoudib, 2009; Song & Song, 2012). The GPD is the distribution which 
is normally used. Recent work includes the use of the GSPD. Sigauke et al. (2012) 
use the Autoregressive Moving Average-Exponential Generalised Autoregressive 
Conditional Heteroskedastic-Generalised Single Pareto Distribution (ARMA-
EGARCH-GSPD) modelling framework to model under demand estimation in daily 
peak electricity demand forecasting, using South African data. Empirical results 
from this study show that the ARMA-EGARCH-GSPD model produces more 
accurate results than an ARMA-EGARCH model.

51The article explores the usefulness of EVT in modelling extreme events in stock 
markets. The remainder of the article is organised as follows: the section hereunder 
describes the data while the subsequent section discusses the modelling framework. 
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Next follow the results and discussion, while the fi nal section gives concluding 
remarks with some ideas for future work.

2 Data
The time series data used for modelling conditional heteroskedasticity in this article 
is the All Share Index (ALSI) at the Johannesburg Stock Exchange (JSE) over the 
period 7 January 2002 to 30 December 2011, resulting in a total number of 2 495 
observations. A visual inspection of Figure 1 shows that daily stock prices are not 
stationary. Formal unit root tests are carried out using the Augmented Dickey–Fuller 
(ADF) test, as shown in Table 1. Since the computed ADF test-statistics (-0.6326) 
is greater than the critical values at one per cent, fi ve per cent and ten per cent 
signifi cant levels respectively, we fail to reject the null hypothesis that there is a unit 
root and that the series needs to be differenced in order to make it stationary.

Figure 1: Plot of the all-share JSE stock index (2002-2011)

Table 1: Augmented Dickey-Fuller test of the JSE stock index

ADF 
Test Statistic -0.6326

1% Critical value -3.4360

 5% Critical value -2.8632
10% Critical value -2.5677

A plot of the return series given in Figure 2 shows periods of high volatility, 
occasional extreme movements and volatility clustering. The plot indicates that the 
logarithm of stock prices is stationary after taking the fi rst-difference, and the ADF 
test results in Table 2 confi rm the stationarity of the return series data. The daily 
returns (rt) are calculated as 

               (1)
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where Pt denotes the current stock price on day t and Pt–1 denotes one lagged stock 
price on day t – 1.

Table 2: Augmented Dickey-Fuller test of the daily returns
ADF Test Statistic 
-24.57

1% Critical value -3.4360

5% Critical value -2.8632
10% Critical value -2.5677

Figure 2: Plot of daily returns for JSE stock index (2002–2011)

A summary of the statistics of the return series data is given in Table 3, with p-values 
in parentheses. The mean is positive, suggesting that stock returns increase slightly 
over time. The coeffi cient of skewness indicates that returns have asymmetric 
distribution, i.e., they are skewed to the left. The kurtosis of returns is 5.9736 which 
is greater than three, indicating that the distribution of returns follows a fat-tailed 
distribution, thereby exhibiting one of the important characteristics of fi nancial time 
series data, namely that of leptokurtosis. The non-normality condition is supported 
by a Jarque-Bera test which shows that the null hypothesis of normality is rejected 
at the fi ve per cent level of signifi cance.

Date

2008 2010200620042002
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Table 3: Summary statistics of the returns series

Mean 0.0435

Minimum -7.581

Maximum 6.834

Standard deviation 1.332

Skewness
Kurtosis
Jarque-Bera

-0.132
5.974

927.2 (0.000)

3 Modelling framework

3.1 Mean equation
Initially we specify an ARMA (p, q) model for the mean returns, as it provides 
a fl exible and parsimonious approximation to conditional mean dynamics. The 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are 
used to determine the order of ARMA (p, q) models. The ACF and PACF plots given 
in Figure 3 suggest that the returns may be modelled by an ARMA (1, 0) process, 
that is:

       (2)

where rt is the return series, μ is the mean value of the returns and εt is the error 
term with zero mean and variance .

Figure 3: Plot of ACF and PACF of the logged ALSI
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3.2 GARCH (p, q) model
Following the natural extension of the ARMA process as a parsimonious 
representation of a higher order AR process, Bollerslev (1986) extended the work 
of Engle (1982) to the GARCH process. The GARCH (p, q) process is defi ned as:

         (3)

where  is the conditional variance, which is a linear function of q lags of the 
squares of the error terms  or the ARCH terms and p lags of the past value of the 
conditional variances  or the GARCH terms, and , αi βj and ω are parameters. 
Error term εt is assumed to be conditionally normally distributed with zero mean and 
conditional variance . The GARCH model is estimated with a view of fi ltering 
the residuals of the return series to obtain nearly i.i.d series. Figure 4 shows the 
plot of the residual demand, the Q-Q plot and the probability density of the residual 
demand, together with the enlarged right tail. The density is estimated using kernel 
density estimation (Silverman, 1986).

Figure 4: Plot of residuals, probability density and the Q-Q plot
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3.3 GPD
We consider a peaks over threshold (POT) distribution to model the positive residuals 
above a high threshold. The POT method involves the selection of a suffi ciently high 
threshold, denoted by τ .This method consists of fi tting the GPD to the distribution of 
excesses over the threshold. Several methods are proposed in literature for selecting 
the threshold. Here, we use the Pareto quantile plot discussed in Beirlant et al. 
(2004). We estimate the parameters of (σ, ξ) using the Maximum Likelihood (ML) 
method. The R statistical package is used. The distribution and survival functions of 
the GPD are given in equations (4) and (5) respectively.

    (4)

  (5)

where ξ is the shape parameter or Extreme Value Index (EVI) and σ is the scale 
parameter. The EVI, ξ gives an indication of the heaviness of the tail. If ξ > 0 then  
belongs to the Pareto class of distribution, for ξ = 0 Wξ (εt) belongs to the exponential 
class and if ξ < 0 then Wξ (εt) belongs to the Weibull class of distributions. The 
quantile function of the GPD is given by:

  

          (6)

where p is the tail probability. The derivation of the quantile function of GPD is 
given in the appendix.

4 Empirical results and discussion

4.1 Fitting ARMA (1, 0)-GARCH (1, 1) model to the returns
The results of fi tting an ARMA (1, 0)-GARCH (1, 1) model to the JSE return series 
are presented in Table 4. The econometric package EVIEWS is used for estimating 

AREF_2nd proofs.indd   47AREF_2nd proofs.indd   47 2014/07/02   07:26:572014/07/02   07:26:57



548 

Caston Sigaukea, Rhoda M. Makhwiting and Maseka Lesaoana

the parameters. The estimates are obtained by the Berndt et al. (1974) algorithm 
using numerical derivatives.

Table 4: ARMA (1, 0)-GARCH (1, 1) model for returns
Mean equation Variance equation Model diagnostics

μ =
0.0896 (0.0000)

α0 =
0.0252(0.0002)

α + β = 0.9854

ɸ = 0.0487 (0.0172) α =
0.0974 (0.0000)

*Ԛ(20) = 17.030(0.588)

β =
0.8880 (0.0000)

Ԛ2 (20) = 16.469 (0.626)

*Q (20) and Q2 (20) are the Ljung-Box statistics for testing autocorrelation in return and squared return 
series data respectively for the 20 lags. In all cases fi ve per cent level of signifi cance is used. P-values 
are shown in parentheses.

The estimate of ɸ is signifi cant, supporting the use of the ARMA (1, 0) model for 
the returns. Volatility shocks are persistent since the sum of the ARCH and GARCH 
coeffi cients are very close to one. The estimates for α and β are highly signifi cant. 
The Box-Pierce Q statistics is insignifi cant up to lag 20, indicating that there is no 
excessive autocorrelation left in the residuals.

4.2 Threshold and GPD parameter estimation
The Pareto quantile plot is a graphical method for inspecting the parameters of Pareto 
distribution. The logarithm of the observed positive residuals is plotted against 
the theoretical quantiles. Figure 5 displays the Pareto quantile plot for the positive 
residual data. The threshold is τ = exp(0.9634) = 2.6206. There are 58 observations 
above the threshold (see Figure 6). We now assume observations above the threshold 
to be generalised Pareto distributed. The maximum likelihood estimation is used for 
the determination of the GPD parameters from 58 exceedances. The estimated GPD 
parameters are  = 1.0896 (0.2442) and  = –0.0321 (0.1824) respectively, with 
standard errors in the parentheses. The results show that residuals can be modelled 
using the Weibull class of distributions, since ξ , 0.
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Figure 5: Pareto quantile plot

Figure 6: Plot of positive residuals (the threshold is 2.6206 – horizontal line)

Diagnostic plots for the fi tted GPD are shown in Figure 7. If the QQ-plot follows a 
450 line it indicates a good fi t. Figure 7 indicates a fairly good fi t of the GPD to the 
exceedances.
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52

Figure 7: Diagnostic plots illustrating the fi t of the exceedances to the GPD

4.3 Estimation of extreme quantiles
Table 5 shows the number of the exceedances related to the corresponding tail 
probabilities.

Table 5: Estimated tail quantiles at different probabilities (Number of exceed-
ances)

Tail probability 
(p)

Expected 
Observation

ARMA-
GARCH Conditional GPD

0.05 63 107 34
0.01 13 53 12
0.005 6 40 3
0.001 1 17 0

The number of expected observations can be calculated by multiplying the number of 
residuals by tail quantiles (Bystrom, 2005). The theoretical number of exceedances 
of a 95 per cent tail quantile over positive residuals of 1 255 is (0.05*1255) = 63. 
The ARMA-GARCH model is presented with conditionally normally distributed 
standardised residuals. Using the quantile function given in equation (6) for the GPD 
we get
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53We then count the number of observations above the estimated tail quantile 
(εt,0.05 = 3.112) and get 34. The ARMA-GARCH model signifi cantly underestimates 
all tail quantiles, resulting in an excessive number of exceedances. The conditional 
GPD approach produces better forecasting results, thus the ARMA-GARCH-GPD 
model yields more accurate estimates of extreme tail quantiles.

54The fi ndings of this study also show that the ARMA-GARCH-GPD model 
performs well, especially in fi nancial markets where the distribution of returns 
exhibits large movements. A plot of exceedances against tail probabilities for 
expected observations is given in Figure 8.

Figure 8: Exceedances against tail probabilities for expected observations

In Figure 8 the exceedances against the tail probabilities is given by the middle 
solid line, the conditional GPD is shown by the dashed line below and the ARMA-
GARCH is indicated by the dashed line above. Figure 9 refl ects the monthly 
frequency of occurrence of exceedances. Note that October has the highest number 
of exceedances above the threshold. This investigation provides an important 
implication to investors and risk managers when modelling extreme events at the 
JSE.
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Figure 9: Monthly frequency of occurrence of exceedances

The bar chart of the yearly frequency of occurrence of exceedances is given in 
Figure 10, where 2008 has the highest number of exceedances, followed by 2009. 
This is probably due to the global recession of 2008/2009.

Figure 10: Annual frequency of occurrence of exceedances

5 Conclusion
The article has modelled conditional heteroskedastic stock returns at the JSE for 
the period 7 January 2002 to 30 December 2011. An ARMA-GARCH model is 
applied in stage one, with a view to fi ltering the return series to obtain nearly i.i.d 
residuals. In stage two, the EVT framework is applied to the standardised residuals 
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from the ARMA-GARCH model. The results show that residuals can be modelled 
using Weibull class distributions. The ARMA-GARCH model overestimates all 
tail quantiles, thus the distribution fails to model the positive tail accurately. The 
ARMA-GARCH-GPD model produces more accurate estimates of extreme returns 
than the ARMA-GARCH model.

55In summary, the results of this article support the combination of the ARMA-
GARCH model with EVT for estimating upper extreme quantiles. In particular, 
the results show that the participants in the JSE market can rely on EVT-based 
models such as GPD when modelling the conditional heteroskedasticity of extreme 
events. The article also has important implications for investors and risk managers. 
Bystrom (2005) indicates that value-at-risk (VaR) performance under a GARCH-
EVT framework is superior to a number of parametric approaches. The fi ndings 
of this study show that the ARMA-GARCH-GPD model performs well, especially 
in fi nancial markets where the distribution of returns exhibits large movements. It 
would be interesting to see what sort of results we get if we use other threshold 
selection methods, including comparative analysis with ARMA-GARCH-GSPD and 
ARMA-GARCH-GEVD models, where GEVD denotes the Generalised Extreme 
Value Distribution and GSPD the Generalised Single Pareto Distribution. Another 
interesting areas for further research will include a Bayesian estimation of the 
GARCH (1, 1) model with Student-t innovations. These will be studied elsewhere.
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Appendix
Derivation of the quantile function of the GPD

56The cumulative distribution function of GPD is given by:

The survival function of the GPD is 

Let 

Then

After dropping  and is the quantile function.
57Similarly when ξ = 0 we have εt,p = –σ1n(p) (For more details see Beirlant et al. 

2004.)
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