EFFECT OF COWPEA SEED DRYING TEMPERATURE AND WET MILLING ON THE RHEOLOGICAL PROPERTIES OF MOIN-MOIN PASTE AND GEL

N. J. Enwere¹ and Y. C. Hung²
¹Department of Food Science and Technology
University of Nigeria, Nsukka
²Department of Food Science and Technology
College of Agriculture and Environmental Sciences
Georgia Experimental Station, Griffin
The University of Georgia
Georgia 30223-1797 USA.

ABSTRACT
The effects of cowpea seed drying temperature and wet-milling on the viscosity of moin-moin paste and texture (rheology) of moin-moin gel were studied. The large brown eye Kano white cowpea seeds were soaked in water at 25°C for 5 min, drained and dried at temperatures between 30 and 120°C, dehulled and dried into flour. Decorticated cowpea seeds dried at 30°C were soaked in cold water at 25°C for 1.5hr and wet milled into paste. The cowpea flour and paste were reconstituted with water and prepared into moin-moin with and without addition of salt, pepper, tomato paste, onions, vegetable oil and beef flavour. Determination of the moin-moin paste viscosity prior to steaming showed that all the pastes exhibited pseudoplastic flow behaviour. The moin-moin from the wet milled paste had higher viscosity than the samples from flour due to higher swelling of the starch, protein and cell wall materials. The moin-moin pastes containing additional ingredients had higher viscosity than the plain samples due to the additional solid matter. Drying at temperatures between 80 and 120°C increased the viscosity of the plain moin-moin paste but decreased those of samples with added ingredients. Texture studies showed that drying temperature, wet milling and addition of ingredients decreased the hardness of the moin-moin gel at 50% double compression and relaxation.

Key words: Cowpea, moin-moin, viscosity, and texture

Introduction
Cowpea seed is a well-known legume consumed in Nigeria and other parts of the world. Its nutritional significance is derived from its high protein content between 21 and 28% (Enwere, 1998). Cowpea seed is unique as food because it can be prepared into different dishes (Nwola, et al. 1976). The immature pods and seeds can be cooked and eaten as vegetable. Extract from the dry mature seed can be used to prepare substrate for natto. The mature cowpea seed can be converted into flour or paste used for moin-moin and akara preparation and for soup thickening. The cowpea flour has also been used in composite flour with wheat flour for cake and doughnut preparations. Various studies have been conducted on the properties of cowpea flour, paste, akara, moin-moin and seed (McWatters and Bramley, 1982; McWatters, 1993 and Enwere 1985).

According to Enwere, et al. (1998), drying of wetted cowpea seeds at 30°C prior to dehulling had no effect on the properties of the protein, starch and seed microstructure. Drying the wetted cowpea seeds at 80°C adversely affected the albumins of the water-soluble protein to a fair degree while drying at 120°C extremely denatured the albumin in the water-soluble proteins.
and caused the akara prepared from the flour to loose its sponginess and become compact. The starch granules also suffered thermal damage as observed under scanning electron microscope examination. Different seed drying temperatures, especially, at elevated temperatures of 100 and 120°C adversely affected the sensory properties of akara and moin-moin. Viscosity and texture, which are rheological properties, have also been used by various workers to characterise foods (Enwere and Ngoddy, 1986).

The objective of this study, therefore, was to determine the effect of cowpea seed drying temperatures and wet milling on the viscosity and texture of moin-moin paste and gel, respectively, using objective rheological instruments.

Materials and Methods

Cowpea seed sample

The large brown eye Kano white variety of cowpea seed (Vigna unguiculata) used in this study was purchased from the Nsukka market in December, soon after harvest.

Proximate analysis

The crude protein, moisture, crude fat, crude fibre and ash of the cowpea flour were determined according to AOAC (1984) method. Carbohydrate was determined by difference.

Cowpea flour preparation

The large brown eye Kano white cowpea seeds were prepared into flour according to the method, described by Enwere (1998). The wetted seeds were dried at temperatures of 30, 60, 80, 100 and 120°C prior to flour preparation.

Preparation of wet milled paste

Fresh cowpea paste was prepared immediately before use. In this method, 101.25g of decorticated cowpea seed cotyledons dried at 30°C were soaked in 1 litre of water at 25°C for 1.5 hr. It was drained, weighed and wet-milled into paste by blending for 2 min in an Oster Kitchen Centre blender (Model 965-04F, Oster Corp.), with addition of more water to increase the sum of absorbed and added water to 300 ml.

<table>
<thead>
<tr>
<th>Table 1: Recipe for moin-moin preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cowpea flour</td>
</tr>
<tr>
<td>Red pepper (dry)</td>
</tr>
<tr>
<td>Onion (fresh ground)</td>
</tr>
<tr>
<td>Tomato paste</td>
</tr>
<tr>
<td>Meat flavour</td>
</tr>
<tr>
<td>Salt</td>
</tr>
<tr>
<td>Groundnut oil</td>
</tr>
<tr>
<td>Water (at 70°C)</td>
</tr>
</tbody>
</table>

moin paste and gel preparation

The method described by Enwere et al. (1990) was used for moin-moin preparation. The recipe is given in Table 1. Two types of moin-moin pastes were prepared from the wet-milled cowpea paste and five flour samples obtained from cowpea seeds dried at 30, 60, 80, 100 and 120°C. The first type was, prepared with water and cowpea flour (plain) and the second type was prepared with cowpea flour, and addition of the other ingredients including salt, pepper, tomato paste, onions, beef flavour and vegetable oil. The moin-moin paste was dispensed into aluminium container (about 310-ml capacity), with internal diameter of 9.2 cm and depth of 5.2 cm. It was covered with a fitting lid, steamed in a double-decked steamer for 20 min and cooled for 2 hr at 4°C prior to texture measurement.

Determination of moin-moin paste viscosity

The viscosity of the raw moin-moin paste was determined before cooking, using a Brookfield rotational viscometer with a small sample adapter and spindle No 27 (Model 11AT, Brookfield Engineering Laboratories Inc., Stoughton, MA, USA). Measurements were taken at speeds of 0.5, 1.0, 2.5, 5.0, 10.0, 20.0, 50.0 and 100 rpm, which correspond to shear rates of 0.17, 0.34, 0.85, 1.7, 3.4, 6.8, 17.0 and 34.0 s⁻¹, as calibrated by the viscometer manufacture.

Measurement of moin-moin texture

described by Enwere, et al. (1990) was used for texture measurement. In this study 1 cm³ (1 x 1 x 1 cm) specimens were cut from the moin-moin samples with the aid of a metal grid and a sharp knife. The moin-moin cubes were subjected to 50% double compression and relaxation using an Instron Universal Texture Testing Machine (Model 1122, Instron Inc. Canton MA, USA). The Instron was fitted with a compression anvil 5.7-cm diameter and 50 kg load cell. It was operated with a crosshead speed of 10 mm per min. and a chart speed of 100 mm per min. Twelve measurements were made for each sample.

Data analysis

The power-law mathematical equation of Holdsworth (1971) was fitted to the viscosity data after the shear stress was determined using the shear rates (ƞ) given by the manufacturer and the apparent viscosity values (ƞ) obtained from measurements in consonance with equations (1) and (2), below:

\[\dot{\gamma} = \eta \dot{\gamma} \]

where \(\dot{\gamma} \) = shear stress (Pa. s)
\(\eta \) = Apparent viscosity (Pa. s⁻¹)
\(\dot{\gamma} \) = Shear rate (s⁻¹)

The Power-law mathematical equation was used to calculate the flow consistency values and flow behaviour indices using the Statistical Analysis System SAS (1985):

\[\tau = \eta \dot{\gamma} = b\dot{\gamma}^n \]

(Power-law mathematical equation) .. (2)

where
\(b \) = flow consistency value
\(n \) = flow behaviour index

The texture profile and mechanical properties of the moin-moin gel were obtained from the force-deformation curves (Fig. 3) as follows:

1) Hardness = the highest peak force in the first compression cycle
2) Modulus of elasticity or deformability = the slope of the linear segment of the force-deformation curve during the first compression cycle
3) Cohesiveness = the ratio of the area of second compression cycle to that of the first.

The areas were obtained with the aid of a digitizer attached to an IBM computer. The differences in the mean hardness, cohesiveness, and modulus of elasticity were calculated using analysis of variance and Duncan’s Multiple Range Test Procedure.

Results and Discussion

Proximate composition

The large brown eye Kano white cowpea seed used in this study contained 11.11% moisture, 23.38% protein, 1.29% crude fat, 3.1% crude fibre, 3.28% ash and 60.94% total carbohydrate. These values are similar to those reported by Purseglove (1991).

Flow behaviour of moin-moin pastes

Flow behaviour properties of the moin-moin pastes determined and reported in this study include apparent viscosity, shear stress, flow behaviour index (n) and flow consistency value (b).

Apparent viscosity

The trends of the apparent viscosity of moin-moin pastes at different shear rates are shown in Figure 1. It was observed that the viscosity of the moin-moin pastes decreased as shear rate increased. Onwuluzo, et al. (1994), also observed this trend in their rheological study of flours from lesser-known legumes. The plain moin-moin pastes had low viscosity because the protein was not denatured and starch was not gelatinised so could not swell and cause thickening with resultant effect on viscosity. In addition, the larger flour particles partly sedimented out of the paste when left to stand. This increased viscosity at the level of the spindle. The rate of sedimentation increased as drying temperature increased. Consequently, the viscosity of the plain moin-moin paste increased as cowpea seed drying temperature increased.

The plain moin-moin paste prepared from the wet-milled cowpea had much higher viscosity at
Fig. 1 Apparent viscosity at different shear rates of moin-moin pastes prepared with cowpea flour or wet-milled with or without additional ingredients.
Fig. 2 Apparent viscosity at different shear rates of moin-moin paste prepared with cowpea flour or wet-milled with or without additional ingredients.
Fig. 3 A typical force-deformation curve at 50% compression level of *moln-moln* samples using a compression anvil fitted to the Instron Universal Texture Testing machine.
all shear rates than the moin-moin pastes prepared from flour with and without additional ingredients. Soaking and wet-milling increased swelling of the cowpea components (protein, starch and cell wall materials), reduced mass density of the proteins and increased thickening and viscosity of the paste.

When pepper, tomato paste, onion puree, salt, beef flavour and vegetable oil were added to all the moin-moin pastes, viscosity increased substantially due to increased solid content or dry matter. The viscosity of the moin-moin pastes containing additional ingredients generally showed a reverse trend when compared with plain moin-moin pastes. It decreased as drying temperature increased because there was little sedimentation of particles around the spindle. The particles were more homogeneously distributed inside the paste such that the effect of thickening by additional ingredient mainly controlled the trend of viscosity. The tomato paste, dry pepper and onion puree, which were thick also, acted as viscosity enhancers, which prevented substantial particle sedimentation.

Power-law parameters

The power-law parameters are the flow behaviour index (n) and the flow consistency value (b) given in Table 2. The flow behaviour index of all the moin-moin samples was less than one and greater than zero, depicting a pseudoplastic flow behaviour (Holdsworth (1971) and Uzoma and Ahiligwo (1995)). The flow behaviour index of the plain moin-moin prepared with flour obtained from cowpeas dried at 120°C had higher value than the other samples prepared from flours but the differences were not significant. The plain moin-moin prepared from the wet milled cowpea paste had significantly higher flow behaviour index than samples from the flour. When other ingredients were added, the flow behaviour indices of all the moin-moin prepared from cowpea flour increased to almost

<table>
<thead>
<tr>
<th>Sample</th>
<th>Flow behaviours index (n) of moin-moin pastes</th>
<th>Flow consistency value (b) of moin-moin pastes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plain</td>
<td>With additional ingredients</td>
</tr>
<tr>
<td>Dried at 30°C</td>
<td>0.3392</td>
<td>0.5131</td>
</tr>
<tr>
<td>60°C</td>
<td>0.2982</td>
<td>0.5080</td>
</tr>
<tr>
<td>80°C</td>
<td>0.3037</td>
<td>0.5132</td>
</tr>
<tr>
<td>100°C</td>
<td>0.3118</td>
<td>0.5129</td>
</tr>
<tr>
<td>120°C</td>
<td>0.4400</td>
<td>0.5151</td>
</tr>
<tr>
<td>Wet-milled paste</td>
<td>0.4343</td>
<td>0.3983</td>
</tr>
</tbody>
</table>

Values in the same column not followed by the same letter a significant at p ≤0.05.

Shear stress- shear rate relationships

The shear stress-shear rate relationships of the moin-moin pastes are shown in Figure 2. Onwuluzo, et al. (1994), also observed this relationship in their viscosity study of flours from
the same level. However, addition of other ingredients decreased the flow behaviour index of the moin-moin samples prepared from the wet-milled cowpea paste, even to a value lower than that of moin-moin pastes prepared from cowpea flour.

Of all the plain moin-moin pastes, the 80°C samples had the highest flow consistency (b) value. This decreased toward 30 and 120°C. This trend was similar when other ingredients were added. However, the moin-moin pastes prepared from wet milled cowpea with other ingredients had higher flow consistency value than for corresponding plain samples. The moin-moin prepared from the wet milled cowpea paste had about four times the flow consistency values of samples prepared with cowpea flours for the plain sample and when other ingredients were added. Moin-moin pastes obeyed the power law equations just like other liquid foods, for example, 13% and 16% soymilk (Son and Sing, 1998).

Typical flow behaviour of moin-moin pastes

From the flow behaviour data obtained, it has been shown that as the shear rate of all the moin-moin pastes were increased, the shear stress increased, but the viscosity decreased. In addition, the flow behaviour indices (n) of all the moin-moin pastes were greater than zero and less than 1.0, irrespective of the cowpea seed drying temperature or type of milling. According to Holdsworth (1971), this is typical of pseudoplastic flow behaviour. This was used in the study of rheological properties of gums by Uzomah and Ahiliigwo (1995) and Son and Sing (1998)).

Many studies have shown that the flow behaviour of liquid foods can be used to characterise them and to determine the effect of processing on their components. Consequently, the change in the viscosity of liquid foods especially those containing protein and starch have been used to determine the effect of various treatments on their components (Evans and Haisman, 1979, and Lee and Rhn, 1977).

Texture profile and mechanical properties of moin-moin gel

A typical force-deformation curve of steamed moin-moin gel samples is shown in Figure 3 and the texture profile parameters and mechanical properties are given in Table 3. The hardness and cohesiveness of both the plain moin-moin samples and those containing additional ingredients decreased from 30 to 120°C. These decreases prob-

The table shows

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>Treatment</th>
<th>Hardness N</th>
<th>Cohesiveness</th>
<th>Elastic modulus N/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>30°C</td>
<td>6.8147</td>
<td>0.2775</td>
<td>2.3341</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td>6.2236</td>
<td>0.2226</td>
<td>2.5083</td>
</tr>
<tr>
<td></td>
<td>80°C</td>
<td>5.8664</td>
<td>0.1902</td>
<td>2.4833</td>
</tr>
<tr>
<td></td>
<td>100°C</td>
<td>5.0358</td>
<td>0.2269</td>
<td>2.3167</td>
</tr>
<tr>
<td></td>
<td>120°C</td>
<td>5.5563</td>
<td>0.2362</td>
<td>2.3917</td>
</tr>
<tr>
<td>Wet-milled paste</td>
<td>30°C</td>
<td>7.1286</td>
<td>0.2618</td>
<td>2.5830</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td>4.2118</td>
<td>0.25607</td>
<td>0.6417</td>
</tr>
<tr>
<td></td>
<td>80°C</td>
<td>3.9436</td>
<td>0.2523</td>
<td>0.6500</td>
</tr>
<tr>
<td></td>
<td>100°C</td>
<td>3.7015</td>
<td>0.2293</td>
<td>0.6083</td>
</tr>
<tr>
<td></td>
<td>120°C</td>
<td>3.0934</td>
<td>0.2134</td>
<td>0.5667</td>
</tr>
<tr>
<td>Wet-milled paste</td>
<td>30°C</td>
<td>4.1006</td>
<td>0.2661</td>
<td>0.6333</td>
</tr>
</tbody>
</table>

Values in the same column not followed by the same letter are significant at p ≤ 0.05.
ably resulted from the alterations of the protein and starch because of the effect of heat during drying (Enwere, et al. 1998). There were differences between the elastic modulus of the moin-moin samples prepared from the different flours but they were not significant, showing that the rate of deformation of the plain moin-moin samples were similar.

The hardness of the plain moin-moin samples prepared from wet-milled cowpeas was higher than those prepared from cowpea flour, although they were significant only for 80 to 120°C samples. The cohesiveness of the moin-moin prepared with wet milled paste was similar to the 30°C sample but significantly higher than the 60 to 120°C moin-moin samples.

When other ingredients were added to the moin-moin samples, the values for the hardness and elastic modulus, generally decreased but cohesiveness remained almost at the same level. This is the reverse of the observation in the viscosity of the raw paste, where addition of ingredients increased viscosity.

According to Ossai et al. (1987), the oil added to the moin-moin is primarily responsible for reduced hardness. When other ingredients were added to the moin-moin, there seemed to be a general trend were the gel hardness, cohesiveness and elastic modulus decreased with increase in cowpea seed drying temperature. The effect was significant from 80°C for hardness and cohesiveness and elastic modulus from 100°C. Despite the differences in the rheological characteristics of the moin-moin paste prepared from wet-milled paste and flours from 30 to 80°C pre-treatment, they were observed in earlier study to have desirable sensory properties. They were also very acceptable to taste panelists (Enwere, 1985).

Conclusion

This study has shown that drying wetted cowpea seeds at temperatures above 80°C adversely affected some rheological properties of the resulting flour. The moin-moin pastes and gels prepared from the 100 and 120°C drying operations were generally different from those between 30 and 80°C samples although in some cases, significant differences occurred at 80°C. Wet-milled cowpea seed produced moin-moin paste that was thicker than those from flours and the corresponding moin-moin gels were harder than those gels prepared from flours. The cowpea seeds to be used for flour intended for moin-moin preparation should, therefore, not be dried at temperatures above 80°C since some adverse effects began to occur from the higher temperature.

Acknowledgements

This work was supported the University of Nigeria, the State and Hatch funds allocated to University of Georgia, and the Bean/Cowpea Collaborative Research Support Programme (CRSP) funded by US Agency for International Development. The assistance of the following members of CRSP is acknowledged: K. H. McWatters, R. D. Phillips, M. S. Chinnan, L. Branche and P. O. Ngoddy.

References

Enwere, N. J., McWatters, K. H. and Phillips, R.

