Short Communication

SEmen Characteristics of Nigerian Roosters Fed Diets Containing Curcuma longa Powder

1Dim C.E., 2Ekere S.O. and 3Pius H.O.

1Department of Animal Science, Faculty of Agriculture, University of Nigeria, Nsukka, Nigeria
2Department of Veterinary Obstetrics & Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria

Corresponding author’s email: chinonso.dim@unn.edu.ng; ORCID: 0000-0002-7295-2938

ABSTRACT

Seminal quality is critical to avian reproduction and chiefly influenced by feeding. Improving the seminal features of local poultry with dietary technologies is significant to fortifying man’s deficient dietary resource. Hence, this study evaluated the seminal quality indices of Nigerian roosters fed grower diets containing different levels of Curcuma longa powder (CLP) in a 70-day feeding trial. The experiment randomly placed test roosters (n = 36) into four distinct groups (T1-T4), having replications of 3 birds per replicate in a completely randomized design. The birds were fed ad libitum on grower feeds containing CLP inclusions according to groups, i.e., T1, T2, T3, and T4 respectively had 0, 20, 35, and 50 g of CLP kg⁻¹ feed. Routine vaccinations and prophylaxis was duly administered during experimentation. Semen collection and sampling for physical seminal features were conducted and analyzed. The results showed significant (p < 0.05) effects of dietary CLP on sperm concentration (SC), live spermatozoa (LS), and dead spermatozoa (DS) of the test roosters. High SC and LS of roosters fed on CLP diets were significantly different (p < 0.05) from control, just as DS of T4 was higher (p < 0.05) than CLP groups. Thus, placing Nigerian roosters on diets scented with up to 50 g of Curcuma longa powder per kilogram of feed improved their seminal characteristics.

Key words: artificial insemination, Curcuma longa, heavy ecotype, fragrant botanical

INTRODUCTION

The heavy ecotype is one of the nondescript varieties of local chickens indigenous to Nigeria. The birds are hardy with unique reproductive inadequacies such as; low implantation, embryonic failures, and poor quality seminal features (Ndofor-Foleng et al., 2015). Conservation and exploitation of genetic potentials of these local birds was postulated to salvage the deficient intake of essential amino acids in developing countries, thus improving the amount of poultry products available to citizens in the near future (Oleforuh-Okoleh et al., 2012). Regardless of this feat, paucity of interest among experts subsists towards harnessing the inherent wide genetic diversity of these birds. Efficient reproduction is considered significantly indispensable in the genetic improvement of poultry stocks due to the unique nature of their gametes which requires provisional aid to breed true (Uzochukwu et al., 2019). Artificial insemination (AI) has been valuable in assisting efficient reproduction of poultry birds. The quality of semen used for insemination is primary to the success of AI and critically affected by feed nutrients (Mohan et al., 2018). Interestingly, Al-Jef and Del (2019) outlined the adverse impacts ensuing from incessant use of feed additives to promote performance of farm animals. Plant blends that are used as feed constituents (phytogenics) to advance performance traits have attained prominence in animal feeding as being safe, natural and residue free. Curcuma longa is the culinary spice that is topically used as fragrant botanical to improve feed intakes and efficiency of feeding in farm animals due to high biological and flavouring activity of the constituent phytochemicals, especially curcumin (Foldesiova et al., 2015; Johannah et al., 2018; Olarotimi, 2018). However, the ephemeral nature of curcumin has been found to hinder performance grade of animals due to their low bio-availability index (Taoheed et al., 2017). This bioavailability feature was suggested to influence the rapid use and loss of curcumin in metabolism, thus positioning the spice as “limiting” in animal feeding (Burgos-Moron et al., 2010). Hence, the optimum dietary inclusions of C. longa that could improve semen characteristics of Nigerian roosters were evaluated in the present study.

Please cite as: Dim C.E., Ekere S.O. and Pius H.O. (2022). Semen characteristics of Nigerian roosters fed diets containing Curcuma longa powder. Agro-Science, 21 (2), 140-142. DOI: https://dx.doi.org/10.4314/as.v21i2.17
MATERIALS AND METHODS
Ethics, Location and Duration of the Study
The ten-week research was executed at the Poultry Unit of the Department of Animal Science Teaching and Research Farm, University of Nigeria, Nsukka (UNN). The site is located within latitudes 5° 50’ and 7° 00’ N and longitude 6° 52’ and 7° 54’ E at a land elevation of ~500 m asl (Ugwu et al., 2020). Onyenucheya and Nnamchi (2018) reported the study area to be of tropical climate, receiving adequate sunshine all year round even during wet and dry seasons (Mar. through Sep. and Oct. till Apr., respectively). The conduct of the experiment was in line with the ethical guidelines on the use of animals for experimentation provided by the Animal Welfare and Ethics Committee, UNN.

Experimental Animals, Management and Design
The study involved 36 (heavy-ecotype) Nigerian roosters (~2.00 kg) that were raised on deep litter feeders and drinkers were provided, just as stale feed and water from previous feeding were replaced before fresh feeding on a daily basis. Proximate compositions of the experimental feeds alongside the test CLP were determined according to standards (AOAC, 2007) and shown in Table 1. The vaccination procedure for fowl pox and the prophylactic treatments (Embazin forte®) administered during the study were respectively according to manufacturer’s recommendations.

Semen Collection and Analysis
Body weights were determined on a 10-kg capacity Camry® weighing balance according to the study groups at the start of the experiment, and subsequently on a weekly basis till the termination of study. From the 7th week of study, roosters were routinely trained for semen collection prior to test collections on the 8-10th week, during which a bird per replicate was massaged (Burrows and Quinn, 1937) for semen collections twice in a week (collected with a 0.01 ml calibrated test tube) to determine semen volumes, percentages of live and dead spermatozoa, seminal concentration and pH of test roosters. Seminal pH was routinely determined using a pH meter (Sperm 360® by Sperm Processor Pvt. Ltd., Aurangabad MS-431005 India). Sperm cell count was done using a haemocytometer (450 × magnification). The number of spermatozoa was counted in five large diagonal squares and multiplied by 10^7 to determine the sperm concentration in millilitre (ml) per ejaculate (Peters et al., 2008). However, percentiles of live and dead spermatozoa were determined using the technique of (Ernst and Ogasawara, 1970) Data were subjected to analysis of variance using SPSS. Significant differences among treatment means were separated using the Duncan’s new multiple range test.

RESULTS AND DISCUSSION
The effect of dietary inclusions of CLP on the semen characteristics of Nigerian roosters are shown in Table 2. The results indicated significant

<table>
<thead>
<tr>
<th>Table 1: Proximate compositions of experimental feeds and test Curcuma longa powder (%)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>10.85 ± 1.19</td>
<td>10.87 ± 0.90</td>
<td>10.48 ± 1.92</td>
<td>10.58 ± 2.43</td>
<td>7.62 ± 0.04</td>
</tr>
<tr>
<td>Ash</td>
<td>15.36 ± 0.73</td>
<td>15.40 ± 0.84</td>
<td>15.56 ± 1.27</td>
<td>15.70 ± 2.06</td>
<td>8.04 ± 0.02</td>
</tr>
<tr>
<td>Crude fat</td>
<td>3.83 ± 1.18</td>
<td>3.79 ± 0.81</td>
<td>3.77 ± 1.15</td>
<td>3.78 ± 1.16</td>
<td>4.80 ± 1.00</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>5.00 ± 0.02</td>
<td>5.36 ± 1.00</td>
<td>5.49 ± 1.10</td>
<td>5.50 ± 0.99</td>
<td>3.07 ± 0.10</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>45.74 ± 2.50</td>
<td>45.30 ± 6.30</td>
<td>45.20 ± 5.34</td>
<td>45.40 ± 2.96</td>
<td>65.64 ± 10.01</td>
</tr>
<tr>
<td>Crude protein</td>
<td>19.22 ± 1.65</td>
<td>20.28 ± 3.55</td>
<td>19.50 ± 6.21</td>
<td>19.40 ± 1.77</td>
<td>10.83 ± 1.04</td>
</tr>
<tr>
<td>Metabolizable energy, ME (MCal kg⁻¹)</td>
<td>3.21 ± 0.02</td>
<td>3.33 ± 1.03</td>
<td>3.35 ± 0.11</td>
<td>3.34 ± 0.01</td>
<td>3.61 ± 0.40</td>
</tr>
</tbody>
</table>

CLP - Curcuma longa powder, T1 - 0 g CLP kg⁻¹ feed (control), T2 - 20 g CLP kg⁻¹ feed, T3 - 35 g CLP kg⁻¹ feed, T4 - 50 g CLP kg⁻¹ feed

<table>
<thead>
<tr>
<th>Table 2: Semen characteristics of Nigerian roosters fed diets scented with CLP inclusions Parameters</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.20 ± 0.10</td>
<td>7.16 ± 0.11</td>
<td>7.30 ± 0.17</td>
<td>7.26 ± 0.05</td>
<td>0.032</td>
</tr>
<tr>
<td>SC (< 10⁶ ml⁻¹)</td>
<td>3.62 ± 0.48<sup>c</sup></td>
<td>4.14 ± 0.02<sup>b</sup></td>
<td>4.33 ± 0.24<sup>b</sup></td>
<td>4.75 ± 0.09<sup>a</sup></td>
<td>0.141</td>
</tr>
<tr>
<td>SV (ml)</td>
<td>0.63 ± 0.49</td>
<td>1.06 ± 0.23</td>
<td>1.20 ± 0.79</td>
<td>0.66 ± 0.47</td>
<td>0.153</td>
</tr>
<tr>
<td>LS (%)</td>
<td>76.00 ± 3.00<sup>a</sup></td>
<td>81.00 ± 2.00<sup>b</sup></td>
<td>84.00 ± 2.00<sup>b</sup></td>
<td>86.66 ± 0.57<sup>c</sup></td>
<td>1.291</td>
</tr>
<tr>
<td>DS (%)</td>
<td>24.00 ± 3.00<sup>a</sup></td>
<td>19.00 ± 2.00<sup>b</sup></td>
<td>16.00 ± 2.00<sup>b</sup></td>
<td>13.33 ± 0.57<sup>c</sup></td>
<td>1.292</td>
</tr>
</tbody>
</table>

Numerals on the same row with distinct superscripts are significantly different at 5% probability level; SEM - standard error of mean, CLP - Curcuma longa powder, T1 - 0 g CLP kg⁻¹ feed (control), T2 - 20 g CLP kg⁻¹ feed, T3 - 35 g CLP kg⁻¹ feed, T4 - 50 g CLP kg⁻¹ feed, pH - semen pH, SC - spermatozoa concentration, SV - semen volume, LS - live spermatozoa, DS - dead spermatozoa.
differences ($p < 0.05$) among the treatment means for sperm concentration (SC), percentiles of live sperm (LS) and dead spermatoza (DS). However, semen pH and volume across treatments were not affected ($p > 0.05$) by dietary CLP. *Curcuma*-treated groups (T2, T3 and T4) had higher ($p < 0.05$) SC (4.14, 4.33 and 4.75 × 10^9 ml$^{-1}$ respectively) than T1 (3.62 × 10^9 ml$^{-1}$). Also, the LS of CLP groups were higher ($p < 0.05$) than control, even as control recorded higher DS (24.00%) that differed significantly ($p < 0.05$) from study groups with least scores recorded for T1. Kazemizadeh et al. (2018) reported *C. longa* to enhance the production of cells involved with testicular functions. The dose-dependent increase in sperm concentration could be linked to the innate active constituents of *C. longa* that stimulated progressive increase in the seminiferous tubular diameter and more so, the number of Leydig and spermatagonia cells. These testicular changes could explain the increased spermatozoa concentration observed in samples from treated roosters. Fouda et al. (2020) highlighted *C. longa* to improve sperm membrane integrity and spermatozoa concentration by increasing testicular measure of the spermatogonia, Leydig and seminiferous tubules. Interestingly, the reports of Urom et al. (2018) and Sharifi-Rad et al. (2020) are in consonance with present result, as they independently reported improved SC of poultry birds fed diets improved with *C. longa*.

CONCLUSION

It was concluded that up to 50 g of *Curcuma longa* powder in every kg of grower feeds improved the semen characteristics of Nigerian heavy ecotype roosters by modulating the preponderance and viability of their sperm cells.

REFERENCES

