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INTRODUCTION

In this paper the authors focus on the derivation and the numerical solution of Differential-
Algebraic Equations with index-3 systems “using a derived implicit” two stage second order
Runge-Kutta method. The Differential Algebraic Equations (DAESs) are general form of Differ-
ential Equations for vector value function in an independent variable.

F(x(t),x(t).t) =0 (1)
Where x: [a,b] = R" is a vector of dependent variable x(t) = (x;(t), ...x,(t))

Differential-Algebraic Equations (DAEs) is one of the important areas in mathematical field,
that result from modeling of certain physical, economical and engineering problems, including
real-time simulation of mechanical (multi-body) system, power system, circuit analysis, optimal
control and computer-aided design (Brenan et al, 1989).

Earlier works by Petzold (1986), Ascher and Petzold (1995), Yelogu and Celik (2008), and Fa-
tokun (2011) reported the development and adaption of Differential Algebraic Equation with
index-1 and index-2 to solve to problems using the approximation methods. The aim of this pre-
sent paper is to derive and apply the implicit Runge-kutta method to nonlinear semi-explicit in-
dex-3 system and the sufficient condition which will ensure the accuracy of the method, which
is a follow up of Ascher and Petzold (1995) and Fatokun (2011). The important aspect of the
derivation of nonlinear semi-explicit index-3 system is that of order, stability and convergence
which may be used as basis for the procedure.
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Definition 1: Differential Index

For general DAEs system, the index along a solution x(t) is the minimum number of
differentiation steps required to transform a differential-algebraic equation into an ordinary
differential equation for the variable. The concept of index is very paramount because, it enables
us to quantify the level of difficulty that is involved in solving a given DAES.

Definition 2: Hessenberg forms of DAEs

Many of the higher index problems encountered in practice can be expressed as a combination of
more restrictive structures of ODEs coupled with constraints. In such systems, the algebraic and
differential variables are explicitly identified for higher index DAEs as well, and the algebraic
variables may all be eliminated by subsequent differentiation. When this occurs, we call such
Hessenberg forms of DAEs. These are categorized as follows:

Hessenberg index-1

This is a semi explicit index -1 system of the form

x = f(t,x,z2) (2a)
0=g9(x2) (2b)

The Jacobian matrix function g—‘z is assumed to be nonsingular for all t. they are closely

related to implicit ODEs. The index-1 property require that it is solvable in other words,
the differentiation of index-1 is by differentiation of the algebraic equation for which result
in an implicit ODESs system.

Hessenberg index-2

This is the system of the form
x = f(t,x,2) (3a)

0=g(tx) (3b)

where the product of the Jacobian is non-singular for all t. This system is pure index -2
DAEs, and all algebraic variables play the role of index- 2 variables.

Hessenberg index-3

This is the system of the form

x = f(t,x,y,2) (4a)
y =9txy) (4b)
0=nh(t,y), (4c)
where the product of the three matrix functionsg—zg—ig—iis nonsingular.

Definition 3: An M-stage Implicit Runge-Kutta Method
An M-stage Runge-Kutta method (IRK) applied to a DAE (1) is given by
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FOno1 +hE1ay Y taos + o) =0, 1= 1.2,.,M, Yo = ypg + hEIL Y] (5)

Where h = t,, — t,,_; The intermediateY’s are given by y; = y,,_4 + hZ —145Y; " Petzold(1984)

20 DERIVATION OF THE METHODS
Given a non-linear semi-explicit index-3 system of the form

X' +g1(6,y,2,0) =0, g,(x,7,t) =0, gs(x,t) =0 (6)

To solve equation (6) numerically by M-stage implicit Runge-Kutta method, we consider the M
—Stage implicit Runge-Kutta applied to (6) thus yielding

Xil + gl[xn—l + hzg‘/l=1aijxj Yn-1t+ hz 1au ],: Zpn-1 t+ hZ 1al] ti]
Y + goxn-1 + hXT  aijX;, ynor +h XL a5y, 6] =0
g3lxXn-1 + X aX), 6] =0, i=12,..M (7)

By substituting the value of x in terms of i, where the intermediate stage value for t; is
define as

X; = Xp_q +th 1aUX Y = yp-1 +h21 1aUY]', and Z; = z,_4 +hZ] 1aUZ
The true solution of (6) with respect to satisfies
t) = x(tn_1) + RXM. bix' (t, 1 + c;h) — 62
X( l) X( n—l) =1 ]X ( n—-1 Cl ) M+1
V(&) = Y(tnor) + R EM, by (g + cih) — 6303
2(t) = 2(ty) + h 2N bz (taoy + cih) — Sy ®)
where x(;) = x(tp_1) + h ZM, aijx (ty_q + k) — 87 ™
Y(t) = ¥(tn-1) + hEML, 4y (taey + cih) — 87T
2(t) = 2(ty_y) + hz @iz (tyoy + i) — 87 i =123,..,M
j=1
P 3 P) 8 3 )
LetGsq(t;) = %: Go1 () = %: G (t;) = %’ G11(t;) = %' G12(t;) = aiyl» G13(t;) = %

where the partial derivatives are evaluated along the true solutions by subtracting (8) from (7), and
substituting the values oft; = t,_; + c;4, then we obtain
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e = el + hYM, bEF + 650 )
Also for the value of y, by Subtracting (8) from (7), and substituting the values where
t; =th_1 +cih then,

el = e’  +h¥M bEY + 550 (10)
Similarly, for the value of z, by substituting for y and then
ef = el +hYM bEF +65.0 (12)
{X#gl{xn 1+hZaUX’ Y, 1+h2aIJ [z, 1+h2aIJ i ,H [X'(t)+9,(x(t), y(t).t)] =0
X —x'(t) + gu[Xi — % (O] + 91[Yi —yi(O)] + 91[ i—zi(t)]=0

EF + Gua (0B + Gra(t)E] + Gus (0)EF = 1} (12)
Similarly, by evaluating and substitute as done for (12) we have

Ely + Gy (t)EF + Gop (8DE] = 1] (13)
By evaluating and substituting this implies that we thus,

Ga1(t)E] =nf (14)
Bringing equation (9), (10), (11), (12), (13), and (14) together we have

E¥ + Gi1(t)EF + G2 (8)E]) + Gz (8)EF = nf (15a)
EY + Goy (t)EF + Gap(t)EY =] (15b)
Gar (t)EF = n? (15¢)

eX = e 1+thE" + 650 e =e,f_1+h2bi5y + 52

and eZ = eZ_, + h Y™ bEF +6AZ,,(3
Where EF = el +h3M a EF + 6, EY =e)  +h3L laUEy +62™ and
Ef =ef 1 +hXlL a;Ef +52(n) (16)
where terms are higher order terms by multiplying the first equation in 15 by
EZ = —MEF — MGy (t)EF — MiGyo(t)E} + My 17)
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Suppose that the product of (15a) and substituting equation (17) for then we have

(I — H)E] + N;E] + DiEiy + (I — H)M;Gq, () Ef — G13(ti)MiG12(ti)Eiy +
G (t)Mim; = ni™

By applying the definition of (17), we have
(I — H)EF + NEF + DiE? + [1 = Hi] |[=EF = Gu1 (t)EF — Gro(t)EY +nF| = 7™
Ef + Gy (t)EF + G (t)E] = nf
Thus (19) becomes

(I — H)EF + N;EF + DEY + [1 — Hi) [<(BF + Gua(6DEF + Gro(t)EY) + 7| = n7*
Substituting (20) in (21) and evaluating we have

(I — H)E¥ + N;EF + DiEY = 7™
where N; = (I — H)G11(t), Dy = (I — H)Gy2(8), n;* = (I — H)ni'
Similarly, multiply the second equation (15) by and solving for

EF = —QiE} — QiGyr(tDE] + Qin!

(18)

(19)
(20)

(21)

(22)

(23)

by multiplying (15b) and substitute (23) for also by applying the definition, we obtain

(I = QIE + [ = Ql[~E = G2 (tDE] +nf] + U = Q)G (tDE] =n;” (24)
Thus, we can rewrite (15b) as
Substituting (25) into (24) we have

(I = Q)E] + pE} =n;” (26)
By multiplying (15c) we obtain
HE] =n;* (27)
Thus equation (15a) - (15c¢) can now be written as:
(I = H)E{ + N;Ef + DiE] = 0™, (I - Qi)Eiy, +piE} =n”, Ef =n;” (28)
by substituting the value and from the first equation in (28), we obtain
DE} = ni* = (I = H)E} — NE} (29)
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From the second equation in (28) we obtain

piE =0 — (U - Q) EY (30)
Subtracting (29) from (16) we have
(I = Q)E] +pE} =n;”,

(I = H)EF + N:EF = 7%, 1)
HEX =n7% i=1.2,..,M

Multiplying the third equation in (31) by we have

N:H;E} = Njni* (32)
Adding the second equation in (31) with (32) we obtain

(I = HOEF + Ni[(I = HOEF + HEF] = ;™ (33)

Subtracting (32) from (33) and substituting the definition of giving in equation (16), and
by evaluating we obtain

x(n) _

EZ* 4 NI = H)eioy + hEjLy ay B + h Ly ay(Hy — H)ET™ +68% " = —Nin” +77 (34)

From the third equation in (31) we can obtain the expression for

x(n)

My;? ' /
20 g, (Hy — H)EF +68'n (35)

M o
e,’f_l + hZ]=Z1 aijij + h2j=1

By expanding (34) and (35), and substituting the definition, we have
E7* + Ni(( = Hpedoy +8;™) +

h¥y aiiNET* + h Y5 aNi(Hy — H) (B + E; ™) = =N * + 07> (36)

M M
hZ a B + Hiefoy +6;50) + hE aj(H; — H)(EX +E7™) =177 i=12,..,M
j=1 j=1

Let, where are evaluated along the true solution at time and Let be substituted

Thus Equation (36) can be written in matrix form as
T, K°T, (E~x’) _ (51 0) er_, + 6*m N (nm“") 37)
2 | x x(n) ~y
Ty  hT, ) \E~~* 0 Sy/\ef_,+6 n
Equation (37) can be rewritten as
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T, =T, +0(h?),T,=T,+0(h)and S; =S, +0(h),Ss =S, + 0(h) (38)
A A

where is the dimension of (8)

Supposing Ty is the left hand matrix in (37), since the matrix A of coefficients of the method
is invertible, is also invertible. Thus,

B 7,7+ o)
no = 71,
0(h) h+0(1)

Solving and substituting in (37), we have

, ~ —1a ~~X ~n~% ™~
( e ) T, S, +0(k) 0(h) <e;{_1 + 5x<n>> N+ 0T+ 0N
== ~ -1 a + |51 ,~2 o~ ~z
FE 0(h) 22 J\ed_s + 65 ™)\ o(yy™ ™ + 0(1)n™

Ho(D) h (39)
Recall that. from (39)
E¥ = =T Sa(eiq + 8™) + QT ™ +177% + 0(1) (67, + 55M) +
0™ + 0(hn~) (40)
Using equation (40) above and the forth equation (15) we have
el = eX_, + hbTE* + 5. (41)

Where bT = (byl4, byly, ..., byly) = bT x 1; by substituting (39) into the above
expression, we have

ef = eX_; — (b7 X Ix)(A™ X I)(Iyy X H)(eX_1 + 6*™) + 62 4 (bT x I)(A™1 x I)n™?
+0(h8*M™ + 0(her_,)) + 0(heF_y) + 0(hn~Y) + 0(hn~"%) (42)
By strict stability condition, where lg = (1,1,...,1)"

Then from (41) we have

eX = (I — (1= y)Hp_y + O(h))el_y + (BTA™Y) X I)n™% — Hyp_1 (BTA™Y) X 15)8%() 4 520

+0(h*™) + 0(hn™ %) + 0(hn~Y) (43)

By expanding (42) we obtain

en ™ =y (I + 0(h))es 70 — Hy_y (BTA™) X 1) — 557 + 0(h6*™)

n-1

+0(hdy ) + 0(™) + 0(hn™) (44)
By definition of algebraic order, we obtain

H((bTA™Y) x I5)8*™ — 85 () = 0(h*er*h)

M+1
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Multiplying (42) by definition, we obtain
en® = (I + 0(h))en®; + 0(hs*™) + 0(8p1) + 0(n™) + 0(hm™) (45)
Where for

Suppose that | | and || || are well defined, we can now rewrite (44) and (45) as

en ™ = y(I + 0(h))ex™; + 0(R***) + 0(H*1*?) + 0(e,) + 0(hey) (46)
en™ = y(I + 0()ey; + 0(h*?) + 0(h“4* ™) + 0(hey) + 0(hey) (47)
Supposing ||| = 0(4*¢) + 0(&,) + 0(gy) + 0(I — H)el (48)

Substituting for||e;*|| in the expansion for (15) and substituting also by simplifying we obtain
ef = pei_y — bT(A7 X 1) Iy X M + 0(W)(E* + (Iy X Gy1)E*) + 0(1%) + 0(h*11) (49)

and are evaluated along the true solution. Also, substitute from (38) and simplify, and solving the
recurrence in (45) and simplifying we have

lleZll = 0(A*1) + 0(=2) + 0(e;) + O( — H)eg (50)

From the above, we have the solution to be

2
2R ey + 2% (51)

& = kl(th + hklgl + &y +
&y = kz(hk1+1 + thgl + E1&2 + % + hkcgz + 822)

Assuming and letting the inertial values. Solving (49) above, we observe that the spectral
radius is less than one.

By contraction mapping theorem, we can conclude that the spectral radius converges to a
solution that satisfies the above initial condition.

From the first equation in (31),(I — Qi)Eiy' + (pi — DDE} =7
Then,(I — Qi)Eiy’ + p;EY =77 — D;E7 = 0 this implies that or.

From the second equation in (28), p;E = 7¥ — (I — Ql-)Eiy’. Substituting this in

the above, we have (I — Q)E} + 7Y — (I — Q))E} = E; = 0. Similarly, we
observe that the spectral radius of the iteration matrix is less than one. By
contraction mapping theorem, we conclude that it also converges to a solution
that satisfies the Lipschitz condition. Hence it is stable
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3.0 THE CONVERGENCE/STABILITY ANALYSIS OF THE METHOD
3.1  Strangeness-free DAE problem

Hypothesis 3.1. There exist integers u, a, and d such that the set

L, = {(tx %, ..., xWD) € RUFDM™UE (¢, x,%,..., x#+D) = 0} associated with F is
nonempty and such that for every (t;, Xy, Xy, .-, XO(‘”l)) €L, there exists a (sufficiently small)
neighborhood in which the following properties hold:

1. We have rank M, (¢t,x, %,...,x%*Y) = (u + 1)n — a on L, such that there exists a smooth
matrix function Z, of size (u + 1)n x a and a pointwise maximal rank, satisfying Z7 M,, = Oon

L,.

2. We have rank 4, (t, x, %, ..., x#*1) = a where 4, = ZJN,[1,0...0]" such that there exists a
smooth matrix function T, of sizen X d,d = n — a, and a pointwise maximal rank, satisfying
AZTZ - 00n ]Ll'l

3. We have rank F;(t, x, X)T,(t, x, X, ..., x#*1) = d such that there exists a smooth matrix
function Z, of size n x d and a pointwise maximal rank, satisfying E;T, = d, where E; = ZTF,.

Let E€C! (D, R™™"), £ € Ny U {00}, with rank E(x) = r for all

x € M € D, D S R* open. For every £ € M there exists a sufficiently small neighborhood V <

D of £ and matrix functions T € C* (V, R™7T), /e C”(v, R™"=T), with pointwise
orthonormal columns such that

ET=0, ZTE=0 (52)
on M.

Proof. For £ € M, using the singular value decomposition, there exist orthogonal matrices U €
R™™ V € R™ with

gw@W:E ﬂ (53)
and £ € R™" nonsingular.

Splitting V = [T 'T] according to the above block structure, we consider the linear system of

equations
FE@HT:[O]
T J —
Since
Anchor University Journal of Science and Technology , Volume 2 Issue 1 Fatokun et al

64



[Z 'E (x) [2 0

0 LI (54)

Which obviously has full column rank. Moreover, by construction, [T'T (x)] is nonsingular. By

the definition of T, it follows that

2TEQ)T’

N o4 l (55)
ZTE()T' ZTE(x)T(x)

UTE@®)ITT(x)] = [

Such that
rank E(x) = rank Z’TE(x)T’ +rank ZTE(x)T (x) = r +rank ZTE (x)T (x).
If £ € M, then we have rank E(x) = r implying that ZTE (x)T (x) = 0.

Together with Z'TE (x)T (x) = 0, this gives E(x)T(x) = 0. Orthonormality of the columns of
T (x) can be obtained by the smooth Gram-Schmidt orthonormalization process.

The corresponding result for Z follows by considering the pointwise transposeE™.

Given a differential-algebraic equation F(t, x, x) = 0, the smallest value of such that satisfies
Hypothesis 3.1 is called the strangeness index of F(t,x,x) = 0. If u = 0, then the differential-
algebraic equation is called strangeness-free.

3.2 Stability concepts for ODEs
We briefly recall classical stability concepts for ordinary differential equations
= f(t,x), tel (56)

We include proofs when we need the notation and parts of them when we discuss similar results
for DAEs.

Theorem 1: The trivial solution of the linear homogenous ODE (54)

1. isstable if and only if there exists a constant L > 0 with ||@(t, t,)|| < L on I;

2. isasymptotically stable if and only if ||@ (¢, ty)|| = 0 for t — oo;

3. is exponentially stable if there exists L > 0, and y > 0 such that ||®(t, t,)|| < Le™" (¢t
onl.

In the general nonlinear case, we can only expect sufficient conditions that guarantee the
specific stability properties. The classical result is given in the so-called Lyapunov stability
theorems.

Definition 2: Let U be an (open) neighborhood of an equilibrium solution x* of the ODE (56).
A function V € C1(I x U, RY) is called Lyapunov function associated with x* if
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V(t,x*) =0forall t €1,

V(t,x) < 0forall (t,x) € I x U, where V(t,x) = Vi (t, x)f(t,x) + V. (t,x),

3. There exists a continuous function (W: U - R{) with W (x) > 0 for all x € U\{x*} and
V(t,x) = W(x) forall (t,x) €l x D.

N =

4.0 NUMERICAL EXPERIMENTS AND RESULTS

In this section, the newly derived method is applied to some classical problems in literature to
prove the efficiency and accuracy of the new scheme in comparison with some known methods in
the literature. All the computations in this section were performed using MATLAB 2017Ra.

Problem 1

Consider the following index-3 differential-algebraic equations with hessenbergindex-3 of the
form

X, +x,—1=0, xx,+x3+2x, =0, xx,+2x3+e*= (57)
with initial conditions given asx;(0) = 0, x,(0)=-1, x3(0)=1
The exact solution is given asx; (x) = e* — 1, x,(x) =2x —e*, x3(x) = (1 +x)e* — 2x?
Where represents the differential variables and represent the algebraic variable.
Using the transformation with
x=1 x3+x, =1, x,+x3+2x, =2, X, +x3 =e* (58)
After three times differentiation, we obtain

x;(x) =e*, x,(x)=2-—¢e% x3(x)=2xx; — 2%, +x (59)
From the equation in equation ( 51), x(e* — 1) — 2(2x — e*) + x. This implies that
x5(x) = 3e* — 4x.
Thus, (51) becomes x;(x) = e*, x,(x) =2 —e*, x3(x) = 3e* — 4x (60)

Solving using implicit two-stage second order Runge-Kutta method
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Table 1: Numerical Solutions of x; for Problem One

X h Exact Ralston’s Method | Error RungKutta Error Variational
solution Method iteration
Method

0.0 0 0 0 0 0 0

1.0 0.1 | 1.718281828 | 0.105192276 0.9387805 0.101265756 0.941065688 | 0.105170918
2.0 0.2 | 6.389056099 | 0.221577899 0.965319149 0.205127109 0.967893988 | 0.221402758
3.0 0.3 | 19.08553692 | 0.5234 0.972576092 0.311682622 0.83669171 | 0.349858808
4.0 0.4 | 53.59815003 | 0.493295682 0.990273338 0.421034183 0.992144613 | 0.491824698
5.0 0.5 | 147.4131591 | 0.651663805 0.987841673 0.533287113 0.996382364 | 0.648721271
6.0 0.6 | 402.4287935 | 0.827324874 0.9979417 0.648550272 0.998388409 | 0.822118800
7.0 0.7 | 1095.633158 | 1.022214129 0.9990701 0.766936175 0.999300006 | 1.013752707
8.0 0.8 | 2980.957987 | 1.23846336 0.999584541 0.888561103 0.999701921 | 1.225540928
9.0 0.9 | 8102.083928 | 1.478419785 0.999757589 1.01354222 0.999874903 | 1.459603111
100 | 1.0 | 22025.46579 | 1.744666678 0.9999208 1.14201270 0.999948 1.71828183

Solution Graph for Problem One

F— RALSTON'S METHOD(RM)
RUNGE-KUTTA METHOD
VARIATION ITERATION
WETHOD

25000.0000000000—

[~ EXACT SOLUTIONS

20000.0000000000—

15000.0000000000—

Value

10000.0000000000—

5000.0000000000—

0000000000

T T T T T T T T T T T
00 100 200 300 400 500 600 7.00 8500 9.00 10.00
X AXIS

Figure 1: Solution curve showing comparison between Ralston’s method (RM), Runge-Kutta
Method(RKM), Variational Iteration Method(VIM) and Exact Solution(ES)
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Applying implicit two stage second order Runge- Kutta method to solve for in (58) for the

solution of we obtain the following results as presented on Table 2

Table 2: Numerical Solutions of x, for Problem One

X H Exact Ralston’s Method | Error RungeKutta Error Variational
Solution Method iteration Method

0.0 0.0 -1 0 1 0 1 -1

1.0 0.1 -0.718281828 0.094807723 1.1319922373 | 0.098734243 1.137458918 | -0.905170918
2.0 0.2 -3.389056099 0.178422101 1.052646547 0.19437289 1.057353105 | -0.821402758
3.0 0.3 -14.08553692 0.249535458 1.017715722 0.288317377 1.020469037 | -0.749858808
4.0 0.4 -46.59815003 0.306704318 1.006581899 0.378965816 1.008132637 | -0.691824698
5.0 0.5 -138.4131591 0.48336195 1.003492168 0.466712886 1.003371882 | -0.648721271
6.0 0.6 -391.4287935 0.372675125 1.00952089 0.551449727 1.001408812 | -0.622118800
7.0 0.7 -1082.63358 0.37778587 1.000348951 0.633063824 1.000584744 | -0.613752707
8.0 0.8 -2964.957987 0.361536639 1.000121937 0.711438896 1.000239949 | -0.625540928
9.0 0.9 -8085.083928 0.321580214 1.000039775 0.786454777 1.000097272 | -0.659603111
10.0 1.0 -22006.40579 0.255333322 1.000011603 1.142012708 1.000051894 | -0.718281828
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Figure 2: Solution curve showing comparison between Ralston’s Method(RM), Runge-Kutta

Method(RKM), Variational Iteration Method(VIM) and Exact Solution (ES)
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Table 3: Numerical Solutions of x5 for Problem One

X h Exact Solution | Ralston’s Method Error RungeKutta Error Variational
Method iteration Method

0.0 0.0 1 -1 2 -1 2 1

1.0 0.1 3.436563657 -0.503905772 1.146630711 -0.49033837 1.142682755 1.19568010
20 0.2 14.1671683 -0.035458138 0.997497161 0.006386139 0.999549229 1.385683310
3.0 0.3 62.34214769 0.393783764 0.993683506 0.498984887 0.991996026 1.574816450
4.0 04 240.9907502 0.824420019 0.996579038 0.98466946 0.995914077 1.768554577
5.0 05 840.4789546 1.219201149 0.998549397 1.4563556096 0.998267231 1.97381906
6.0 0.6 2752.001554 1.593067437 0.999421124 1.9357764936 0.999296597 2.195390080
7.0 0.7 8675.065267 1.948154688 0.99977543 2.401420155 0.999723181 2.44337962
8.0 0.8 26700.62188 2.286815627 0.999914353 2.860650087 0.999892862 2.725973670
9.0 0.9 80868.83928 2.611640734 0.999967705 3.31358735 0.999959025 3.053245911
10.0 1.0 242091.1237 2.925481008 0.999987915 3.76036899 0.999984467 3.436563656
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250000 0000000000~ RUNGE-KUTT A METHOD
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f— ExacT SoLUTIONS

200000 0000000000~
150000 0000000000~

100000 0000000000~
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Figure 3: Solution curve showing comparison between Ralston’s Method(RM), Runge-Kutta
Method(RKM), Variational Iteration Method(VIM) and Exact Solution (ES)

Anchor University Journal of Science and Technology , Volume 2 Issue 1 Fatokun et al

69



Problem 2

Consider the problem below
1 0 0\/% 1 1 x\ /% 2x
0 1 0f[xy|+(e* x+1 0){x2|={x2+x+2
0 0 0/ \y 0 x% 0/\x3 x3

x1(0) 1
with initial conditions as | x,(0) | = (O)
x3(0) 1

The exact solutions arex; (x) = e ™1, x,(x) = x, x3(x) =1
From equation (i) above, we obtain x; + x; + x, + xx3 = 2x
X, +eX+ (x+ Dx, =2 +x +x2, x%x, = x3
From first equation in (ii) above, we obtain
X, +e*+x+x=2x, x;,+e*+2x=2x, x; = —e*

From the second equation above, we obtain

X, +e*(x+Dx, =x+x>+2, x,+eX+x+x>+2, x, =2—e*

From the third equation , we obtain

x%xy; = X3 X3 = 2x% + x% = 3x?
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Table 4: Numerical Solutions of x; for Problem Two

X h Exact Solution Ralston’s Error RungeKutta Error Variational
Method Method iteration
Method
0.0 0.0 1 0 1 0 1 1
1.0 0.1 0.367879441 -0.095182899 4.864974117 | -0.987654956 1.372477695 0.904837418
20 0.2 0.135335283 -0.18142773 1.734411037 | -0.975614712 1.13871796 0.818730753
3.0 0.3 0.049787068 -0.259703243 1.191707533 | -0.289161523 | 1.172°177361 0.740818221
4.0 0.4 0.018315638 -0.330884858 1.055353509 | -0.380967483 | 1.0748076644 | 0.670320046
5.0 0.5 0.006737946 -0.395763092 1.017025201 | -0.470624225 1.01431704 0.606530659
6.0 0.6 0.002478752 | -0.45505126 1.13730047 | -0.558212392 1.004440518 | 0.548811636
7.0 0.7 0.000911881 -0.509392503 1.001790134 | -0.643809957 1.001416382 0.499658530
8.0 0.8 0.000335462 -0.559366205 1.000599718 | -0.727492301 | 1.000461121 | 0.499328964
9.0 0.9 0.000123409 -0.605493852 1.000203815 | -0.809332298 | 1.000152482 0.406569659
10.0 1.0 | 0.0000045399 -0.648244368 1.000700338 | -0.889400391 | 1.0000051045 | 0.367879441

— RALSTON'S METHOD(RM)
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Figure 4: Solution curve showing comparison between Ralston’s Method(RM), Runge-Kutta
Method(RKM), Variational Iteration Method(VIM) and Exact Solution (ES)
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Table 5: Numerical Solutions of x, for Problem Two

X h Exact Ralston’s Error RungeKutta Error
Solution Method Method

0.0 0.0 0 1 1 1 0

1.0 0.1 1.0 0.914057745 0.085942255 | 0.924731135 | 0.075268865
20 0.2 20 0.797688823 0.601155885 | 0.842406505 | 0.578796747
3.0 0.3 3.0 0.6473386 0.784220466 0.75275879 | 0.749080403
4.0 0.4 40 0.459083312 0.885229172 0.655510429 | 0.836122392
5.0 0.5 5.0 0.228594121 0.954281175 | 0.55037533 0.889924934
6.0 0.6 6.0 -0.048902171 1.008150362 | 0.437057578 | 0.92715707
7.0 0.7 7.0 -0.378666091 1.054095156 | 0.31525329 0.954963815
8.0 0.8 8.0 -0.766492446 1.09581156 | 0.184640499 | 0.976999937
9.0 0.9 9.0 -1.218761637 1.13541796 0.04489844 | 0.9950111284
10.0 1.0 10.0 0.840381816 0.915961818 | 0.104312392 | 1.010431239
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40000000000
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Figure 5: Solution curve showing comparison between Ralston’s Method (RM), Runge-Kutta

Method (RKM) and Exact Solution (ES)
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Table 6: Numerical Solutions of x5 for Problem Two

X h Exact Ralston’s Error RungeKutta Error
Solution Method Method

0.0 0.0 0 0 0 0 0

1.0 0.1 1.0 0.001125 0.998875 0.00009375 0.99990625
2.0 0.2 1.0 0.009 0.991 0.00075 0.0.9925
3.0 0.3 1.0 0.030375 0.969625 0.00253125 0.99746875
4.0 0.4 1.0 0.072 0.928 0.024 0.976

5.0 05 1.0 0.140625 | 0.85937 0.01171875 0.98828125
6.0 0.6 1.0 0.243 0.757 0.02025 0.97975
7.0 0.7 1.0 0.385875 | 0.614142 | 0.03215625 0.0.96784375
8.0 0.8 1.0 0.576 0.424 0.048 0.952
9.0 0.9 1.0 0.820125 | 0.1798875 | 0.06834375 0.0.93165625
10.0 1.0 1.0 1.125 -0.125 0.09375 0.90625
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1.2000000000]
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Figure 6: Solution curve showing comparison between Ralston’s Method(RM), Runge-Kutta
Method(RKM) and Exact Solution (ES)
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CONCLUSION

The numerical results presented, show the implementation of the method when applied to the
systems of higher index differential algebraic equations. It is obvious that the methods compete
favorably with the existing method for the class of problems considered and also, yields desire
accuracy
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