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and consistency results (Paul, 2014). These 

results aid our understanding of set theory 

and test the strengths of the axioms that 

constitute the theory (Gitman et al., 2016; 

Mathias, 2001).For instance, with the 

assumption that ZF is consistent; the axiom 

of choice can be shown to be independent of 

ZF. Gitman et al. (2016) proved the 

essentiality of the power set axiom by 

showing that the theory ZFC-, i.e. the axioms 

of ZFC without the power set axiom, is 

weaker than expected and inadequate for 

establishing a number of foundational results. 

In this paper, we study the standard axioms 

of Zermelo-Fraenkel set theory and extension 

of this theory. In section 2, we present 

preliminaries; notations, symbols and 

definitions that will be used. In section 3, 

axioms of the Zermelo-Fraenkel set theory 

together with the axiom of choice will be 

studied. A related theory - the von Neumann-

Bernays-Goedelset theory – which is based 

on ZFC will be investigated in section 4. We 

give some concluding remarks in section 5. 

 

1. PRELIMINARIES 

The first-order formal language of set 

theoryℒ consists of quantified variables 

defined over non-logical objects. The 

predicate symbols = (identity) and ∈ (binary 

predicate) together with the usual logical 

symbols, and quantifiers are used. For a 

function 𝑓: 𝑥 → 𝑦, the domain and range of 𝑓 

will be denoted by 𝑑𝑜𝑚(𝑓) and 𝑟𝑎𝑛(𝑓), 
respectively.A formula say𝜓 follows from Φ 

if there exists a proof of 𝜓 from a system of 

axioms ofΦ.A class will be a collection of 

sets defined by a formula whose quantifiers 

range only over sets. If a structure 𝒯 is a 

model of some axioms of set theory , say 

extensionality and powerset axioms, we 

denote this by𝒯 ⊨ 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 +
𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡, where𝒯 is a model ofany 

collection of axioms if  the axioms are true in 

𝒯. 

 

2. THE AXIOMS OF ZFC 

There is no universal agreement on the order 

of the Zermelo-Fraenkel axioms, the exact 

wording of the axioms, or even how many 

axioms they are. However, the standard 

axioms of ZFC can be classified into two 

groups. The first group usually consists of the 

following axioms: Extensionality, Empty set, 

Pairing, Union, Powerset and Infinity. These 

axioms are otherwise known as the basic 

axioms. The second group contains the 

complex axioms viz: Separation, 

Replacement, Foundation and the axiom of 

Choice. These are referred to as axiom 

schemas. The axiom of foundation also 

known as regularity was stated by von 

Neumann as a modification of ZF. Formal 

definitions of these axioms are presented 

below (see Kunen, 2011; Devlin, 1993 for 

details). 

 

3.1 Extensionality 

∀𝐴, 𝐵(∀𝑥(𝑥 ∈ 𝐴x ∈ B) → A = B) 
Any two sets are equal if and only if they 

contain the same elements. The axiom of 

extensionality on its own does not guarantee 

the existence of any set, rather it ensures the 

uniqueness of a set; a set can be uniquely 

determined by its elements. 

The next axiom guarantees that at least the 

empty set exists. 

 

3.2 Empty Set 

∃𝐴∀𝑥(𝑥 ∉ 𝐴) 
There exists a set with no elements. The 

empty set, ∅, is unique by extensionality. 

 

3.3 Axiom of Pairing 

 𝑥, 𝑦 ∃ 𝐶  𝑧 (𝑧 ∈ 𝐶   𝑧 = 𝑥 ˅𝑧 = 𝑦) 
If we’re given two sets, a natural desire could 

be to combine the elements of the two into 

one set. So for x and y it is possible to define 

some whole new set C such that C = {x, y}. 

The axiom of pairing implies the existence of 

singleton sets: the set {𝑥} is equal to the 

unordered pair{𝑥, 𝑥}; equality holds by 
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extensionality. A standard or formal 

representation of the ordered pair (𝑥, 𝑦) is the 

set{{𝑥}, {𝑥, 𝑦}}, this can be obtained via 

repeated applications of the axiom of pairing. 

Since sets are unordered, we have that ({a, b} 

= {b, a}), this definition allows us to express 

ordered pairs as a unique set of a singleton 

{a} and an unordered pair {a, b}. Using this 

system we can further define ordered triples: 

(a, b, c) = ((a, b), c) = {{{a}, {a, b}}, {{{a}, 

{a, b}}, c}}. We take ordered pair (𝑎, 𝑏) =
(𝑐, 𝑑) if and only if a = c and b = d. 

Ordered quadruples (𝑎, 𝑏, 𝑐, 𝑑) =
((𝑎, 𝑏, 𝑐), 𝑑) 

⋮ 
Ordered n-tuple (𝑎1… . . 𝑎𝑛+1) =
((𝑎1… . . 𝑎𝑛), 𝑎𝑛+1) 
It follows that two ordered n-tuples 
(𝑎1… . 𝑎𝑛) = (𝑏1… . . 𝑏𝑛) are equal if and 

only if  

𝑎1 = 𝑏1…… . 𝑎𝑛 = 𝑏𝑛 

A general form of the axiom of pairing is 

given by: 

(∀𝑥1…𝑥𝑛)∃𝑐∀𝑤(𝑤 ∈ 𝑐 ↔ ⋁ 𝑤 = 𝑥𝑖
1≤𝑖≤𝑛

) 

3.4 Axiom of Union 

The general form of the axiom of union is as 

follows: 

∀𝐴∃𝐵∀𝑥((𝑥 ∈ 𝐵) ↔ ∃c((c ∈ A) ∧ x ∈ c))) 

For any collection of A there is a set whose 

members are those sets belonging to the sets 

inside A. 

The set𝐵 is customarily notated as ⋃𝐴. 

Stated another way, for every collection C, 

there exists a set 𝐵 such that if 𝑥 ∈ 𝑋 for 

some X in C, then 𝑥 ∈ 𝐵. 

Finite sets can easily be constructed by 

applying the axioms of pairing and union. 

3.5 Axiom of Power Set 

∀𝐴∃𝑃∀𝑥(𝑥 ∈ 𝑃 ↔ ∀𝑦 ∈ 𝑥(𝑦 ∈ 𝐴)) 

Intuitively, we can think that for each set, 

there exists a collection of sets that contain 

among its elements all the subsets of the 

given set. If we assume for a moment that 

there exists some set 𝑃 for which all the sets 

are subsets of E, then we write 𝑃 =
{𝑋: 𝑋 ⊂ 𝐸}. 

As a consequence, it is perfectly possible that 

P could contain other elements than the ones 

that are in X. An easy fix would be to apply 

Extensionality which would imply that the set 

is unique. Which give us P(∅) = {∅}. 

Using the Powerset axiom, we can define 

other basic notions of set theory. 

The product of X and Y is the set of all pairs 

(x, y) such that 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌:  

𝑋 × 𝑌 = {(𝑥, 𝑦): 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌 }. 
The notation {(x, y) : . . .} in above is justified 

because 

{(𝑥, 𝑦): 𝜑(𝑥, 𝑦)} = {𝑢: ∃𝑥∃𝑦(𝑢 =

(𝑥, 𝑦)𝑎𝑛𝑑 𝜑(𝑥, 𝑦))} . 

The product 𝑋 × 𝑌 is a set because 𝑋 × 𝑌 ⊂
𝑃𝑃(𝑋 ∪ 𝑌). 
We can also define 𝑋 × 𝑌 × 𝑍 = (𝑋 × 𝑌) ×
𝑍 and in general  

𝑋1 × …× 𝑋𝑛+1 = (𝑋1 ×…× 𝑋𝑛) × 𝑋𝑛+1. 
Thus  

(𝑋1 ×…× 𝑋𝑛) = {(𝑥1, … , 𝑥𝑛): 𝑥1
∈ 𝑋1 ∧ …˄𝑥𝑛 ∈ 𝑋𝑛}. 

Also let 𝑋𝑛 = 𝑋 × .  .  .  × 𝑋⏟        
𝑛  𝑡𝑖𝑚𝑒𝑠

. 

An n-ary relation R is set of n-tuples. R is a 

relation on X if 𝑅 ⊂  𝑋𝑛 . It is customary to 

write 𝑅(𝑥1, .  .  ., 𝑥𝑛) instead of (𝑥1, .  .  .,
𝑥𝑛) ∈ 𝑅, and in case that R is binary, then we 

also use 𝑥 𝑅 𝑦 for (x, y) ∈ 𝑅. 

If R is a binary relation, then the 

domain of 𝑅 is the set  𝑑𝑜𝑚(𝑅) = {𝑢 ∶
∃𝑣(𝑢, 𝑣) ∈ 𝑅} and 

the range of R is the set𝑟𝑎𝑛(𝑅) = {𝑣 ∶
 ∃𝑢(𝑢, 𝑣) ∈ 𝑅 }. 
 

3.6 Axiom of Infinity 
An infinite set exists. 

∃𝒙(∅ ∈ 𝒙 ˄ ∀𝒚(𝒚 ∈ 𝒙 →∪ {𝒚, {𝒚}} ∈ 𝒙). 
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We may think of this as follows. Let us define 

the union of 𝑥 𝑎𝑛𝑑 𝑦, (𝑥 ∪ 𝑦), as the union of 

the pair set of 𝑥 𝑎𝑛𝑑 𝑦, i. e ., as ∪ {𝑥, 𝑦}. Then 

the axiom of infinity asserts that there is a set 

𝑥 which contains ∅ as a member and which is 

such that whenever a set 𝑦 is a member of 𝑥, 

then 𝑦 ∪ {𝑦} is a member of 𝑥. 

Consequently, this axiom guarantees the 

existence of a set of the following form: 

{∅, {∅}, {∅, {∅}}, {∅, {∅, }{∅, {∅}}} , … } 

An infinite set of the indicated above contains 

a copy of the natural numbers, modeled as 

follows: first 0 corresponds to the empty set, 

then 1 corresponds to {𝜙}, then 2 correspond 

to{𝜙, {𝜙}} and so on. 

 

3.7 The Axiom (Scheme) of Separation 

If 𝜑 is a property (with parameter  𝑝) then for 

any 𝑋 and 𝑝 there exists a set 𝑌 = { 𝑢 ∈ 𝑋 ∶
𝜑(𝑢, 𝑝)} that contains all those 𝑢 ∈ 𝑋 that 

have the property 𝜑 

∀ 𝑋 ∀ 𝑝 ∃ 𝑌  ∀ 𝑢(𝑢 ∈ 𝑌 ≡ (𝑢
∈ 𝑋 ˄ 𝜑(𝑢, 𝑝) )) 

Let 𝑃(𝑥) be a property of x. For any set 𝐴, 

there exists aset𝐵 such that 𝑥 ∈ 𝐵 if and only 

if 𝑥 ∈ 𝐴 and 𝑃(𝑥) holds. In other words, if 

given a formula 𝜑 and a set 𝑤 there exists a 

set 𝑣 which contains members of  𝑤 that 

satisfy the formula 𝜑. 

 

3.8 The Axiom (Scheme) of Replacement 

If 𝐹 is a function, then for any 𝑋 there exists 

a set 𝑌 = 𝐹[𝑋] = { 𝐹(𝑥): 𝑥 ∈ 𝑋  }  

∀𝑥∀𝑦∀𝑧[𝜑(𝑥, 𝑦, 𝑝) ∧ 𝜑(𝑥, 𝑧, 𝑝) → 𝑦 = 𝑧]
→ ∀𝑥∃𝑌∀𝑦[𝑦 ∈ 𝑌
≡ (∃𝑥 ∈ 𝑋) 𝜑(𝑥, 𝑦, 𝑝))] 

Let 𝑃(𝑥, 𝑦) be a property such that for every 

𝑥 there is a unique 𝑦 for which 𝑝(𝑥, 𝑦) holds. 

For every 𝐴 there exists B such that for every 

𝑥 ∈ 𝐴 there is  𝑦 ∈ 𝐵 for which 𝑃(𝑥, 𝑦) 
holds. This axiom aims to correct some of the 

paradoxes that arise out of the use of the 

axiom schema of comprehension. The major 

difference between the two is that the 

property 𝑃(𝑥, 𝑦) depends both on 𝑥 as well as 

the unique 𝑦 for while 𝑃(𝑥) depends on 𝑥 

only. 

3.9 Axiom of Foundation (or Regularity) 

Every nonempty set has an element that is 

disjoint from the set. 

∀ 𝑆 [(𝑆 ≠  ∅) → ( ∃ 𝑥((𝑥 𝜖 𝑆) ∧ (𝑆 ∩ 𝑥
=  ∅))] 

In contrast to most of the other axioms, the 

axiom does not guarantee the existence of 

any sets. 

 

3.10 Axiom of Choice 

Every family of nonempty sets has a choice 

function. 

∀ 𝑥 ∈ 𝑎 ∃ 𝐴 (𝑥, 𝑦) → ∃ 𝑦 ∀ 𝑥
∈ 𝑎 𝐴(𝑥, 𝑦(𝑥)).  

Given any infinite collection of nonempty 

sets, it is possible to choose (simultaneously) 

one element from each set. More precisely if 

𝑓 is a function whose domain is a nonempty 

set 𝐴 and whose co-domain is a set 𝐵 whose 

elements are nonempty sets, then there is a 

choice function 𝑔 with the property that 

𝑔(𝑥)  ∈ 𝑓(𝑥) for each 𝑥 in 𝐴. In other words, 

if 𝐴 is a set the elements of which are 

nonempty sets, then there exists a function 𝑓 

with domain 𝐴 such that, for member 𝐵 of 

A,𝑓(𝐵) ∈ 𝐵.  

Some well-known results that are equivalent 

to the axiom of choice include, the Well-

ordering Principle and Zorn’s Lemma. 

 

3. EXTENSIONS  OF THE 

ZERMELO-FRAENKEL 

THEORY 

In this section, an extension of ZFC set 

theory is studied. In particular, the von 

Neumann-Bernays-Goedel set theory (NBG) 

and a model will be presented. 

 

4.1 von Neumann-Bernays-Goedel Set 

Theory 

The von Neumann-Bernays-Goedel set 

theory (NBG) can be viewed as a 

conservative extension of the Zermelo-

Fraenkel set theory. Unlike ZFC, classes and 
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sets make up the objects of NBG (Bernays, 

1991).Intuitively, all sets are classes, but not 

all classes are sets. The theory NBG is 

constructed by extending the language of ZF 

set theory to classes. This theory is closely 

related to ZFC and any statement about sets 

is provable in NBG if and only if it is 

provable in Zermelo-Fraenkel set theory. The 

theories ZFC and NBG are equiconsistent. 

We present a comparative analysis of ZFC 

and NBG set theories. 

1. In contrast to ZFC, which is a study 

of a single kind of objects called sets, 

the theory NBG has among its 

objects, proper classes. These are 

different from sets because they do 

not belong to other classes. Thus in 

NBG we have 

𝑺𝒆𝒕(𝑥) ↔ ∃𝑦(𝑥 ∈ 𝑦) 
2. An equivalence of the set existence 

axioms of ZFC, with the exception of 

the axioms of powerset and infinity, 

is the limitation of size principle 

given by von Neumann: 

¬𝑺𝒆𝒕(𝑥) ↔ |𝑥| = |𝑉| 
Where 𝑉 is the set theoretic universe. 

3. The Zermelo-Fraenkel set theory is 

not finitely axiomatized. The axiom 

of replacement, for example, is an 

axiom schema consisting of an 

infinite family of axioms, since 

replacement is true for any set-

theoretic formula 𝐴(𝑢, 𝑣).Whereas 

NBG has only finitely many axioms; 

this was the main motivation in its 

construction. 

 

4.1.2 Axiomatization of NBG 

The NBG theory can be axiomatized using a 

two-sorted approach proposed by Bernays, or 

via the Goedel class construction functions. 

The major distinction between the two 

approaches is in the way statements are 

written. In order to eliminate sorts, Goedel 

uses primitive predicates for classes and sets. 

Nevertheless, all statements that are provable 

in the former approach are also provable in 

the latter. The latter allows the use of 

statements such as; 

∃𝑥𝜙(𝑥) Instead of ∃𝑥(∃𝐶(𝑥 ∈ 𝐶) ∧ 𝜙(𝑥)) 
and  

∀𝑥𝜙(𝑥) Instead of ∀𝑥(∃𝐶(𝑥 ∈ 𝐶) → 𝜙(𝑥)) 
With the introduction of classes to the 

language of ZFC, we have the following: 

1. The axiom scheme of class 

comprehension was added. 

 

Axiom (scheme) of Class Comprehension 

For every formula 𝜙(𝑥1, … , 𝑥𝑛) that 

quantifies only over sets, there exists a class 

𝐴 consisting of the 𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 satisfying the 

formula, ∀𝑥1, … , ∀𝑥𝑛[(𝑥1, … , 𝑥𝑛) ∈ 𝐴 ↔
𝜙(𝑥1, … , 𝑥𝑛)]. This axiom is used in its 

restricted form to avoid the paradoxes 

encountered in naïve set theory. 

2. The axiom of extensionality of ZFC 

is generalized to accommodate 

classes. 

 

Generalized Axiom of Extensionality 

If two classes have the same elements, then 

they are identical. 

∀𝐴∀𝐵[∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) → 𝐴 = 𝐵] 
3. The axiom (scheme) of replacement 

is replaced by a single axiom that uses 

a class. 

To make the theory finitely axiomatized, the 

axiom schema of class comprehension is 

replaced with finitely many class existence 

axioms, these are employed in the proof of 

the Class Existence Theorem which is a basic 

theorem of NBG. 

 

Theorem 4.1 (Class Existence Theorem) 

Let 𝜙(𝑥1, … , 𝑥𝑛, 𝑌1, … , 𝑌𝑚) be a formula that 

quantifies over sets and contains no free 

variables other than 𝑥1, … , 𝑥𝑛, 𝑌1, … , 𝑌𝑚. 

Then for all 𝑌1, … , 𝑌𝑚, there exists a unique 

class 𝑨of 𝑛-tupples such that: 

∀𝑥1, … , ∀𝑥𝑛[(𝑥1, … , 𝑥𝑛) ∈ 𝑨
↔ 𝜙(𝑥1, … , 𝑥𝑛, 𝑌1, … , 𝑌𝑚)] 
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The class 𝑨 is denoted by 

{(𝑥1, … , 𝑥𝑛): 𝜙(𝑥1, … , 𝑥𝑛, 𝑌1, … , 𝑌𝑚)} 
Axiom of Global Choice 

The NBG version of the axiom of choice is 

known as axiom of global choice. This axiom 

is a stronger form of the axiom of choice and 

it is implied by the axiom of limitation of 

size. 

∃𝐺[𝐺 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∧ ∀𝑥 

(𝑥 ≠ ∅ → ∃𝑦(𝑦 ∈ 𝑥 ∧ (𝑥, 𝑦) ∈ 𝐺))] 
I.e. there exists a function that chooses an 

element from every nonempty set. 

The axiom of global choice implies ZFC’s 

axiom of choice. 

Other axioms that were introduced or 

modified to handle classes include: 

 

The Axiom of Specification 

Let 𝜙 (𝐴1,𝐴2,.  .  . , 𝐴𝑛, 𝑥) be a propositional 

function such that 𝐴1,𝐴2,.  .  . , 𝐴𝑛 are a finite 

number of free variables whose domain 

ranges over all classes, and𝑥 a free variable 

whose domain ranges over all sets. Then, the 

axiom of specification gives that   

𝐴1,𝐴2,.  .  . , 𝐴𝑛: ∃ 𝐵 ∀𝑥 (𝑥 ∈ 𝐵) ↔

𝜙(𝐴1,𝐴2,.  .  . , 𝐴𝑛, 𝑥) where each of 𝐵 range 

over arbitrary classes. 

 

The Axiom of Foundation 

For any non- empty class, there is an element 

of the class that shares no element with the 

class  

∀ 𝑆 ∶ ~ (𝑆 = 𝑍 ∶ ∀𝑦 ∶ (~(𝑦 ∈ 𝑍))) → ∃ 𝑥

∈ 𝑆 ∶ ~(∃𝑤 ∶ 𝑤 ∈ 𝑆 ˄ 𝑤
∈ 𝑥) 

 

Membership Axiom 

There exists a class E containing the ordered 

pairs whose first component is a member of 

the second component. 

∃ 𝐸 ∀𝑥 ∀𝑦 [(𝑥, 𝑦) ∈ 𝐸 ↔ 𝑥 ∈ 𝑦] 
 

 

 

 

Intersection (conjunction) 

For any two classes 𝐴and𝐵, there is a class𝐶 

consisting precisely of thesets that belong to 

both 𝐴 and 𝐵. 
∀ 𝐴 ∀ 𝐵∃𝐶∀𝑥 [ 𝑥 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ˄ 𝑥 ∈ 𝐵)] 

 
Complement (Negation) 

For any class 𝐴 there is a class 𝐵 consisting 

precisely of the sets not belonging to 𝐴 

∀ 𝐴 ∃𝐵∀𝑥 [ 𝑥 ∈ 𝐵 ↔ ~(𝑥 ∈ 𝐴)] 
 

 

 

Circular Permutation 

For any class  𝐴  there is a class 𝐵 whose 3-

tuples are obtained by applying the circular 

permutation (𝑦, 𝑧, 𝑥) → (𝑥, 𝑦, 𝑧) to the 3-

tuples of 𝐴.  

∀𝐴∃𝐵∀𝑥∀𝑦∀𝑧 [(𝑥, 𝑦, 𝑧) ∈ 𝐵 ↔ (𝑦, 𝑧, 𝑥)
∈ 𝐴] 

Transposition 

For any class𝐴 there is a class 𝐵 whose 3-

tuples are obtained by transposing the last 

two components of the 3-tuples of 𝐴. 

∀𝑨∃𝑩∀𝒙∀𝒚∀𝒛 [(𝒙, 𝒚) ∈ 𝑩 ↔ (𝒙, 𝒛, 𝒚)
∈ 𝑨] 

 

4.2 von Neumann Hierarchy 

Models of set theory can be obtained through 

an iterative construction that follows the von 

Neumann hierarchy. The structures used are 

graphs of the form 𝐺 = (𝑉, 𝐸) where 𝑉 is a 

set, containing nodes and 𝐸 ⊆ 𝑉 × 𝑉 is a 

binary edge relation. 

In the von Neumann hierarchy, the zero-th 

stage corresponds to the empty set. At any 

successor stage, the powerset of the previous 

stage is taken. A limit step that is nonzero 

contains collections of previously existing 

sets; this corresponds to taking the union of 

all previous stages. With this iterative 

conception of sets, the 𝜔 − 𝑡ℎ step for an 

ordinal 𝜔 in the von Neumann hierarchy is a 

model of ZFC. 

For 𝛼an ordinal, 𝑉𝛼 can be defined as follows: 

𝑉0 = ∅ 
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For an ordinal say 𝛽, a successor ordinal 𝛽 +
1 is given by 

𝑉𝛽+1 = 𝒫(𝑉𝛽), where 𝒫 is the powerset 

For any limit ordinal 𝛼, we have 

𝑉𝛼 = ⋃ 𝑉𝛽𝛽<𝛼 for𝛼 ≠ 0 

For each ordinal 𝛼, the graph(𝑉𝛼, ∈) models 

a set theory. With this construction, the 

axioms of ZFC without infinity are true in 

𝑉𝛼,thus(𝑉𝜔, ∈) is a model of finite set theory. 
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