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INTRODUCTION

ABSTRACT

Background: Sets are given axiomatically, thus their existence and basic
properties are asserted by appropriate formal axioms. Axiomatic systems
address the inconsistencies associated with naive set theory. The most com-
monly used system of axioms for sets is the Zermelo-Fraenkel set theory
(ZF).

Objectives: In this work, we intend to investigate some set-theoretic results.
We begin with a study on the standard axioms of Zermelo-Fraenkel set theo-
1y. together with the axiom of choice (ZFC). A comparative analysis of the
von Neumann-Bernays-Godel (NBG), which is a conservative extension of
ZFC, is presented.

Methods: Axiomatic set theory is developed in the framework of the first-
order predicate calculus: this allows a formalization of all mathematical no-
tions and arguments. A model of the Zermelo-Fraenkel set theory that is ob-
tained through an iterative construction that follows the von Neumann hierar-
chy is presented .

Results: The axioms of Zermelo-Fraenkel set theory and the axiom of choice
ZFC were discussed in this work. A comparative analysis of the von Neu-
mann-Bernays-Goedel set theory, which is a conservative extension of ZFC,
was presented. The iterative conception of set proposed by von Neumann is a
model of set theory and by varying the technique of recursion on the ordinals,
different graph models of set theory can be constructed.

Conclusions: These graph models can be employed in establishing inde-
pendence and consistency results in set theory.

Keywords: Axiomatic system, Formal language, Models, First-order
logic and von Neumann hierarchy

Set theory is a branch of mathematics that
studies collections of objects. Modern set theo-
1y began in the1870s with the works of George
Cantor and Richard Dedekind. Researchers
like Bertrand Russell later discovered some
paradoxes in this early approach to the study of
sets. Other set theoretical paradoxes include
Burali-Forti  paradox, Richard’s paradox,
Koenig’s paradox, Banach-Tarski paradox and
paradox of Loewenheim and Skolem (see Jech,
2003 and Wagon, 1985 for details). Russell’s
paradox became the most famous among the
set-theoretical paradoxes. The paradox arises
within naive set theory by considering the set
of all sets that are not members of themselves.
Thus a set is considered to be a member of it-
self if it is not a member of itself. The
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desire for a self-consistent language created
a need for an axiomatic system that elimi-
nates the occurrence of paradoxes. Ernst
Zermelo proposed the first axiomatic set
theory and some contributions were made
by Abraham Fraenkel. The resulting axio-
matic set theory became known as Zermelo-
Fraenkel set theory (ZF),or(ZFC) when
considered with the axiom of choice
(Ferreiros, 2007;:Enderton, 1977). The Zer-
melo-Fraenkel set theory with the axiom of
choice (ZFC) is presently the most widely
used system for set theory. Graph models of
set theory are constructed using inductive
sets. The models, i.e., structures that satisfy
a system of axioms under certain interpreta-
tion, are tools for establishing independence
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and consistency results (Paul, 2014). These
results aid our understanding of set theory
and test the strengths of the axioms that
constitute the theory (Gitman et al., 2016;
Mathias, 2001).For instance, with the
assumption that ZF is consistent; the axiom
of choice can be shown to be independent of
ZF. Gitman et al. (2016) proved the
essentiality of the power set axiom by
showing that the theory ZFC-, i.e. the axioms
of ZFC without the power set axiom, is
weaker than expected and inadequate for
establishing a number of foundational results.
In this paper, we study the standard axioms
of Zermelo-Fraenkel set theory and extension
of this theory. In section 2, we present
preliminaries; notations, symbols and
definitions that will be used. In section 3,
axioms of the Zermelo-Fraenkel set theory
together with the axiom of choice will be
studied. A related theory - the von Neumann-
Bernays-Goedelset theory — which is based
on ZFC will be investigated in section 4. We
give some concluding remarks in section 5.

1. PRELIMINARIES

The first-order formal language of set
theoryL consists of quantified variables
defined over non-logical objects. The
predicate symbols = (identity) and € (binary
predicate) together with the usual logical
symbols, and quantifiers are used. For a
function f: x — y, the domain and range of f
will be denoted by dom(f) and ran(f),
respectively.A formula sayy follows from &
if there exists a proof of ¥ from a system of
axioms ofd.A class will be a collection of
sets defined by a formula whose quantifiers
range only over sets. If a structure 7" is a
model of some axioms of set theory , say
extensionality and powerset axioms, we
denote  this  byT E Extensionality +
powerset, whereJ is a model ofany
collection of axioms if the axioms are true in
T.

2. THE AXIOMS OF ZFC

There is no universal agreement on the order
of the Zermelo-Fraenkel axioms, the exact
wording of the axioms, or even how many
axioms they are. However, the standard
axioms of ZFC can be classified into two
groups. The first group usually consists of the
following axioms: Extensionality, Empty set,
Pairing, Union, Powerset and Infinity. These
axioms are otherwise known as the basic
axioms. The second group contains the
complex axioms Viz: Separation,
Replacement, Foundation and the axiom of
Choice. These are referred to as axiom
schemas. The axiom of foundation also
known as regularity was stated by von
Neumann as a modification of ZF. Formal
definitions of these axioms are presented
below (see Kunen, 2011; Devlin, 1993 for
details).

3.1 Extensionality

VA,B(Vx(x € A<>x € B) - A=B)

Any two sets are equal if and only if they
contain the same elements. The axiom of
extensionality on its own does not guarantee
the existence of any set, rather it ensures the
uniqueness of a set; a set can be uniquely
determined by its elements.

The next axiom guarantees that at least the
empty set exists.

3.2 Empty Set

JAVx(x & A)
There exists a set with no elements. The
empty set, @, is unique by extensionality.

3.3 Axiom of Pairing
Vx,ydCVz(z€C<«<>z=xVz=Yy)
If we’re given two sets, a natural desire could
be to combine the elements of the two into
one set. So for x and y it is possible to define

some whole new set C such that C = {x, y}.

The axiom of pairing implies the existence of
singleton sets: the set {x} is equal to the
unordered pair{x, x}; equality holds by
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extensionality. A standard or formal
representation of the ordered pair (x, y) is the
set{{x}, {x,y}}, this can be obtained via
repeated applications of the axiom of pairing.
Since sets are unordered, we have that ({a, b}
={b, a}), this definition allows us to express
ordered pairs as a unique set of a singleton
{a} and an unordered pair {a, b}. Using this
system we can further define ordered triples:
(a, b, ¢) = ((a, b), ) = {{{a}, {a, b}}, {{{a},
{a, b}}, c}}. We take ordered pair (a,b) =
(c,d) ifandonlyifa=cand b =d.

Ordered quadruples (a,b,c,d) =
((a,b,c),d)

Ordered n-tuple
((ay .....an), ans1)

It follows that two ordered n-tuples
(aq ....ap) = (by .....b,) are equal if and
only if

(a1 e an+1) -

a1 = bl ....an = bn
A general form of the axiom of pairing is
given by:

(Vx1 ...xp)3IcVW(W E ¢ & \/ w = Xx;)
. . 1<isn
3.4 Axiom of Union

The general form of the axiom of union is as
follows:

VA3IBVx((x € B) & Elc((c EA)AXE c)))
For any collection of A there is a set whose
members are those sets belonging to the sets
inside A.

The setB is customarily notated as UA.
Stated another way, for every collection C,
there exists a set B such that if x € X for
some X in C, then x € B.

Finite sets can easily be constructed by
applying the axioms of pairing and union.

3.5 Axiom of Power Set
VA3PVx(x € P o Vy € x(y € A))

Intuitively, we can think that for each set,
there exists a collection of sets that contain
among its elements all the subsets of the

given set. If we assume for a moment that
there exists some set P for which all the sets
are subsets of E, then we write P =
{X:X c E}.

As a consequence, it is perfectly possible that
P could contain other elements than the ones
that are in X. An easy fix would be to apply
Extensionality which would imply that the set
is unique. Which give us P(@) = {@}.

Using the Powerset axiom, we can define
other basic notions of set theory.

The product of X and Y is the set of all pairs
(x,y)suchthatx € Xand y €Y:

XXY={(x,y):x EXandy €Y}
The notation {(x, y) : ...} in above is justified
because
{6, y): (e, y)} = {w: 3x3y(u =
(x,y)and ¢(x,y))} .

The product X X Y is a set because X x Y c
PP(XUY).
We can also define X XY X Z = (X X Y) X
Z and in general
Xy X X X1 =X XX X)) X Xphq.
Thus

Xy X . X X)) = {(x1, e, X)) X1

EXI A ...AX, € X}

Alsolet X" =X x... xX.

n times

An n-ary relation R is set of n-tuples. R is a
relation on X if R € X™. It is customary to
write R(xq,.. . x,) instead of (xi,.. .
Xn) € R,and in case that R is binary, then we
also use x R y for (X, y) € R.

If R is a binary relation, then the

domain of R is the set dom(R) ={u:
Jv(u,v) € R} and

the range of R is the setran(R) ={v:
Ju(u,v) ER }.

3.6 Axiom of Infinity

An infinite set exists.
Ix(@ € x AVY(y € x U {y,{y}} € x).
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We may think of this as follows. Let us define
the union of x and y, (x U y), as the union of
the pair setof x and vy, i.e.,as U {x, y}. Then
the axiom of infinity asserts that there is a set
x which contains @ as a member and which is
such that whenever a set y is a member of x,
then y u{y} is a member of x.
Consequently, this axiom guarantees the
existence of a set of the following form:

@.{0} {2, {03}, {0, {0, }{o. (03}, ..}

An infinite set of the indicated above contains
a copy of the natural numbers, modeled as
follows: first O corresponds to the empty set,
then 1 corresponds to {¢}, then 2 correspond

to{¢, {¢}} and so on.

3.7 The Axiom (Scheme) of Separation
If ¢ is a property (with parameter p) then for
any X and p there existsaset Y ={u € X :
¢@(u,p)} that contains all those u € X that
have the property ¢

VXVp3aY Vu(u eY=(u

€EXanpu,p)))

Let P(x) be a property of x. For any set 4,
there exists asetB such that x € B if and only
if x € A and P(x) holds. In other words, if
given a formula ¢ and a set w there exists a
set v which contains members of w that
satisfy the formula ¢.

3.8 The Axiom (Scheme) of Replacement
If F is a function, then for any X there exists
asetY =F[X]={F(x):x€X }
VxVyvz[(x,y,p) Ap(x,z,p) >y = Z]

- Vx3YVy[y €Y

= (3x € X) o(x,y,p))]
Let P(x,y) be a property such that for every
x there is a unique y for which p(x, y) holds.
For every A there exists B such that for every
x €A there is y € B for which P(x,y)
holds. This axiom aims to correct some of the
paradoxes that arise out of the use of the
axiom schema of comprehension. The major
difference between the two is that the
property P(x, y) depends both on x as well as

the unique y for while P(x) depends on x
only.
3.9 Axiom of Foundation (or Regularity)
Every nonempty set has an element that is
disjoint from the set.

VSIS #0)-»(Ix(xeS)AN(S Nnx

= 0))]

In contrast to most of the other axioms, the
axiom does not guarantee the existence of
any sets.

3.10 Axiom of Choice
Every family of nonempty sets has a choice
function.

Vx €EadA(x,y)»3IyVx

Ea A(x,y(x)).

Given any infinite collection of nonempty
sets, it is possible to choose (simultaneously)
one element from each set. More precisely if
f is a function whose domain is a nonempty
set A and whose co-domain is a set B whose
elements are nonempty sets, then there is a
choice function g with the property that
g(x) € f(x) foreach x in A. In other words,
if A is a set the elements of which are
nonempty sets, then there exists a function f
with domain A such that, for member B of
Af(B) €B.
Some well-known results that are equivalent
to the axiom of choice include, the Well-
ordering Principle and Zorn'’s Lemma.

3. EXTENSIONS OF THE
ZERMELO-FRAENKEL
THEORY

In this section, an extension of ZFC set
theory is studied. In particular, the von
Neumann-Bernays-Goedel set theory (NBG)
and a model will be presented.

4.1 von Neumann-Bernays-Goedel Set
Theory

The von Neumann-Bernays-Goedel set
theory (NBG) can be viewed as a
conservative extension of the Zermelo-
Fraenkel set theory. Unlike ZFC, classes and
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sets make up the objects of NBG (Bernays,
1991).Intuitively, all sets are classes, but not
all classes are sets. The theory NBG is
constructed by extending the language of ZF
set theory to classes. This theory is closely
related to ZFC and any statement about sets
is provable in NBG if and only if it is
provable in Zermelo-Fraenkel set theory. The
theories ZFC and NBG are equiconsistent.
We present a comparative analysis of ZFC
and NBG set theories.

1. In contrast to ZFC, which is a study
of a single kind of objects called sets,
the theory NBG has among its
objects, proper classes. These are
different from sets because they do
not belong to other classes. Thus in
NBG we have

Set(x) & Iy(x € y)

2. An equivalence of the set existence
axioms of ZFC, with the exception of
the axioms of powerset and infinity,
is the limitation of size principle
given by von Neumann:

—Set(x) < |x| = |V|
Where V is the set theoretic universe.

3. The Zermelo-Fraenkel set theory is
not finitely axiomatized. The axiom
of replacement, for example, is an
axiom schema consisting of an
infinite  family of axioms, since
replacement is true for any set-
theoretic formula A(u, v).Whereas
NBG has only finitely many axioms;
this was the main motivation in its
construction.

4.1.2 Axiomatization of NBG

The NBG theory can be axiomatized using a
two-sorted approach proposed by Bernays, or
via the Goedel class construction functions.
The major distinction between the two
approaches is in the way statements are
written. In order to eliminate sorts, Goedel
uses primitive predicates for classes and sets.
Nevertheless, all statements that are provable

in the former approach are also provable in
the latter. The latter allows the use of
statements such as;
dx¢(x) Instead of Ix(AC(x € C) A p(x))
and
Vx¢(x) Instead of Vx(IC(x € C) — ¢p(x))
With the introduction of classes to the
language of ZFC, we have the following:

1. The axiom scheme of class

comprehension was added.

Axiom (scheme) of Class Comprehension
For every formula ¢(xy,..,x,) that
quantifies only over sets, there exists a class
A consisting of the n — tuples satisfying the
formula, Vxq, e, Vi [(Xq, oy xp) EA &
¢(xq, ..., xy)]. This axiom is used in its
restricted form to avoid the paradoxes
encountered in naive set theory.
2. The axiom of extensionality of ZFC
is generalized to accommodate
classes.

Generalized Axiom of Extensionality

If two classes have the same elements, then

they are identical.

VAVB[Vx(x EA < x €EB) - A = B]
3. The axiom (scheme) of replacement

is replaced by a single axiom that uses
a class.

To make the theory finitely axiomatized, the

axiom schema of class comprehension is

replaced with finitely many class existence

axioms, these are employed in the proof of

the Class Existence Theorem which is a basic

theorem of NBG.

Theorem 4.1 (Class Existence Theorem)
Let ¢p(xq, ..., xp, Y1, ..., Yy) be a formula that
quantifies over sets and contains no free
variables other than xi,..,x, Y, ..., Y.
Then for all Y;, ..., Y,,, there exists a unique
class Aof n-tupples such that:

V1, e, VX0 [(X1, o, Xp) EA

& P(xg, ey X, Ve, oo, Yo
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The class A is  denoted by
(O ey x0): P Oxqy e, 0, Ve, oo, Vi)
Axiom of Global Choice
The NBG version of the axiom of choice is
known as axiom of global choice. This axiom
is a stronger form of the axiom of choice and
it is implied by the axiom of limitation of
size.

AG|[G is a function AVx

(x#0->3y(yexA(x,y) €G))]

l.e. there exists a function that chooses an
element from every nonempty set.
The axiom of global choice implies ZFC’s
axiom of choice.
Other axioms that were introduced or
modified to handle classes include:

The Axiom of Specification

Let ¢ (A1 A,. . ., Ay, x) be a propositional
function such that 4, A4,. . ., A, are a finite
number of free variables whose domain
ranges over all classes, andx a free variable
whose domain ranges over all sets. Then, the
axiom of specification gives that
A1 Ay. . Ay dBVx (x €EB) &
¢(ALA4;. . ., Ay, x) where each of B range
over arbitrary classes.

The Axiom of Foundation

For any non- empty class, there is an element
of the class that shares no element with the
class

VS:~(S=Z:Vy:(~(y EZ)))—>EIx

ES:~Aw:weEeSAW
€ x)

Membership Axiom
There exists a class E containing the ordered
pairs whose first component is a member of
the second component.

IEVxVy[(x,y) EE & x €]

Intersection (conjunction)

For any two classes AandB, there is a classC
consisting precisely of thesets that belong to
both A and B.

VAV B3ACVx[x €C © (x€Arx €EB)]

Complement (Negation)

For any class A there is a class B consisting

precisely of the sets not belonging to A
VA3IBVx[x €EB & ~(x € A)]

Circular Permutation
For any class A there is a class B whose 3-
tuples are obtained by applying the circular
permutation (y,z,x) - (x,y,z) to the 3-
tuples of A.
VA3IBVYxVyvz [(x,y,z) EB © (y,z,x)
€ A]
Transposition
For any classA there is a class B whose 3-
tuples are obtained by transposing the last
two components of the 3-tuples of A.
VA3IBVxVyvz [(x,y) EB < (x,z,y)
€ 4]

4.2 von Neumann Hierarchy
Models of set theory can be obtained through
an iterative construction that follows the von
Neumann hierarchy. The structures used are
graphs of the form G = (V, E) where V is a
set, containing nodes and ECV XV is a
binary edge relation.
In the von Neumann hierarchy, the zero-th
stage corresponds to the empty set. At any
successor stage, the powerset of the previous
stage is taken. A limit step that is nonzero
contains collections of previously existing
sets; this corresponds to taking the union of
all previous stages. With this iterative
conception of sets, the w — th step for an
ordinal w in the von Neumann hierarchy is a
model of ZFC.
For aan ordinal, V, can be defined as follows:
Vo=0
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For an ordinal say S, a successor ordinal g +
1 is given by

Vg+1 = P(V3), where P is the powerset

For any limit ordinal a, we have

V, = U[)’<a Vﬁfor(l =0

For each ordinal «, the graph(V,, €) models
a set theory. With this construction, the
axioms of ZFC without infinity are true in
V,.thus(V,,, €) is a model of finite set theory.

REFERENCES

Bernays, P. (1991). Axiomatic Set Theory
(2" Revised Edition), Dover
Publications.

Devlin, K. J. (1993).The joy of sets:
Fundamentals of contemporary set
theory. New York,  Springer-
Verlag.

Enderton, H.B. (1977).Elements of set
theory. New York, Academic Press.

Ferreiros, J. (2007). Labyrinth of Thought: A
History of Set Theory and its Role in
Modern Mathematics.
Birkhauser Verlag AG.

Gitman, V., Hamkins, J. D., and John

stone, T. A. (2016). What is the
theory
ZFC without powerset?Mathematical

Logic Quarterly 62:4-5, 391-406.

Jech, T. (2003). Set theory. Springer
Monographs in Mathematics,
Springer Berlin, Heidelberg.

Kunen, K. (2011). Set Theory. Studies in
Logic: Mathematical Logic and
Foundations. Vol. 34.  College
Publications, London.

Mathias, A. R. D (2001). Slim models of
Zermelo set theory. Journal of
Symbolic Logic 66:  487-496.

Paul J. C. (2014).Independence Results in
Set Theory. The Theory of Models
edited by: J.W. Addison, Leon

Henkin and Alfred Tarski. Studies in Logic

and Foundations of
Mathematics,North-Holland,39-54.

Wagon, S. (1985). The Banach-Tarski
Paradox. Cambridge University
Press, Cambridge.

69



