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1. INTRODUCTION 

A significant number of physical problems result in differential equations. Traditionally, solutions 

to these differential equations can be obtained using analytical methods. Nonetheless, solutions to 

certain differential equations are very difficult by any means other than an approximate solution 

by the application of numerical methods. These methods are thus classified into two: One-step and 

Multistep methods.  

The general first order initial value problem is given as         

                           (1) 

where  is a function of two variables defined on a region in the 𝑥𝑦-plane. The continuous 

function 𝑓 is conventionally solved by reducing it to a system of Ordinary Differential Equations 

(ODEs) and then applying the various methods available for solving systems of first order Initial 

Value Problems (IVPs). 
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Although there has been tremendous success with this approach, it has certain drawbacks. For 

instance, computer programs related with the methods are often complicated, particularly when 

incorporating subroutines to provide the methods with the starting values, resulting in longer 

computational time and more work.  

Linear multistep methods are not self-starting hence, they need starting values from single-step 

methods like Euler’s method and Runge-Kutta family of methods. The standard k-step linear 

multistep methods (k≥2) seek for single-step methods to start. This has greatly increased the 

computational costs and time in solving initial value problems (IVPs) of ODEs. 

A lot of efforts have been devoted to the development of various methods for solving initial value 

problems directly without first reducing it to a system of first order Ordinary Differential Equations 

(ODEs). To mention but few are Heurici (1962), Lambert, (1973, 1976, 1991), Onumanyi (1999), 

and Simos (2002). 

Definition 1: The general k-step numerical method  

The general k -step linear multistep methods is given by 

        (2) 

where  and  are uniquely determined and , . 

 αk ≠ 0        (3) 

The numerical method (2) is said to be consistent with the differential equation (1) if the truncation 

error defined by  

       (4) 

 is such that for any ε > 0 there exists an h(ε) for which |Tn| < ε for 0 <h<h(ε), and any k+1 points 

(xn, y(xn)),...,(xn+k, y(xn+k)) on any solution curve in D of the initial value problem (1). 

According to this condition, if a linear multistep method is consistent, then it has a simple root on 

the unit circle at z = 1; thus, the Root Condition is not violated by this root. 

Definition 2: Order of the General Linear Multistep Methods 

The general linear multistep method (1) is said to have order of accuracy p if p is the largest 

positive integer such that, for any sufficiently smooth solution curve in D of the initial value 

problem (1) there exist constants K and h0 such that |Tn| ≤ Khp for 0<h<h0, for any (k+1) points 

(xn, y(xn)),…, (xn+k, y(xn+k)) on the solution curve. 

From the definition above, the numerical method is of order p if and only if 
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 and  where       (5) 

In this case,       (6) 

The number  is called the Error Constant. 

Definition 3: Consistency 

Assume that the numerical method is consistent with the differential equation if  and 

. (Süli & Mayers, 2003). By definition of consistency (see Dahlquist, 1974, Lambert, 1991), a 

linear multistep method is consistent if it satisfies the condition below: 

                              (7)                 

Definition 4: Stability             

If a linear multistep method is convergent, then the zeroes of the first characteristic polynomial of 

the method  

 or equivalently,                           (8) 

Theorem 1 (Root condition) 

A linear multistep method is zero-stable if and only if the root condition is satisfied. (Süli & 

Mayers, 2003).                                                        

Where, satisfy the Dahlquist root condition: all zeroes  satisfy , and  

multiple zeroes  satisfy ,. 

2.0 DEVELOPMENT OF THE CONTINUOUS AND DISCRETE METHODS  

  In this paper two methods were developed considering both the continuous and discrete 

methods 

2.1 Derivation of Method Using the Uneconomized Collocation Methods  

Considering the initial value problem for ordinary differential equations (1). 

The general s-stage implicit Runge-Kutta method given by 

 

 is defined by         

https://en.wikipedia.org/wiki/Linear_multistep_method#CITEREFS%C3%BCliMayers2003
https://en.wikipedia.org/wiki/Linear_multistep_method#CITEREFS%C3%BCliMayers2003
https://en.wikipedia.org/wiki/Linear_multistep_method#CITEREFS%C3%BCliMayers2003
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Let    and the general form of yn for k is,  

                           (9) 

Then,  

 

Therefore for k=1,  

                     (10) 

consider   and the following collocation points where , 

 

 and                        (11) 

 

This results into the general matrix equation 

                               (12) 

For k=1, the matrix system (12) becomes 

             (13) 

Solving the system (13) by Gaussian Elimination method, gives the following results for ai for 

i=0,1,2 
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By substituting the values of ai for i=0,1,2 into equation (10), to have the continuous  scheme 

         (14) 

Collocating on the grid point , obtains the Trapezoidal rule 

         (15) 

 Similarly For k=2, k=3 and k=4  we obtain the third, fourth and fifth order methods in the 

following pairs: 

        (16) 

Similarly for For k=3, obtains the discrete method of the fourth order 

      
      (17) 

Similarly For k=4, obtains the fifth order method 

    (18) 

2.2 The Derivation of the Economized Collocation Methods 

Consider the initial value problem (1) given by 

 

The exact solution of the perturbed form of (1) is given by 

       (19a) 

where  is the power series.       (19b) 
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From (1) and (19), and introducing the economized term we have 

        (20) 

where  Legendre polynomial of degree k and valid in  and  is a parameter to 

be determined. 

The Legendre Polynomial denoted by Pk(x) of degree k, 

                               (21) 

This is obtained from the recurrence relation 

        (22) 

Thus, using (22) to obtain P1(x), P2(x), P3(x), P4(x) in the interval [-1,1]. 

Using the transformation equation, we obtain,  and  

Consider the case when k is odd (i.e. k=1,3, and 5) 

Case 1: For k=1 

 

Using equation (22) for Pi(x) 

 

 

From equation (19b),  

                            (23) 

Putting equation (23) into equation (20), 

                                                                                                             (24) 
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 Collocating (24) at  and interpolate at , obtain a system of three equations 

with  and parameter   

 

 

which can be presented in the matrix system below 

 

Solving for the coefficients  and and by directed substitution of  in (19a, 22) 

obtain the continuous scheme 

 

          (25) 

Collocating (24) at the grid point  obtain the newly proposed discrete method 

         (26) 

Similarly for Case 2: For k=3 using the Legendre Polynomial, we obtain the values of other 

functions as thus  

,  and  

By collocating at the grid point,  we obtain the newly proposed discrete method as 

 

     (27) 
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Similarly for Case 3: For k=5 using the Legendre Polynomial, we obtain the values of other 

colocation points: 

, , ,  and  

By collocating at the grid point we obtain the newly proposed discrete method as 

 

     (28) 

3.0 ANALYSIS OF THE METHOD 

3.1 Order and Error Analysis of the Methods 

Using the definition of the order of the general linear multistep method (Definition 5), the order 

and error constant for the method  at k=1 (15) Since C3 ≠ 0, then the method is of order two and 

the error constant is .  

Following the same procedure, we obtain the order and error constants for the other methods.: 

3.2 Convergence Analysis of the Uneconomized Collocation Methods 

From definition of convergent, the necessary and sufficient conditions for a linear Multistep 

method to be convergent are that it be consistent and zero-stable as seen in the definition above. 

Hence, test for the consistency and zero-stability of the methods we have the following. 

For k=1 (15) since the method is both consistent and zero stable, it is convergent, k=2 (16) since 

the method is both consistent and zero stable, it is convergent, k=3 (17) since the method is both 

consistent and zero stable, it is convergent, k=4 (18) since the method is both consistent and zero 

stable, it is convergent 

3.3 Order and Error Analysis of the Economized Collocation Methods 

Consider the case when k equals an odd number (i.e. k=1,3, and 5) For k=1 (26) Since C2 ≠ 0, 

then the discrete scheme is of order one (1), and the error constant is 1, k=3 (27) Since C4 ≠ 0, 

then the discrete scheme is of order 3 and the error constant is .For k=5 (28) Since C6 ≠ 0, 

then the discrete scheme is of order five (5), and the error constant is . 

3.4 Convergence Analysis of the Economized Collocation Methods 

For the economized method to be convergent, it must be consistent and zero-stable as seen in the 

definition 8. By testing the consistency and zero-stability of the methods. 

For k=1 (26) of the economized method is both consistent and zero-stable therefore it converges 
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For k=3 (27) of the economized method is both consistent and zero-stable therefore it converges 

For k=5 (28) of the economized method is both consistent and zero-stable therefore it converges 

Table 1: Analysis for the Uneconomized Methods 

K Order Error Constant 
1 2 -1/12 
2 3 -1/30 
3 4 -3/170 

4 5 -2/185 

 

 

Table 2: Analysis for the Economized Methods 

K Order Error Constant 

1 1 -1/24 

3 3 -1/60 

5 5 -1/73 

4.0 NUMERICAL EXAMPLES 

In attempting to implement the methods for the integration of initial value problems, we need to 

use the predictor-corrector approach and hence we need explicit multistep methods for each 

newly derived method. Since equations (27) is of order three and (28) is of order five, hence 

some equations of equivalent orders are used respectively as the predictor to solve the following 

initial value problems: 

 

Problem 1 (Non-Stiff) 

Solve the initial value problem 

                            (29) 

with initial values  and the exact solution is given as  

See numerical results using equations (27) and (28) in Table 1 and Table 2 respectively. 

 

Problem 2 (Stiff) 

Solve the initial value problem 

         (30) 
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with initial values  and the exact solution is given as  

See numerical results using equations (27) and (28) in Table 3 and Table 4 respectively. 

For the Python Program see Appendix I,
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 Table 3: Error for Problem 1 using equations (27) 

h =  0.04 h = 0.02 h = 0.01 

n Error N Error  n Error n Error n Error  Error N Error 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

3.58947205e-10  

6.42725984e-10  

2.08033382e-03 

3.98131592e-03  

5.69670712e-03  

7.23426363e-03  

8.61552820e-03 

9.85925132e-03  

1.09815790e-02  

1.19963858e-02  

1.29156454e-02 

1.37497335e-02  

1.45076778e-02  

1.51973623e-02  

1.58256967e-02 

1.63987571e-02  

1.69219035e-02  

1.73998785e-02  

1.78368899e-02 

1.82366817e-02  

1.86025934e-02  

1.89376110e-02  

1.92444107e-02 

1.95253964e-02  

1.97827319e-02 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

1.18361987e-11  

2.23479013e-11  

5.57661139e-04 

1.08983689e-03  

1.59425643e-03  

2.07067465e-03  

2.52095161e-03 

2.94682356e-03  

3.34989348e-03  

3.73163614e-03  

4.09341007e-03 

4.43646840e-03  

4.76196852e-03  

5.07098076e-03  

5.36449611e-03 

5.64343323e-03  

5.90864464e-03  

6.16092239e-03  

6.40100313e-03 

6.62957267e-03  

6.84727015e-03  

7.05469182e-03  

7.25239436e-03 

7.44089809e-03  

7.62068970e-03 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

7.79222483e-03  

7.95593043e-03  

8.11220690e-03  

8.26143000e-03  

8.40395268e-03  

8.54010669e-03 

8.67020409e-03  

8.79453863e-03  

8.91338700e-03  

9.02701004e-03  

9.13565376e-03  

9.23955037e-03  

9.33891916e-03  

9.43396738e-03 

9.52489100e-03  

9.61187543e-03  

9.69509619e-03  

9.77471954e-03 

9.85090305e-03  

9.92379613e-03  

9.99354052e-03  

1.00602708e-02 

1.01241147e-02  

1.01851936e-02  

1.02436230e-02 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

3.80140364e-13  

7.38187289e-13  

1.44546071e-04 

2.85685764e-04  

4.23012082e-04  

5.56380754e-04  

6.85930058e-04 

8.11794238e-04  

9.34102239e-04  

1.05297746e-03  

1.16853803e-03 

1.28089708e-03  

1.39016298e-03  

1.49643962e-03  

1.59982657e-03 

1.70041934e-03  

1.79830957e-03  

1.89358519e-03  

1.98633065e-03 

2.07662701e-03  

2.16455220e-03  

2.25018106e-03  

2.33358558e-03 

2.41483495e-03  

2.49399574e-03 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

2.57113201e-03 
2.64630540e-03 

2.71957528e-03 

2.79099880e-03 
2.86063103e-03 
2.92852502e-03 

2.99473191e-03 
3.05930102e-03 

3.12227988e-03 
3.18371436e-03 

3.24364871e-03 

3.30212563e-03 

3.35918636e-03 
3.41487071e-03 

3.46921711e-03 

3.52226272e-03 
3.57404341e-03 
3.62459387e-03 

3.67394764e-03 
3.72213713e-03 

3.76919370e-03 
3.81514767e-03 

3.86002841e-03 

3.90386431e-03 

3.94668285e-03 
3.98851067e-03 

4.02937352e-03  

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

 

4.06929638e-03 
4.10830342e-03 

4.14641808e-03 

4.18366306e-03  

4.22006038e-03  

4.25563137e-03  

4.29039673e-03 

4.32437652e-03  

4.35759021e-03  

4.39005668e-03  

4.42179426e-03 

4.45282074e-03  

4.48315337e-03  

4.51280892e-03  

4.54180366e-03 

4.57015339e-03  

4.59787348e-03  

4.62497883e-03  

4.65148394e-03 

4.67740288e-03  

4.70274935e-03  

4.72753665e-03  

4.75177772e-03 

4.77548514e-03  

4.79867113e-03  

 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

4.82134760e-03  

4.84352612e-03 

4.86521796e-03  

4.88643408e-03  

4.90718513e-03  

4.92748150e-03 

4.94733330e-03  

4.96675036e-03  

4.98574227e-03  

5.00431835e-03 

5.02248770e-03  

5.04025917e-03  

5.05764137e-03  

5.07464273e-03 

5.09127141e-03  

5.10753541e-03  

5.12344250e-03  

5.13900027e-03 

5.15421610e-03  

5.16909722e-03  

5.18365065e-03  

5.19788325e-03 

5.21180170e-03 
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Table 4: Error for Problem 1 using equations (28) 
h =  0.04 h = 0.02 h = 0.01 

n Error  n Error  N Error N Error  n Error  Error n Error  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

1.67971997e-06  

9.61186878e-06  

1.60902833e-01 

1.83852511e-01  

4.75249632e-02  

1.95125220e-01  

4.09517265e-01 

4.29744731e-01  

1.38458944e-01  

4.16771973e-01  

9.20949518e-01 

8.18182196e-01  

3.80598904e-01  

2.44906040e+00  

3.72713526e+00 

1.17639380e+00  

7.47279551e+00  

1.87158703e+01  

1.76289263e+01 

2.00886669e+01  

1.03903749e+02  

1.72726756e+02  

3.58459214e+01 

5.73965495e+02  

1.61620180e+03 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

6.64008859e-09  

5.87766091e-08  

6.79581082e-02  

1.21002149e-01  

1.49264538e-01  

1.46386291e-01  

1.13280206e-01 

5.73842513e-02  

8.70071563e-03  

6.99895320e-02  

1.12667399e-01 

1.27630670e-01  

1.13068473e-01  

7.52401003e-02  

2.69566521e-02 

1.61236548e-02  

4.05343877e-02  

3.98476819e-02  

1.74862082e-02 

1.40221575e-02  

3.77868243e-02  

4.00667332e-02  

1.76330578e-02 

1.87980360e-02  

4.80336761e-02 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

4.89388015e-02  

1.40853092e-02 

4.09872641e-02  

8.08093630e-02  

6.85022847e-02  

6.50586833e-03 

1.08008647e-01  

1.59806079e-01  

8.96696719e-02  

1.04405415e-01 

3.09631611e-01  

3.30656244e-01  

2.30056932e-02  

5.25525409e-01 

9.08476303e-01  

5.75850828e-01  

6.88989020e-01  

2.23587171e+00 

2.49690359e+00  

5.52439050e-02  

5.03856131e+00  

8.65996493e+00 

4.81364122e+00  

9.67127811e+00  

2.75138326e+01 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00 

2.60156341e-11 
2.52553423e-10 
1.92085594e-02 

3.73440532e-02 
5.35227743e-02 

6.68792633e-02 

7.67790210e-02  

8.27907459e-02 

8.47167326e-02 

8.26051361e-02 
7.67445646e-02 

6.76404510e-02 
5.59750845e-02  

4.25546626e-02 
2.82479416e-02 

1.39218309e-02  

3.79534011e-04 
1.16934637e-02  

2.17710875e-02 

2.95128466e-02 

3.47728743e-02 

3.75919476e-02 
3.81742737e-02 

3.68522750e-02 

3.40436499e-02 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

3.02055272e-02  

2.57905105e-02  

2.12088453e-02  

1.67999241e-02  

1.28150060e-02  

9.41156432e-03 

6.65826959e-03  

4.54845410e-03  

3.01913116e-03  

1.97233004e-03  

1.29567275e-03  

8.79693436e-04  

6.30264423e-04  

4.75483603e-04 

3.67325980e-04  

2.79118151e-04  

2.00353786e-04  

1.30488774e-04 

7.31605501e-05  

3.18483335e-05  

7.44755849e-06  

2.29916383e-06  

1.98059880e-06  

3.01311635e-06  

8.04103637e-06 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

 

1.02640137e-05 

8.95312423e-06  

5.09355219e-06  

5.41952461e-07  

2.90566898e-06 

4.20999483e-06  

3.35581035e-06  

1.17605220e-06  

1.12429717e-06 

2.51453206e-06  

2.53162436e-06  

1.38570228e-06  

2.28106959e-07 

1.49898940e-06  

1.87589908e-06  

1.28783237e-06  

1.27064931e-07 

9.77672427e-07  

1.48006947e-06  

1.17432332e-06  

2.74568058e-07 

7.14492858e-07  

1.26592734e-06  

1.10221290e-06  

3.34033507e-07 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

6.03752158e-07  

1.18686391e-06  

1.08641698e-06  

3.53405919e-07 

6.00167004e-07  

1.22202491e-06  

1.13033274e-06  

3.45077485e-07 

6.97701469e-07  

1.37489725e-06  

1.23667834e-06  

2.97629521e-07 

9.24006729e-07  

1.67329077e-06  

1.40718682e-06  

1.70469550e-07 

1.34919596e-06  

2.17329983e-06  

1.63302753e-06  

1.29745586e-07 

2.11084407e-06  

2.96500428e-06  

1.86665666e-06  

8.03884956e-07 

3.46215247e-06 
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Table 5: Error for Problem 2 using equations (28) 

h =  0.04 h = 0.02 h = 0.01 

n Error n Error  N Error N Error n Error  Error  n Error  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

1.67971997e-06  

9.61186878e-06  

4.86752256e-01 

2.78037300e-01  

4.17885017e-04  

7.80867694e-02  

1.20914195e-01 

9.97479496e-02  

1.46775654e-01  

2.28293221e-01  

3.44747420e-01 

4.84390292e-01  

1.29330594e+00  

2.31995054e-01  

4.59223983e+00 

7.42950037e+00  

5.62988423e-01  

2.39262726e+01  

7.77100814e+01 

2.22505339e+02  

8.14766852e+02  

3.93237976e+03  

2.30356415e+04 

1.56929747e+05  

1.22226161e+06 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

6.64008859e-09  

5.87766091e-08  

8.35270211e-01 

7.26149037e-01  

6.04368608e-01  

4.91078297e-01  

3.76408594e-01 

2.78716692e-01  

1.98707138e-01  

1.35730193e-01  

8.91928916e-02 

5.63598730e-02  

3.41642737e-02  

1.99125588e-02  

1.11653016e-02 

6.00273016e-03  

3.10203829e-03  

1.54722974e-03  

7.37523841e-04 

3.35997365e-04  

1.51343790e-04  

6.47779690e-05  

2.36177411e-05 

1.06034119e-05  

6.26375872e-06 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

3.37307945e-07  

1.21208012e-06 

3.45150600e-06  

6.26524518e-07  

4.83709710e-06  

1.57235834e-06 

6.82451210e-06  

5.41178181e-06  

9.44223277e-06  

1.28433428e-05 

1.34233355e-05  

2.80418227e-05  

2.05831204e-05  

6.10135086e-05 

3.68478761e-05  

1.36213341e-04  

8.33426208e-05  

3.13487670e-04 

2.38214837e-04  

7.31206302e-04  

7.89248720e-04  

1.65012696e-03 

2.75448445e-03  

3.21291639e-03  

9.42729996e-03 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.00000000e+00  

2.60156341e-11  

2.52553423e-10  

9.55997482e-01 

9.23116346e-01  

8.84875504e-01  

8.37171171e-01  

7.84436623e-01 

7.27755009e-01  

6.68451915e-01  

6.07873106e-01  

5.47284134e-01 

4.87831733e-01  

4.30511289e-01  

3.76145943e-01  

3.25376064e-01 

2.78658465e-01  

2.36274224e-01  

1.98343495e-01  

1.64845517e-01 

1.35641923e-01  

1.10501561e-01  

8.91252230e-02  

7.11689669e-02 

5.62650338e-02  

4.40397132e-02 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

3.41278122e-02  

2.61836738e-02 

1.98889106e-02  

1.49571832e-02  

1.11364602e-02  

8.20924497e-03 

5.99125935e-03  

4.32904469e-03  

3.09688640e-03  

2.19340066e-03 

1.53804988e-03  

1.06778282e-03  

7.33932011e-04  

4.99447120e-04 

3.36499495e-04  

2.24461078e-04  

1.48238146e-04  

9.69263525e-05 

6.27462102e-05  

4.02158965e-05  

2.55195886e-05  

1.60330612e-05 

9.97303893e-06  

6.14198177e-06  

3.74508293e-06 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

 

2.26093763e-06 

1.35142738e-06  

7.99792131e-07  

4.68646918e-07  

2.71896348e-07 

1.56190883e-07  

8.88402220e-08  

5.00349760e-08  

2.79034699e-08 

1.54090512e-08  

8.42640705e-09 
4.56328151e-09  

2.44739782e-09 

1.30003368e-09  

6.84014534e-10  

3.56520587e-10  

1.84108153e-10 

9.42122748e-11  

4.77843889e-11  

2.40288991e-11  

1.19842607e-11 

5.93093788e-12  

2.91429105e-12  

1.42290278e-12  

6.90997228e-13 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

3.34174257e-13  

1.61188289e-13  

7.76917458e-14  

3.75035097e-14 

1.81781079e-14  

8.87245197e-15  

4.37360965e-15  

2.18353531e-15 

1.10671747e-15  

5.70408120e-16  

2.99169738e-16  

1.59630145e-16 

8.65529169e-17  

4.76047524e-17  

2.65038736e-17  

1.49046618e-17 

8.44917749e-18  

4.81977052e-18  

2.76269471e-18  

1.58943453e-18 

9.17030841e-19  

5.30255958e-19  

3.07154279e-19  

1.78183713e-19 

1.03499265e-19 
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5 GRAPHS OF RESULTS 

 

Fig 1: Graph of the Error y(x) for Problem 1 using equations (27) 

 

 

 

Fig 2: Graph of the Error y(x) for Problem 2 using equations (27) 
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Fig 3: Graph of the Error y(x) for Problem 1 using equations (28) 

 

Fig 4: Graph of the Error y(x) for Problem 2 using equations (28) 

 

6.0 DISCUSSION OF THE RESULTS 

This research attempt the possibility of developing multistep methods for initial value problems, 

which has been demonstrated  through power series approximation and r-order of power series 

continuous form of Implicit Runge-Kutta collocation method.  

Table 1 explains the analysis of the uneconomized methods including the order and the error 

constant while table 2 gives a defined analysis of the economize method in consideration with the 
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order and error constant. Table 3 shows the absolute errors for different values of h using equation 

27 to solve problem 1. Table 4 explains the error values for problem 1 at different values of h using 

equation 28. Table 5 is the error value for problem 2 at different values of h using equation 28. 

Figure 1 explains that the error value y(x) for problem 1 using equation 27 by exact and corrector 

is the same with a little difference at 0.8 and above, whose problem 1 is use with equation 22. 

Figure 2 the graph shows that the error value at exact and corrector is not the same with a little as 

it is used for problem 2 with equation 27. Figure 3 equation 28 is used to explain the same value y 

exact and correct but a little bit different at 0.7 while figure 4 was to explain the graph of problem 

2 using equation 28 as show the exact and corrector with an almost the same outcome. The figures 

and tables above gives a clear picture of a method that is accurate and convergence with less error.    

 

7.0 CONCLUSION 

In conclusion, the first method (15) at collocating on the grid point yields the standard Trapezoidal 

rule. This therefore is an indication that the proposed methods discussed in this research can be 

recommended for solving stiff initial value problems leveraging on the properties of the 

Trapezoidal method with guaranteed accuracy and A-stability properties.  

Also, it was discovered that the error constant is less than that of the Adams method of the same 

order thus claiming better accuracy. In addition, it has been established that evaluating the continuous 

scheme at all the grid points yields a block of different methods of the same order. Thus making the 

method self-starting.  
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