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Four species of toads of the genus Buto, comprising three species endemic to southern Africa and one 
closely-related species, were examined electrophoreticaliy to infer their phylogenetic relationships. The 
evolution of advertisement call structure in these species is discussed in relation to this phylogeny, Bulo 
rangeri and B. gutturalis, two species with very different call structures. are sister taxa. Two pairs of species 
with very similar call structures, 8. pardalis and 8, gutturalis, and 8, rangeri and 8. angusticeps, were only 
distantly related. Our resu~s suggest that call parameters are poor characters to use in inferring phylogenies 
among congeneric species, probably because of selection for optimal audibility in d~ferent habnats, and 
because of the role that they play in premating isolation. The phylogeny derived from aliozyme data agrees 
with evidence on albumin immunological distance, karyotype and morphology. 

Vier spesies skurwepaddas van die genus Buto, bestaande uit drie wat endemies is in Suid-Afrika en aen 
nou-verwante spes ie, is elektroforeties ondersoek om hulle filogenetiese verwantskap a1 Ie lei. Die evolusie 
van die struktuur van die bekendstellingsroep by hierdie spesie word met betrekking tot hierdie filogenie 
bespreek. Buto rangeri en B. guffuralis, twee spesies mel baie verskillende roepslrukture, is suster taksa. 
Twee pare van spesies met baie ooreenstemmende roepstrukture, B. pardalis en B. gutturalis. en B. rangeri 
en B. angusticeps, was slegs ver langs verwant. Ons resultate dui daarop dat roap-parameters swak 
kenmerke is om te gebruik by die aflei van filogeniee by verwante spesies, waarskynlik as gevolg van 
seleksie wat plaasvind vir optimale hoorbaarheid in verskiliende habitatte, sowel as die rol wat hulle speel by 
die pre-paringsisolasie. Die filogenie wat van allosiemdata a1gelei is, stem ooreen met getuienis oar albumien 
immunologiese afstand, kariotipe en morlologie. 

,.. Present address and address for correspondence: S A Museum, p.o. Rox 61. Cape Town, ROOO RepUblic of South 
Africa 

Recent studies have explorC<l the phylogenctic origins of 
different behaviourJI systems by relating behavioural 
characters to genetic ones (Hogland 1989; Losos 1990), But 
comparisons of phylogenies derived independently from 
molecular and behavioural data arc rare. Tandy & Keith 
(1972) found that thc topology of a phylogeny basC<l on one 
call character, passive pulse mte, was congruent with thai 
basC<l on haemoglobin type, karyotype and occurences of 
hybridization among five African bufonids. Arntzen & 
Sparrehoom (1987) usC<l both behavioural and biochemical 
data to reconstruct a phylogeny of Old World newl, in the 
genus Triturus. They inferrC<l phylogenies with 15 courtship 
characters and with allo7.yme frequencies and found that the 
two phylogenies were similar. Molecular data, however, 
appear to provide the best reconstructions of phylogenies of 
amphibians because genemlly there arc few shared derivC<l 
morphological or behavioural characters to estimate phylo
genetic relationships among taxa (Maxson 1984), 

The anumn genus Bulo has approximately 50 species in 
Africa, Tandy & Keith (1972) divided these species into 22 
groups or complexes on the basis of morphological and 
karyotypical variation and variation in the acoustic charac
teristics of calls, There appear to be at least two major 
lineages in Africa (Bogart 1972): one with a diploid chro
mosome number of 22 (as in non-African Bulo) and another 
group of endemic species with a 2n number of 20, Species 
with a 2n number of 20 chromosomes appear to have origi
nated from African Bulo with 22 chromosome" (Bogart 

1972; Cei, Erspamer & Roseghini 1972). Maxson's (1981) 
phylogenetic reconstruction of species in 10 of these groups 
confirms this hypothesis. 

In this study, we construct a phylogenetic hypothesis on 
the basis of allozyme variation for four southern African 
species of Bulo, and then usc this phylogeny to infer the 
evolution of mating calls among these taxa, (Since anuran 
courtship is simple, there are too few behavioural characters 
to attempt to infer phylogenetic relationships from them,) 
Phylogenies derived from allele-frequency data are com
parC<l with those derivC<l from data on albumin evolution, 
call structure, and karyOlyping. 

Materials and Methods 

We collectC<l samples from the following sites in the Cape 
Province: Rondebosch Common (33°57'S/18°29'E) (n = 5 
B. angusticeps), Sun Valley (34"07'S/18°24'E) (n = 14 B. 
pardalis) , SlCllenbosch (33°51 'S/18°52'E) (n = 17 B, ran' 
geri), Bulo gutturalis (n = 12) were collected from Weza 
State Forest (30036'SI29°40'E) in the province of Natal. 
Animals were sacrificed by freezing, and carcasses were 
kept at -70°C until dissection, Samples of liver, kidney and 
hindleg muscle were homogenized sepamtcly with an equal 
volume of 0,01 mol dm-' Tris(IICI buffer (PH = 8,0), Tissue 
homogenates were frozen and centrifuged at 2500g for 
5 min prior to use, Horizontal starch gel electrophoresis 
followC<l May, Wright & Stoneking (1979), and histochemi
cal staining protocols followC<l Shaw & Prasad (1970) and 
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Harris & Hopkinson (1976). Buffer systems and tissues 
giving the best resolution for each of the 31 loci examined 
are listed in Table 1. Loci were numbered beginning at the 
cathodal end of the gel, and cathodally migrating allozymes 
were indicated by a minus sign. The most common allele in 
B. rangeri was designated 100, and other allOZymeS were 
designated by their mobilities relative to this allele. 

Relative allelic frequencies for each locus were estimated 
from the gel banding patterns, which were interpreted to 
reflect Mendelian variation according to the criteria of 
Allendorf & Utter (1979). Nei's standard genetic distance 
(0), corrected for sample size (Nei 1978) and Roge,,' 
(1972) genetic distance were computed from allelic frequen
cies. We constructed a phcnogram from genetic distances 
with the UPGMA method of cluster analysis (Sneath & 
Sokal 1973), and inferred a cladistic trec from eleclrophore
tic characters with the program MIX in the package PHYLIP 
ver. 3.0 of 1. Felsenstein. For the cladistic analysis we 
followed recommendations made by Mickevich & Mitter 
(1981), Buth (1984), and Green (1986): in constructing 
allozyme character-state series, the locus was treated as the 
character. Alleles were scored for presence or absence, and 

Table 1 Buffer systems and tissues used for starch-gel 
electrophoresis on 31 polymorphic loci in four species 
of southern African Bulo. R ~ Ridgway et al. (1970), TC 
~ Tris-citric acid, after Whitt (1970), and MF ~ Markert 
& Faulhaber (1965) 

Enzyme Locus E.C. numrer Tiswe Buffer 

adenosine deaminase AOA 3.5.4.4 kidney MF 

adeny late kinase AK 2.7.4.3 muscle TC 

alcohol dehydrogenase AOI! 1. 11.1 liver R 
aldolase ALD 4.1.2.13 kidney R 

aspartate aminotransferase AAT·I 2.6.1.1 mmclc R 

aspartate aminolTansfera~e AAT-2 muscle TC 

creatine kinase CK·I 2.7.3.2 kidney R 
creatine kinase CK·2 kidney R 

esterase EST-2 3.1. 1. I kidney R 
esterase EST·3 kidney R 

glucose-phosphate isomerase GP] 5.3.1.9 muscle R 

glyceraldehyde-phosphate 

dehydrogenase GAP 1.2.1.12 muscle TC 

g1ucose-6-phosphale dehydrogenase GPJ).I 1.1.1.49 kidney TC 

g1ucose-6-phosphale dehydrogma~ GPD-2 kidney TC 

haemoglobin IIAE'-'I kidney TC 

isocilrale dehydrogenase toll· I 1.1.1.42 muscle TC 

isocitrale dehydrogenase toll·2 liver TC 

laClate dehydrogenase 1.011·1 1.1.1.27 muscle R 
laClate dehydrogenase 1.011·2 muscle R 

lactate dehydrogenase LOIl·3 liver R 

malic enzyme '-'IE 1.1.1.40 kidney TC 

mannose-phosphale isomerase MPI 5.3.1.8 kidney MF 

peptidase (substrate: gly-leu) PEp·GI. 3.4.11.1 liver MF 

peptidase (substrate:leu-gly-gly) PEP-LGG liver MF 

peptidase (substrate:phe-pro) PEP-Pill' 3.4.13.9 kidney MF 

phosphoglucomuta se PGM-l 2.7.5.1 muscle R 

phosphogJucomuta se PGM-2 muscle R 

6-phosp,ogluconate dehydrogenase !'GD 1.1.1.44 kidney TC 

sorbitol dehydrogenase SOli· I 1.1.1.14 liver R 

supcroxide dismutase SOD 1.15.1.1 muscle R 

xanthine oxidase XO 1.2.3.2 liver '-'IF 
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combinations of alleles at each locus were considered to be 
its character-states. For loci which were polymorphic among 
species, we assumed that character-state changes proceeded 
from the allele or alleles in the outgroup taxon to an allele 
of next most similar electrophoretic mobility. (We assumed 
that allozymes of the most similar electrophoretic mobilities 
differed by the fewest number of amino-acid substitutions.) 
Branched pathways were resolved into single-path compo
nents, yielding a data-matrix of unidimensional, multistate 
vecto" which were funher resolved into binary (0,1) 
vectors. A cree based on these data was computed using 
Camin-Sokal parsimony criteria (Camin & Sokal 1965) 
which allow a root to be specified because ancestral states 
arc presumed to be known. Bula anguJticeps was designated 
the outgroup on morphological grounds (poynton 1964). 

Calls were recorded in the field with either a SONY Pro
fessional TCD5 casseUe recorder or a UHER 4200 Repon 
tape recorder, and a SENNHE1SER MK2 directional micro
phone. Calls were analysed using a KAY 606IB sonagraph 
with a wide hand (300 Hz) filter. 

Results 

Electrophoretic variation 

We identified the gene products of 31 loci in the four toad 
species. All of the isozyme loci examined were polymorphic 
within or among species (Table 2). Bula gutturalis was the 
species in which the greatest percentage of loci (35,5%) 

Table 2 Allozyme frequencies detected at 31 poly
morphic loci in four southern African Bulo species 

Sample 

Locus Allele B. angu.flicep.f B. pardalis B. rangeri B. gUlluralis 

AOA 90 

95 

98 

100 

AK 100 0.964 

2{X) 0,036 

250 

AD11 40 0,029 

80 0.143 

90 

100 0,971 

150 0,857 

ALD 85 

87 

95 0,059 

100 0,941 

AAT-l ·100 

-95 

·90 

AAT-2 ·900 

50 0,25 0,464 

100 0,75 0,536 0,95" 
180 0.042 

CK·I 80 

100 
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Table 2 Continued Table 2 Continued 

Sample Sample 

Locus Allele B. Dngu.f{iceps B, partial i.f B rangeri B. guJtUToiis Locus AlIclc B. QlIgl4.tticeps B. pardalis B, 'Mgeri B. gWltwralis 

CK-2 0 PEP-GL 90 0,083 
100 0,971 100 0,964 0,917 
103 0,029 115 0,036 

EST·2 90 PEP-LGG 100 0,636 
95 0,042 120 0,364 
98 0,118 125 

100 0,794 0,042 130 
102 0,088 0,042 PEP-PHP 65 
105 0,874 70 
115 80 

EST-3 95 0,036 
100 

97 0,1 I 

98 0,029 
PGM-I 60 0,088 

100 0,9 0,964 0,971 90 Om 0,042 

GPI -120 0,3 95 0,25 

-100 0,1 100 0,882 0,958 

-95 110 0,536 

-50 120 0,214 

GAP -500 PG\.1-2 0 

100 97 0,625 

115 100 0,625 0,792 

500 103 0,375 

600 0,042 105 0,375 0,208 
700 0,042 110 0,679 
700 0,958 112 0,071 

GPO-I 100 0,964 115 0,25 
180 0,036 PGO -20 

GPO-2 90 80 0,042 
92 100 0,916 
95 120 0,042 

100 SOli 87 0,045 
IlAEM 70 92 

100 95 0,955 
150 100 

IDII-I 50 
SOD 90 0,571 

100 
95 

200 0,9 
300 0,1 97 0,429 

1011-2 100 100 

103 105 0,75 

105 115 0,25 

LOll-I -300 0,029 XO 100 0,833 

-100 0,971 102 0,167 

J.DJI-2 85 104 

90 
100 

LDlI-3 100 were polymorphic. [n both B. rangeri and B. pardalis 32,3% 
110 of loci were polymorphic, whereas in B, angus/ieeps only 

ME 90 0,662 22,6% of loci were polymorphic_ One enzyme (XO) 
100 0,6 0,857 0,938 appeared to have octomeric subunit construction, Eight en-
lOS 0,036 zymes (Adh, Aid, Gap, Ldh-1, Ldh-2, Ldh-3, Me and Sdh) 
107 0,107 

appeared to have quaternary tertiary structure, and a further 
110 0,4 

MPI 80 0,1 seven enzymes (Ak, Est-2, Est-3, Lgg, Mpi, Pgm-l and 

82 0,2 Pgm-2) had banding patterns that were consistent with a 

85 0,6 monomeric subunit construction. The remaining 15 enzymes 

92 had banding patterns typical of dimeric enzymes, 

100 0,735 Expected average heterozygosities arc listed in Table 3 

102 along with both Nei's (1978) unbiased genetic distances and 
107 0,1 Rogers' (1972) genetic distances. SJandard errors of Nei's 
110 0,265 disJances (Nei & Roychoudhury 1974) were of the order of 
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Ne!'" Genelic Distance (D) 

1.0 0.5 o 
.-----------___ B.gutlfurali.s 

L-____________ B. rangeri 

-
L-_________________ B·PQFdLl/is 

'-------------------------B.angusn"ceps 

---:-:;------+----:::------+--:::-:----- Nei's calibration 
Miocene Pliocene Pleistocene 

--+------------------1----+- Case'scalibration 

Oligocene Miocene Pliocene Pleistocene 

Millions of years ago 

Figure la UPGMA phcno£ram of Nci's genetic distance fOT four species of southern African Bufo based on data in Table 3. 

B. gultlualis 

B. rangeri 

B.pania/is -

B. angusticeps 

60 50 40 30 20 10 o 
Character-stale changes 

Figure Ib Cladogram of relationships among four species of 

southern African Bufo based on allozymc character-state data as 

listed in Table 4 and calculated with assumption of known 

ancestral states. Branch lengths drawn proportional to numhcrs of 

character-slate changes required. Tree ha~ a tolal of 94 steps. 

Table 3 Nei's genetic distance (upper 
right), Rogers' genetic distance (lower 
left). and average heterozygosity 
estimates (diagonal) for samples of 
four southern African Buto species 
(based on allozyme data in Table 2) 

Sample 2 3 4 

1 B. anguslieeps 0,087 1,402 1,174 1,261 

2 B_ pardalis 0,734 0,092 0,941 1,28 

3 B. rangeri 0,69 0,608 0,06 0,67 

4 B. gutturalis 0,712 0,717 0,501 0,074 

l.R and 3,2% of the distance values, Of the four species, 
average heterozygosity was lowest in B_ rangeri (H = 0,06) 
and highest in B. pardalis (H = 0,(92), but all values fell 
within the range previously recorded in toads (Feder 1979; 
Green 19R4), 

Figure I shows the phenetic and phylogenetic trees com
puted with the methods outlined previously: the UPGMA 
phenogram in Figure la was computed from genetic distan
ces, and Figure 1 b is based on the character-state series 
constructed for the 31 loci and listed in Table 4, The topolo
gy of both trees is identical: Bulo rangeri and B. gUllurali, 
appear to have diverged most recently from a common 
ancestor, with B. pardalis diverging from that line at an 
earlier stage. A time calibration of the tree in Figure la 
using a time scale based on the average rate of codon substi
tution detectable by electrophoresis of I D = 5 Myr (Nei 
1%7), suggests that the B. angus/ieeps line diverged from 
ancestral stock during the late Miocene, followed shortly 
afterwards by the lineage leading to B. pardalis. The 
separation of the lines leading to B. gUlluralis and B. 
rangeri took place as recently as the mid-Pliocene_ If a 
calibration of lD = 19,7 Myr, based on empirical evidence 
for hylid evolution (Case, Haneline & Smith 1975) is used, 
the calculated divergence time of the line leading to B. 
angus/ieeps is 25 Myr ago, that to B. pardalis 22 Myr ago, 
and the separation of the lines leading to B. rangeri and B. 
gUlluralis as long ago as 13 Myr, The first of these dates is 
just prior to the start of the Miocene 24,6 Myr ago, whereas 
the last two fall within this epoch (Harland, Cox, Llewellyn, 
Pickton, Smith & Walters 1982), 

Acoustic behaviour 

Figure 2 presenl~ sonograms of the advertisement calls of 
the four species, all of which display only passive 
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Table 4 Data matrix of allozyme character states for 
four species of southern African Bulo. derived from 
isozyme loci (characters) as indicated in Table 2 

I.ocus 

ADA 

AK 
ADII 

ALD 

AAT·I 

AAT·2 

CK·I 
CK·2 
EST·2 

EST·3 

GPI 

GAP 
GPD-) 
GPD-2 

IIAE~ 

1011·1 
1011·2 

LDII·I 
LDII·2 

LOII·3 

~ 

MPI 

PEP·GL 

'P-LGG 
PEp·PHP 

PGM-l 

PG\1-2 

PGD 

SDII 

SOD 

XO 

Character- B. DfigUS-

state series lieeps 

I 0 

2 0 
3 0 

4 0 

5 0 
6 0 
7 0 
8 0 
9 0 

10 

II 

12 

13 

14 
15 
16 
17 

18 

19 
20 
21 

22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

32 

33 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

B_ par- B. ralt- B. gwtu-
do.li..r geri ralis 

2 3 I 

2 2 
2 0 

2 2 
o 0 

o 2 
o I 

I 0 0 

o 0 
o 

3 

3 
2 

I 

2 
2 
I 

o 

I 

o 
o 

o 
o 
I 
2 

I 

o 
2 

2 

o 
I 

o 
2 
o 
o 
o 

2 

2 

o 

o 
2 

o 
2 

o 
I 
I 

o 

3 

3 
2 

o 
o 
2 

3 

o 
I 

2 

o 
o 

I 

o 
2 
o 

o 
I 
2 
2 
o 
3 

3 

o 
I 
o 
2 
2 
o 

o 
o 

2 

3 

o 

o 
I 

o 
3 

2 

modulation (Martin 1972). Broughton (1963) defined the 
physical clements of three basic grades of complexity to 

analyse temporal strUCLUres of calls: pulses. pulse trains and 
complex pulse trains. The call of B. angusliceps (Figure 2a) 
eonsisted of a simple pulse tmin (i.e. only one call per 
perfonnance). whereas that of B. rangeri consisted of a 
complex pulse train of between 6 and 273 pulse trains (n = 
76 boULS from 31 individuals). one of which is illustrated in 
Figure 2b. In both cases the pulse rates were so fast (138 

5 

pulses per second for B. angusliceps. and 189 pulses per 
second for B. rangeri: Figure 2a and b) that the calls 
sounded like rasping squawks. The duration of the simple 
pulse train varied considerably; in the fonner species it was 
just over 0,5 s (Figure 2a), whereas in B. rangeri it had an 
average dumtion of 0,118 s (Cherry 1993). The dominant 
frequency range was between 1300 and 1850 Hz for B. 
rangeri (Cherry 1993), and was slightly higher for B. 
angusliceps (Figure 2a). 

In B. pardalis and B. gUl/uralis the pulse rates were 28 
and 16 pulses per second, respectively, and were slow 
enough to sound 'pulsatile'. Figures 2c and 2d show only a 
section of one pulse train in each species. The total duration 
of a simple pulse train was 1,3 s for the B. gUiluraliscall in 
Figure 2c, and an average of 1,2 s for B. pardalis (Cherry 
1989). The call of B. pardalis has a dominant frequency of 
between 500 and 800 Hz (Cherry 1989), whereas that of B. 
gUlluralis is slightly higher (Figure 2c). 

When two parameters, the duration of a complex pulse 
train and the passive pulse rate, are examined, the result is a 
progression in the first case from longest to shortest from B. 
gUlluralis to B. paNJalis to B. angusliceps to B. rangeri, and 
the same sequence from slowest to fastest in the second. 
With B. angusliceps as an outgroup, neither of these charac
ters produces phylogenies that arc congruent with the allo
zyme data, as it is the calls of B. pardalis and B. gUl/uralis 
that are most similar, even though they arc only distantly 
related. 

Discussion 

Phylogenetic affinities of species 

The family Bufonidae is represented by 16 species in 
southern Africa. A grouping of these species after Tandy & 
Tandy (1976), but incorporating the work of Channing 
(1978) and Grandison (1980), is presented in Table S. Phy
logenetic relationships based on the a\lozyme data agree 
with evidence on chromosome number (Bogart 1972; Grif
fin, Scott & Papwonh 1970): B. rangeri and B. gUl/uraiis 
have a chromosome number of 2N = 20, whereas B. parda

lis has one of 2N = 22. Although the chromosome number 
of B. angusticeps has not been detennined, it is likely to be 
2N = 22, as it is for B. gariepensis, which is in the same 
species group (Tandy & Keith 1972). If this is the case, both 
electrophoretic and karyotype data support Bogart's (1972) 
suggestion that species of Bufo with 20 chromosomes were 
derived from an ancestral African bufonid with 22 chromo
somcs. 

There is some dispute as to the taxonomic placement of 
B. pardalis. Using morphological criteria, Poyntoo (1964) 
placed this species in the regularis group (see Table 5), 
whereas Tandy & Keith (1972) placed it in the Iali/rons 
complex, because it shares a distinctive pattern of dorsal 
markings with other members of the latter group. Subse
quently, Tandy (1972) placed it in a monospecific group on 
the grounds that it had a diplOid chromosomal number of 22, 
whereas the rest of the lalifrons complex had a complement 
of 20 chromosomes. The present study supports this conclu
sion as it refutes Poynton's plaeing of B. pardalis in the 
regularis group. As neither B. angusliceps nor B. pardalis 
were ineluded in Maxson's (1981) study of albumins in 
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Figure 2 Sonograms or adveTlisement calls or (a) B. angusliceps ncar Stcllcnbosch, July 1986, (b) B. rangeri ncar Stcllcnoosch. October, 
1985. (c) B. gUlluralis at Weza State Forest, September 1986. and (d) B. pardali.t at Romlcvlci. near Cape Town. August t 985. 

African hu fon ids, the present study serves to complement 
that of Maxson. Insofar as they overlap, the topologies of 
Maxson's and the phylogenetic trees in Figure 1 agree. 

Time-scale calibration of phylogeny 

The calihration of the 'moleeular clock' remains a subject of 
some controversy (Thorpe 1982): various workers have 
calibrated the clock empirically for different h'fOUPS of 
animals. Different calibrations for albumin immunological 
distance (AID) have been made for two anuran families: in 
the Hylidae, Case, Haneline & Smith (1975) estimated that a 
Nei D of I equalled 36,5 AID unils, whereas Case (1978) 
suggested it equalled 46,5 AID unils for the Ranidac. In the 
absence of an empirical calihration for the Bufonidae, the 
calibration of Case el al. (1975) has hccn used, as the 

Bufonidae are more closely related to the Hylidae than to 
the Ranidae (Duellman 1988). With this value and the cali
bration of Wilson, Carlson & White (1977), which equates I 
AID unit to 0,54 Myr, we derived a calibration of 1 D = 19,7 
Myr. 

This calibration can be applied to the phylogeny in Figure 
la, and this phylogeny compared to that obtained by 
Maxson (1981). Unfonunatcly her phylogenetic tree does 
not include B. gutturalis, but does include B. regularis, 
which is closely related to it (only 10 AID units distant). 
Using the calibration of Wilson el al. (1977) she estimated 
that the lines leading to B. range'; and B. regularis diverged 
from a common ancestor 12 Myr (21,5 AID units) ago. This 
is close to the estimate of 13 Myr for the divergence time 
between the B. gutturalis and B. rangeri lineages displayed 
in Figure I a. BurG liutturalis and B. reliularis arc very 
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Table 5 The family Bufonidae in south
ern Africa 

Group/complex 

Sr.hismadtrma 

Capensibufo 

Sftphopaedes 

angus/jeeps 

'\If'rtenralis 

faiultlUS 

pa"tJJlis 
regulari.f 

Group uncertain 

Species 

S. carens 

C. rose, 
C Irado14wi 

S. arlO/is 

B. tlflgW.fliceps 

8. gariepensi.s 
R. amaroliew 

R. ill)ll2l1gae 

R vertehralis 

B. lailaAus 

R. poultJ/is 

R. gulllValis 

R raflKeri 

B garman! 

R macu/afus 

B.lemai,.i 

Diploid 
chromosome 

number 

22 
? , 
? 
? 

22 
? 

? 

? , 
22 
20 
20 
20 
20 
? 

closely related: Bulo gUlluralis was formerly regarded as an 
easlem subspecies of B. regularis, but has recently been 

given specific status (Tandy & Keith 1972; Blair 1972), so 
one would expect their respective times of divergence from 
B. rangeri to be similar, which they arc if empirical calibra
tion is used. By contrast, if we usc Nei's (1987) calibration 

for the genetic distance for our data, tben the topologies in 

I 

l 

7 

the present study and those of Maxson concur, but not the 
lime scales. 

Bufonid radiation in southern Africa 

We suggest that two major episodes of bufonid radiation 
took place in southern Africa, one in the Miocene and the 
second during the climatic "uctuations in the Pliocene and 
Pleistocene. The Miocene (5, I until 24,6 Myr before pre
sent) was characterized by aridity and replacement of forest 
with savannah and other drier ecosystems (Axelrod & 
Raven 1978). We suggest that during this period (Figure 
I a), the ancestral form of the anguslieeps group colonized 
drier areas. All four species in this group are presently 
allopatric (PoynlOn 1964), and, whereas little is known 
about B. amatolicus and B. inyangae. B. anguslieeps and B. 
gariepensis arc both explosive breeders, breeding in tempo
rary rainpools (passmore & Carruthers 1979; Visser 1979). 
This adaptation allows for rapid utilization of these epheme
ral breeding sites. 

By the lale Miocene, the coastal belt from Cape Town to 
Natal was covered by laural forest cut off from forest funher 
north by savannah (Greenway 1970). Bulo pardalis appears 
to have effectively exploited this wetler environment, as the 
current distribution of this species (Figure 3) coincides 
roughly with this belt, although it is absent from all areas in 
which rainfall is less than 4(Xl mm per annum (rainfall data 
from Jackson 1960). In contrast to the anguslieeps group, B. 
pardalis breeds in large permanent waterbodies, but remains 
an explosive breeder, breeding over a period of 4-5 days 

• 8. angus!iceps 

fill~~~] B. pardalis 

~ B.rangeri 

~ B. guNura/is 

FI~,;ure 3 Distribution of (a) B. anRusliceps, (b) n. pardali.~. (c) R. rangeri, and (d) B. gutturalis in southern Africa. This figure is based on 

Poynton (1964) and Auerbach (1987), but has heen updated using the collcctions of the SA Museum and the Cape Department of Nature 

and Environmental Conservation. Buft, angustirer.r is restricted to the winter rainfall area of the south-western Cape, where it breeds in 

temporary rajn pools between June and Augus!. Bulo ranReri is a temperate form which is endemic to southern Africa. and is prescnt in 

the eastern highlands as well as along the coastal hclt from Natal to the south-western Cape. There arc two isolated populations of B. 
pardaliJ in the western and ca.."tern Cape Provinces. Bufo ~ulluralis in eontra."t. is a tropical form which reaches the southern limit of its 

distribution in South Africa. 
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(Cherry 1992). It appears likely that the present distribution 
represents relic populations of a formerly more widespread 
species. 

The present study supports Ihe view of Tandy & Keith 
(1972) thai the radiation of the regularis group is the most 
recent, although it questions their contention thai it took 
place as recently as the Pliocene and Pleistocene. Of the 
members of this group, B. regularis, B. macula/US and B. 
rangeri) have long breeding seasons (Tandy & Keith 1972; 
Cherry 1993), whereas B. gutturalis displays behavioural 
elasticity in its breeding ochaviouf, being an explosive 
breeder in Zimbabwe (Telford & van Sickle 1989), but a 
prolonged breeder in the Transvaal, South Africa (Balinsky 
1985). Tandy & Keith (1972) postulate that the ancestral 
species of this group was an eastern forest form, which gave 
rise to a moist savannah form and a moist forest form. The 
fonner line gave rise to B. regularis and B. gUlluraliJ. and 
the latter to B. ranged (and B. garmani, which is closely 
related 10 B. rangeri but inhabiL' warm, dry areas). The 
present study corroborates the view of Maxson (1981) that 
the separation of these lineages took place between 12 and 
13 Myr ago. 

Inferring phylogeny from call characters 

Bufo gutturalis and B. rangeri are closely related, and 
hybridize over part of their zone of sympatry (Guttman 
1967; Passmore 1972). But despite their close relatedness, 
the calls of these two species are completely different 
(Figures 2b and 2c). This may reflect different optimal 
audibility in their respective ancestral habitaL" B. gutturalis 
has a lower, drawn-out call typical of many savannah 
species, whereas B. ranged has a higher-pitched call of 
shorter duration and is typical of many forest forms (Morton 
1975; Passmore 1985), although Zimmerman (1983) sugges
ted that microhabitat may be a more important factor in the 
evolution of anuran calls (see below). Selection for pre· 
mating isolation would have been likely to maintain or 
increase the divergence in call structure between these two 
species when their ranges began 10 overlap (Figure 3), as 
conspccfic rcco!:,'llition is one of the main functions of 
calling in anurans (Littlejohn 1977). 

Tandy & Keilh (1972) found that the topology of a 
phylogeny based on passive pulse rate was congruent with 
one based on haemoglobin type, karyotype and occurrences 
of hybridization among B. rangeri, B. garmani, B. brauni, 
B. regularis and B. gutturalis (with B. viridis as an oul
group). The present study shows thai this apparent congru

ence may reflect a fortuitous choice of species: the calls of 
B. gUlluralis and B. pardalis, and of B. angus/ieeps and B. 
ranged are similar, despite the distant relatedness of these 
pairs of species. These relationships arc best interpreted in 
terms of Zimmerman's (1983) argument that microhabitat is 
the most irn(X>rtant factor influencing the evolution of 
anuran calls: the first mentioned two species call from dense 
reed beds, whereas the last two call from open sites. Thus an 
analysis of call parameters can be misleading in trying to 
eSlimate phylogenetic relationships among species, because 
of convergent and divergent evolution. 

One call parameter which can be used in phylogenetic 
studies is the mode of amplitude modulation, because this is 

S.~Afr. Tydskr. Dicrk. 1994,29(1) 

related to specific anatomical structures. Passive amplitude 
modulation is produced by vibration of Ihe arytenoid cartila~ 
ges, whereas active modulation is produced by quasi-perio
dic contraction of the thoracic musculature. which permits 
the reversal of air-flow between the lungs and the vocal sac. 
Martin (1972) defined three patterns of amplitude modula
tion in the family Bufonidae and the South American iePID
dactylid OdonlOphrynus occiden/alis; Type " modulation, 
which he considers to be primitive, contains both passive 
and active components, from which have evolved both Type 
I (lacking active pulsation within the call), and Type III, 
lacking passive modulation. All four species under 
consideration in the present study have Type I calls. Only 
four species of African Bufo (all in different species groups) 
have Type " calls, whereas Type III calls are found only in 
American bufonids (Tandy & Tandy 1976). Thus, although 
the mode of modulation may be an instructive character for 
inferring phylogenies on a global basis, it is of limited value 
in estimating the evolution of Bufo in Africa. 
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