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The use of logistic regression in modelling the distributions of bird species in 
Swaziland 

V. Parker 
Avian Demography Unit, Department of Statistical Sciences, University of Cape Town, Rondebosch, 7701 South Africa 

Received 21 Decemher 1995: accepted after revision 19 February 1999 

The method of logistic regression was used to model the observed geographical distribution patterns of bird 
species in Swaziland in relation to a set of environmental variables. Reporting rates derived from brrd atlas data 
are used as an index of population densities. This is justified in part by the success of the modelling process. For 
each species the variables which were significantly related to its distribution were identified. Various methods for 
coding environmental variables from maps were investigated. A jack-knifing technique was used to demonstrate 
the predictive power of the logistic models. A criterion for assessing the goodness of fit of the logistic models 
was derived. 

Introduction 

Logistic regression (McCullagh & Neider 1989, Collett 1991) 
was previously used to predict bird distributions in Lesotho 
based on a binary response variable representing the presence 
or absence of a species in a geographical grid unit by Osborne 
& Tigar (1992). They reduced their set of explanatory varia­
bles describing habitat and land use to four principal compo­
nents, so that it was not possible to relate bird distributions to 
the explanatory variables that were observed. This analysis 
extends their work in three ways: firstly, it uses full binomial 
(rather than binary presence/absence) modelling, thus taking 
into account the relative abundance of species. Secondly, it 
relates the distributions of the bird species to the individual 
environmental explanatory variables. Thirdly, the availability 
of comprehensive data on the distribution of birds in the study 
area (Parker 1994) is made use of to assess the fit ofthe mod­
els critically and to derive a criterion for measuring goodness 
of fit. 

Logistic regression was also used to model the distribution 
of three kangaroo species in Australia in relation to a set of 
climatic variables (Walker 1990). Here again, binary (pres­
ence/absence) modelling was used rather than binomial mod­
elling. Cluster analysis was used to relate the distribution of 
Elapid snakes in Australia to climatic regions (Nix 1986) and 
visual inspection of distribution maps to relate the distribu­
tional boundaries of wintering birds in North America to en­
vironmental variables (Root 1988). In the latter study, 
estimates of relative densities were available, but were con­
verted to presence/absence data for the analysis. 

Study area and methods 
Data collection - bird distributions 

The Kingdom of Swaziland covers an area of 17 364 km' and 
has a diverse natural environment. The altitude ranges from 
200 to 1800 m, the average rainfall varies from 500 to 1300 
mm per annum and eleven distinct vegetation zones are rec­
ognized (Goudie & Price-Williams 1979). 

Data on the distribution of bird species in Swaziland were 
accumulated for the Swaziland Bird Atlas (Parker 1994) in 
the form of more than 2600 checklists listing the species ob-

served within a 1/8 degree grid cell (118 degree latitude by 1/8 
degree longitude) within a calendar month. Most grid cells 
falling only partly within Swaziland were omitted from the 
analysis. The data were summarised in the form of reporting 
rates for each species for each grid cell. The reporting rate is 
the proportion of field cards for a grid cell on which the spe­
cies was recorded and is regarded as an estimate of the rela­
tive abundance of the species between grid cells (a species is 
believed to be most numerous where it was recorded most of­
ten) (Underhill e/ at. 1992). The fact that coverage of Swazi­
land was both comprehensive and far more even than that for 
other atlas schemes in the region removes some of the possi­
ble problems related to considering the reporting rates as an 
index of relative densities (Underhill e( at. 1992). A remain­
ing problem was that of observer bias. Inconspicuous and 
more difficult to identify species are recorded less often by in­
experienced observers (Underhill e( at. 1992). This problem 
was eliminated by using a subset of the checklists consisting 
of approximately 1700 checklists compiled by the author. 
This subset consisted of at least 12 checklists per grid square 
(except for one grid square with six checklists) with at least 
35 species recorded per checklist. 

Environmental variables 

Data on the environmental variables were obtained from a se­
ries of 1 in 250 000 maps (Government of Swaziland 1980) 
and from the Atlas of Swaziland (Goudie & Price-Williams 
1979) (Table I). Rainfall data were obtained in the form of 
the estimated mean annual rainfall for each one minute of lat­
itude by one minute of longitude from the Computing Centre 
for Water Research, University of Natal, Pietermaritzburg. 

Three alternative ways for coding altitude were used. It was 
coded as a continuous variable, as a factor with eight levels, 
or a set of eight separate binary variables corresponding to the 
levels of the factor. The latter method was introduced because 
it allowed some of the variables to be omitted from the model 
when their coefficients were found to be not significant, thus 
yielding a more parsimonious model. 

The number of checklists was included as an explanatory 
variable because for the few grid cells where the number of 
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Table 1 Coding of the environmental variables 

Variable 

ALTITUDE 

ALTITUDE 
RANGE (ABS) 

ALTITUDE 

RANGE (IQ) 

RAIN 

STREAMS 

CARDS 

GEOLOGY 

RIVERS 

Explanation 

The median of the altitude rcad at tht:: north eastern corner 
of cach of 40 random I x I km quadrat~ 

The range of tile altitudes read at the north eastern cOrller 

of each of the 40 random quadrats 

The interquartile range of the altitudes read at the north 

eastern corner of each quadrat 

The mean orlhe estimated mean annual ralllfaJJ values 
for each minute of latitude by longitude 

The Ilumber of random quadrats which contain at least 

0.5 km of sire am 

The number offield cards accumulated for the grid cell 

The value tor each of the six \lariabks is the proportion of 

the grid cel! which is assIgned 10 the corresponding geo­

logical type in the map by CilllHJic & Price-WiJliams 

( 1979) 

The number of random quadrats which intersect a river at 
1ca<;t )Ill in width 

PI ANT A nONS Th~ proportion (lfthe grid cell which is covered by exotic 

limber plalltations 

AGRICULTURE The proportion oflhc grid cell which is utilized for 
intensive cultivation of sugar, cotton or citrus 

LATITUDE The latitude in minutes ofllle southern boundary oCthe 
grid cell 

LONGITUOE The longitude in minutes oflhe western boundary ofllle 

grid cell 

VEGETATION The value fOTcach oflhe 11 variables is the propor1ion of 
'I YPE the grid <xII wbier. is a.<,signed to the wrrc':'oponding 

vegetation type in the mar by Goudie & Prke-Williams 
(1979) 

[JAMS 

FORESTS 

NATURE 
RESERVES 

A binary variable rcpro;;:scnting the presence or absence of 

artificial impoundments 

A binary variable representing the presence or ahsence of 

natura! foresb 

The proportion oftllc grid (cll which faHs within a nature 
reserve 

checklists was considerably greater than the minimum, the 
additional checklists related to specific localities within those 
grid cells, so that reporting rates were biased in favour of spe­
cies occurring at those local ities. 

Three alternative methods of representing the vegetation 
types as explanatory variables were assessed. The vegetation 
types occurring within each grid cell were represented by a 
set of II continuous variables corresponding to the 11 'veld 
types' of the natural vegetation map used (Goudie & Price­
Williams 1979). For each grid cell, the proportion of its area 
falling within each veld type was recorded. The second 
method was to code the vegetation Iypes as 11 levels of a sin­
gle factor. To achieve this, each grid cell was assigned to the 
single vegetation type category which covered the largest area 
within the square. The third method was to represent each 
vegetation type as a binary variable reflecting either presence 
or absence in each grid cell. 

Trials were made to compare Acocks (1975) veld-type clas­
sification wilh that of Goudie & Price-Williams (1979). The 
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latter classification is less widely known than the former, but 
is based on more extensive fieldwork in the region (I'ons 
1967) and was considered to be possibly a more accurate rep­
resentation of the vegetation of the country. Logistic regres­
sion on vegetation types for nine species of the Cisticola 
family using each veld-type classification was carried out and 
the results compared. The Cisticola family was chosen for 
this comparison because it has a wide variety of distribution 
patterns, including species with widespread ranges and those 
restricted to single topographic regions. 

The geological data were coded in a manner similar to that 
adopted for vegetation types. A set of six variables with val­
ues representing the proportion of the grid cell assigned to the 
respective geological class in the map by Goudie & Price­
Williams (1979) was used. An alternative set of 18 variables 
representing the geological classes in the more detailed Gov­
ernment of Swaziland (1982) map was also used and results 
of using the two different classifications were compared for 
nine species of the Cisticola family. 

Statistical methods 

The Genstat statistical package was used to carry out the lo­
gistic regression analysis (Payne el al. 1987). A set of envi­
ronmental variables (Table I) were entered as possible 
explanatory variables in the logistic modeL with reporting 
rates of the bird species, expressed as a binomial random var­
iable as the response variable. This use of fully binomial lo­
gistic regression was used by Underhill et al. (1992) to 
describe seasonality; it is here used to model distribution. The 
same caveats as described by Underhill et al. (1992) are rele­
vant to this application. Although Osborne & Tigar (1992) 
used arcsine and square root transformations to improve the 
normality of some of the explanatory variables, no transfor­
mations were used in this study because the method of logis­
tic regression does not require that the explanatory variables 
be nonnally distributed (McCullagh & Neider 1989). For 
each species, the significant explanatory variables were iden­
tified by first running the regression program with each varia­
ble alone. In the light of experience with fitting and cross 
validuting the models, criteria were established whereby vari­
ables were classified as significantly or not significantly asso­
ciated with the response variable at the univariate stage. 

When using altitude to model the distribution of a species, a 
decision was made as to whether to use altitude as a continu­
ous variable, which involves one explanatory variable, or 
whether to use the factored variable or the separate variables. 
which both involve up to seven explanatory variables. It was 
felt that this decision should not be based solely on the 
change of deviance associated with each option because the 
latter two options involved models with a greater number of 
variables and should not necessanly be regarded as fitting 
better when they were associated with a greater change in de­
viance. The following procedure was therefore adopted. 
Models were fitted using the first two options, and the result­
ing changes in deviance compared. This comparison was 
made between models including all the significant explana­
tory variables. (Comparisons made between the univariate 
models yielded Inconsistent results because sometimes the 
difference in deviance between the continuous model and the 
factor model was accounted for by other variables in the full 
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model.) The continuous variable was selected whenever it 
was associated with a larger change in deviance. However, 
when the factored variable was associated with a greater 
change in deviance than the continuous variable, the cross 
validation step was used to find the model with the smallest 
sum of prediction residuals using each of the three coding 
methods; this enabled the model with the best fit to be se­
lected. In these cases, the results were tabulated against the 
values for the difference in change in deviance in order to es­
tablish how great the difference should be to offset the disad­
vantage ofthe greater number of variables in the models. 

In cases where the response variable had zero values for 
more than one level of the factor (zero cells), the litting proc­
ess was unstable as indicated by large standard errors associ­
ated with the coefficients. Attempts were then made to adjust 
the limits of the levels of the factor to amalgamilte the zero 
cells into one level. This model was then compared with the 
model using the continuous variables described above. 

A systematic forward selection procedure was used to fit a 
'combined' model, including a subset of all the available var­
iables. Vegetation-type models were also fitted, which in­
cluded only those variables representing vegetation types in 
which the species was known to occur. When including vege­
tation-type variables in the 'combined' model, variables with 
similar coefficients in the vegetation-type model were com­
bined as a single variilble after checking that the vegetation­
type model with the composite variables did not have a sig­
nificantly smaller change in deviance. In addition, a model 
containing only abiotic variables (that is excluding vegetation 
types) was fitted and compared to the vegetation types only 
model. 

The standardised residual of a grid square in the 'combined' 
model was considered high if it exceeded 2.5 in absolute 
value, which identifies approximately 1 % of cases as outliers. 
The number of bird species for which eilch grid square had a 
high residual was counted. 

In the initial model-fitting process, a dispersion parameter of 
1 was assumed in all cases, as for the binomial distribution 
(Collett 1991). In order to check whether overdispersion (var­
iability greater than that anticipated) could affect the models, 
for the two species with the highest mean deviance of the re­
sidual, the actual dispersion parameter was estimated (Pear­
son's chi-squared/degrees offreedom) and the models refined 
using the estimated dispersion parameter. 

Cross validation 

A jack-knifing technique was applied to test the predictive 
power of the models (Quenouille 1949, Miller 1974). For 
each species, the reporting rate data for each of the grid cells 
in turn were om itted and the regression coefficients calculated 
for the restricted model, The new coefficients were then used 
to calculate a predicted value for the reporting rate for the 
omitted grid cell and this could then be compared to the ob­
served value. The deviance residuals between the observed 
and predicted reporting rates for each grid cell were calcu­
lated (Hosmer & Lemeshow 1989) and used to identify possi­
ble outliers. The sum over the 98 squares of deviance 
residuals (prediction residuals) was used to assess the good­
ness orlit of the predicted distributions. 
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The predicted values of the response variable were repre­
sented on a map using the display method of the Swaziland 
Bird Atlas (Parker 1994) and compared to the corresponding 
representation of the observed values. On the maps, a circle 
appears in each grid cell in which the species occurs (or is 
predicted to occur) with il radius proportionill to the reporting 
rate. This display method was also used by Hockey e/ al 
(1989). No circle appears when the predicted number of 
records is less than one, although the corresponding predicted 
reporting rate is not zero. 

For each bird species, the distribution maps representing the 
predicted and observed distributions were compared in rela­
tion to the sum of prediction residuals, to establish a criterion 
for ilssessing the goodness of fit of the models in relation to 
the prediction residuals. 

Results 
Comparison of coding methods for explanatory vari­
ables 

In selecting a coding method for altitude it was found that the 
model using the continuous variable always produced a better 
lit than that using the factored variable in terms of the sum of 
prediction residuals in the cross validation whenever the dif­
ference in change in deviance was less than 27 and sometimes 
produced a better lit when the difference was less than 55. 
Only when the difference in change of deviance was greater 
thiln 55 in favour of the factored variable did the latter invari­
ably produce a better fit (Table 2) 

Table 2 Comparison of goodness of fit of the models 
using continuous and factored variables for altitude 
The entries in the table represent the number of times 
each coding method resulted in a better fit (as deter­
mined by sum of prediction reSiduals) for each range 
of values for the difference in deviance 

Coding method 

Continuous 

ractored 

[)itferenee ill deviance (Factored - ContilllloUS) 

<2) 

2<7 

o 

27-55 

X 

[5 

o 
32 

In all cases where the factored variable was preferred to the 
continuous, the method of using separate variables yielded a 
slightly better lit, but the improvement was not signincant 
(less than 1%) and the factored variable was used for conven­
ience. However, in a total of three cases, both the continuous 
and factored variables were found to be not significantly as­
sociated with the response, but a s uhset of the separate varia­
bles was significant and its inclusion improved the fit of the 
model. In all cases where the factored variable was unsuitable 
because it contained zero cells. the variable obtilined by read­
justing the levels was not preferable to the continuous varia­
ble. 

For vegetation-type coding methods, the continuous method 
performed better than the binary method in all cases and bet­
ter than the factor method in all but two cases (Table 3) and in 
these cases the differences were insignificantly small. When 
using the factor method, the factor representing the vegetation 
types often contained several zero cells, with the result that 
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Table 3 Comparison of coding methods of vegetation 
types with respect to change in deviance of the logis­
tic model. The table gives values of the change in 
devian Tce associated with the vegetation types coded 
as: levels of a single factor (FACTOR), as 11 binary 
variables (BINARY) and as 11 variables with values in 
the range (0-10) (CONTINUOUS). The full data set 
was used in these comparisons, which accounts for 
discrepancies in the values of the change in deviance 
between this table and table 4, where a restricted 
data set consisting only of field cards compiled by the 
author was used 

Species factor Binary Continuous 

Wailing Cisticnla 420 399 415 

Rattling Cislicola J [58 JI9S 1226 

Redfaced Cislicola 327 291 374 

LevailhU11's Ci~ticola 924 1015 1035 

Croaking Cisticola 240 243 266 

I.azy Cisticola 760 6RO 747 

I\cddicky 600 537 676 

\Vater Dikkup 100 48 118 

PurpJecrcslcd Lourie 57l 556 689 

the fitting process was unstable and the associated standard 
errors were large. The continuous method was adopted as the 
most suitable way of coding the vegetation-type data and was 
used exclusively in the subsequent model-fitting processes. 
In the comparison of veld-type classifications, the regression 

analysis invariably produced greater changes in deviance us­
ing the Goudie & Price-Williams (1979) classification com­
pared to Acocks (1975) classification and the differences 
\vere significant (with one exception) after taking into ac­
count the greater number of categories (II versus 8) (Table 
4). It is therefore likely that the former classification de­
scribes the vegetation of Swaziland more accurately. 

In the comparison of geological classifications, using the 
classification based on the map by Goudie & Price-Williams 
(1979), the variables representing geological classes in which 
the species predominantly occurs were found to be significant 
for all but one of the species. By contrast, when using the 

Table 4 Comparison of veld-type classifications 
(Acocks vs Goudie & Price-Williams) with respect to 
the change in deviance of the logistic model 

Sptcies Acocks G&P-W Difterencc 

Desert Cistico!a 40 66 26 

Ajre's CiSlico[a 318 360 42 

Wailing Cislicola 456 463 7 

Rattling Cisticohl 1068 1166 102 

Rcdfaccd Cisticola 363 ]78 15 

LcvailJant's Cisticola 688 945 257 

Croaking Cisticola 189 219 JO 

Lazy Cisticola 687 723 36 

Neddicky 490 580 90 
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altemative more detailed classification (Government of Swa­
ziland 1982), none of the individual variables were found to 
be significant in the logistic models. The simpler classifica­
tion was therefore adopted for use in the modelling process. 

Criteria for significance of variables 

Variables whose inclusion in the combined model was found 
to improve the fit of the model as measured by the sum of 
prediction residuals in the cross validation step, were found to 
be almost invariably among those which had Wald statistic (t) 
values in excess of two and were associated with changes in 
deviances of at least five in the univariate models (McCullagh 
& Neider 1989). These were then adopted as criteria for iden­
tifying which variables were significantly associated with the 
response variable. 

Over-dispersion 

The over- or under-dispersion of the models, as measured by 
the mean deviance of the residual, was found to be closely re­
lated to the number of observations of the species concemed. 
The mean deviance was large for species recorded most often 
and was considerably less than one for the least frequently 
observed species (Table 5). 

For the two species for which the model was refitted using 
the estimated dispersion parameter. namely (nomenclature 
follows Clancey 1980) Redfaced Cisticola Cisticola eryth­
raps and Croaking Cisticola Cistieola nata/ens i ... , it was found 
that although the values of the Wald statistic for each variable 
were smaller, nevertheless all of the variables selected in the 
initial model fitting process remained significant. The over­
dispersion, therefore, did not appear to make any real differ­
ence to the model fitting process. 

Each of the environmental variables entered were significant 
for at least some of the species and vegetation type \\'as a sig­
nificant variable for all but four of the 335 species (Table 6). 
Variables were denoted as highly significantly associated 
when the variable was associated with a change in deviance 
which was more than half the change for the combined 
model. The combined models were found to account for an 
average of62.6% of the total deviance for passerine and near­
passerines (sensu Maclean 1985: xxiv) and 58.7%> for nOI1-
passerines (Table 7). 
Models consisting of abiotic (climatic, topographic and geo­

logic) variables only were better (in terms of change in devi­
ance) than the vegetation type models in 321 cases out of 335. 
This indicates that the relative densities of the bird species 
vary within vegetation types and that these differences are at 
least partially accoullied for by the abiotic variables. 

Each grid cell had a large residual for a minimum of four 
and a maximum of39 out of 335 of the models (Figure I). It 
is apparent that high residuals occurred least often in the 
lowveld, which is the most homogenous of the topographic 
regions (Goudie & Price-Williams 1979). The modelling 
process assumes that the explanatory variables are constant 
within a grid cell and therefore the models are expected to fit 
less well where these variables vary most rapidly. 

Cross validation 

For the Lazy Cisticola Cistieola aberrans, one grid cell was 
found to contribute 84 to the total deviance of 449, with no 
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Table 5 Goodness of fit statistics (Cisticola family & selected species) 

OBS TUJ DEV COMH ,!,~ Amonc % V[Ci (~,;, PR('[) Rr:SIU M!)R 

hll1taik:d Ci:.licul<lT 

I)c~ert Cislicoia 

Ayn:'s Ci:-.Licnla 

\Vailing Cisticola 

Rattling Cisli!;ola 

Rcdf<1ced ("isticolll 

r .iVy ('lsricol(1 

'-'<,pc Turtle Dove 

Ycllowfrontcu 'I il1kcrnarbt:t 

Fon:Si Weaver 

Kf'): 

4:'12 

20 

240 

209 

954 

571 

40S 

532 

679 

674 

1127 

74 

(mS - Nlllllncr of oh<;crvatioll" of the spede:-­

T(HAL DEV - TOlallkvial1cc 

237 

120 

57\ 

663 

1458 

1219 

625 

1121 

9HO 

546 

378 

404 

48 

63* 

87 

55 

74' 

72' 

78 

90 

9H* 

,6 

75* 

81' 

87' 

4H* 

83' 

41' 

72 

69 

90' 

98 

(U:\1B(%) - Pen:cntag.e or total dcvi'lIlc(; ilccountcu tor by the combined Im.ldet 

A!JIOTIC(~''';) - Percentage of lOtal deviance iLccounted ti)T hy tht: ahi,llic model 

VI:(i (%) - Pt.:n:l.:l1tagc oj" total dcvi:lllcf.: accounted ll)r hy the vcgctation-tYPI:S model 

PREI) RI',S] [) = Slim or predict'IOIl re:-.iduab 

MIJR - 1\.'1eall deviollce of the residual (best modcli 

(iF I = (Tolal dcviancc)/(Stun of prediction residuals) 

UF2 - ("i11111 of predictioll rcsidual,,)((Su1l1 of residuals of the full model) 

* - Indicates \vhieh 1l1l1lkl yielded the best lillbr eaeh species 

35 

71 

711 

SO 

39 

77 

3S 

47 

47 

79 

238 

]02 

516 

494 

JJI 

190 

1117 

211 

other grid cell 
contributing more 
thall 30. This 
point was then de­
leted and the anal­
ysis repcilted. The 
exclusion of the 
grid cell was 
found to make a 
negligible differ­
ence to the tit of 
the remaining grid 
cells. For the other 
species, no single 
grid cell was 
found to contrih­
ute much more 
than the others to 
the total deviance. 

Table 6 Numbers of species distributions with which 
variable is significantly associated. 

The prediction 
residuals calcu­
lated by jaek-knif-
ing for some 
species arc in­
cluded in rable 5. 
Comparison of the 
prediction residu­
als to percentage 

Varia hie 

Vcgct,llion type 

(;enlo~y 

Altitude.; 

RainlaJl 

Oams 

Rivers 

Canis 

Plantations 

Streal11:-. 

I.:.llitudc 

Longiludl: 

Agriculture 

Forcsts 

:-.JatuTc rcscrve:-. 

Altitude range 

T 

331 

)24 

JIS 

295 

225 

164 

214 

250 

281 

194 

292 

22R 

2S0 

249 

200 

p 

331 

324 

108 

94 

147 

108 

76 

S4 

102 

109 

190 

168 

86 

83 

liS 

T: No of specie:-. :-.ignitican(ly associated 

n 

II 

II 

207 

201 

7R 

56 

138 

166 

179 

102 

60 

166 

66 

88 

p. ~o. of species signiJicanlly positively associated 

n ~(), of species signilicantly negatively ass()Cialed 

P_ No or ~pt:cies highly "igniticantly po:-.itivdy a:.s(lI.:iated 

N: ~o. uf!'lflecies highly ~ignilicantly llegativelY a~s()ciated 

I' 

272 

'16 

,8 
17 

14 

4 

52 , 
7 

2 

4 

I 3 

() S 

14 

I I 

2.0 

5,5 

.1.9 

3.6 

1 I 

14 

114 

0.1 

each 

N 

II 

iI 

97 

48 

iI 

iI 

7 

I" 

II 

4 

28 

iI 

2 

(I 

o 

43 

(iFI on 
1.4 

1.9 

2.3 

4.8 

61 

14 

1.5 

IB 

14 

I 1 

U t.5 

411 

1.4 

2.5 

1.0 

21.) 

I :; 

1.6 

I 2 

1,6 

1.9 

20.2 

5.6 

2.5 

points of the Chi­
square distribu­
tion (Hosmer & 
Lemeshaw 1989) 
was found to be 
inappropriate as a 
criterion for 
goodness of tit 
because the pre­
diction residuals 
cannot be less 
than the residual 
deviance of the 
full model. When 
the total deviance 
of the model was 
large, these values 
frequently ex­
ceeded the rele­
vant Chi-squared 
value even though 
the models ac­
counted for high 
proportions of 
the total devi­
ance. In many 
cases, visual ex­
amination of the 
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Table 7 Goodness of fit data 

Sutnmnry <;lali,l.lics: P;l,\Sl;rinc\ illld ncar ras<;crincs 

MEAN SD 1 RANGE \1LAN SO RANGE 

Percentage of variation accounted for by: 

Combined model 58.~ 19,6 5-92 ()2.6 175 12 98 

Abiotic Illodel 55.6 J<).2 5-91 (lO.O I X.I 12-9X 

Vcgct .. ttion :ru 14.' ()-(,n 4~ 0 )'':'.2 0-10:5 

(joodncss Ilf lit stati:'Lics 

GI I I.XS () X6 OA2 ·6.26 221 I ~ 7 O,l-:2-20.20 

(;1 \ I 'J lJI I.01-IH6 1.6X I S~ 1.1l2-2(I.t4 

I SD - Standard dcvimion 

2 (iF 1 = (Tlllai dcviatlcdsullI of prediction residuah) 

3 (if2 - (SUIll ofprcdiction n;sidllal<;/<;ulllofn:siduals for Iht: fuJi model) 
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S\<;IIZrIJ.ND 

m..;.:1'1 ~Oi'OGP.APIIIC RECJC~S 

L ~u 

H_H';~ ... 1d 
M. Mdd~ ••• 1II 
l ~ lowvo ... 
LU ~ lob.." .... 

The siz~ or Ih~ dn;k" is proportional to the numbt:r or spt:dcs mod­
els for \vhich the grid squar~ had a high residual. t'",linimum= 4/335; 

Maximul11'-39/335. 

Figure I Distribution of high residuals within SW<lLiland. Inset 
shows m<\jor topographic regions ofSwaJ'ilanct 

predicted and observed distributions suggested that the fit of 
the models was in fact excellent. On the other hand. when 
the total deviance was very small, the prediction residual 
was found to be considerably less than the Chi-square value 
even when the fit of the predictions did not look particularly 
good. 

Comparison of thc ratio of thc total dcviancc of the full 
model to the prediction residuals with the observed similar­
ity of the predictcd and observed distribution maps yielded a 
more appropriate measure of goodnes.s. of fit. It was ob­
served that the fit always appeared to be good whenever this 
ratio exceeded one. 

A value of one for this ratio implies that the model fits no 
better than a model representing a constant reporting rale 
throughout. However, when the predicted distribution maps 

for species where the ratio was close to one were examined, it 
was observed that where there was a large difference between 
the predicted and observed reporting rates, the grid cell was 
often contiguous with cells whose observed values matched 
the predicted value (Figure 2d). The actual fit of the model in 
these cases wa:-, therefore generally' better than the ratio would 
suggest. 

This ratio had a value greater than one for 324 out of 335 
species and a mean value of 2.2 for passerines and m:ar pas­
serines (n~242) and 1.9 for non passerines (n-93). light of 
the 11 species for which the ratio was less than one were "va­
ter birds. 

An additional measure of the goodness offit of the models is 
the ratio of the sum of prediction deviance residuals to the re­
sidual deviance of the full model. This ratio indicates how 
much the predicted values differ fi·om the fitted values of the 
full model without reference to the observed values (Table 5). 
The maps representing predicted and observed distributions 

for four species (Figure 2) illustrate the fact that the models 
have predicted hoth the limits or the distributions of the spe­
cies as well as their reporting rates within these limits with 
reasonable accuracy. 

Discussion 

This investigation has shown that logistic regression can he 
used to identify the environmental variables which are signif­
icantly associated with the geographical distributions of bird 
species. This is a :-,tronger result than that of Osborne & Tigar 
(1992), who showed that species distributions could be re­
lated to latent variables derived from the environmental varia­
bles using principal components. 
Comparison of Ihe predicled distribution maps to the ob­

served distributions has established that ifbird distribution in­
formation "vas available for some centres and lacking in the 
intervening areas for some region, then the distributions in the 
intervening areas could be reasonably accurately predicted. 
The success of the mode II ing process is a justification of the 

use of reporting rates as an index of population density be­
calise it is difficult to conceive of an alternative explanation 
for the association between reporting, rates and the environ­
mental variables. 

Ihe model selection process used is in contrast to the 
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Observed distribution Predicted distribution 

Figure 2 .. ()hscrv~d and predicted distributions: Cape Turtle Dove (Goodness of fit stal.: gfl =2.9) 

Observed distribution Predicted distribution 
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Figure 2b Olw..:rvcd and prcdkted distributions: Forest WC<lwr (Goodne::.s of tit stat.: gfl "'2().2) 
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Observed distribution Predicted distribution 
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Figure 2c Observed and predicted distributions: Wailing ci:-,ticola ((iuodness of fit stat.: gfl =4_8) 
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Figure 2d Ohserved ;:.lJld pn::dicted distributions: Yellowrrontcd Tinker Barbel (Goodness nftit stal.: gfi=I.O:?) 

Note: This predicted distrihution docs not represent the best lilting model derived for this specks (Table 5) but \\<15 selected to illustrate the fit 

ofa model for which gfi=l 
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method of Osborne & Tigar (1992) who reduced all the avail­
able variables to the first four principal components. The first 
four principal components of the variables do not necessarily 
coincide with the components which are most significantly 
related to the response variable, as demonstrated for example 
by Cuadras (1993). Moreover, during the model selection 
process, the inclusion or exclusion of a single variable was of­
ten observed to make a large difference to the fit of the model, 
as reflected in the value of the prediction residual. Noting also 
that the models for very few of the species were identical in 
respect of the variables included, the principal components 
method was considered to be inadequate. 

The method used by Osborne & Tigar (1992) of identifying as 

outliers individual points with high residuals was found to he po­
tentially flawed. In this study, it was often found that when the fit 
of a model was poor, there were one or two pOints which ap­
peared to be outliers on the basis of their excessive residuals. 
I Iowever, in most of these cases it was possible to obtain a better 
fitting model hy using a different combination of variables, and 
in the new model the points in question no longer had excessive 
residuals. (When the model did not fit, the model was wrong, not 
the data.) 

More \\o'ork needs to be done on the distribution of the sum 
of prediction residuals before a criterion for goodness of fit 
can be proposed for general use in logistic regression. How­
ever, for the purposes of this study, the criterion derived here 
was found to be consistent with the observed goodness of fit 
and was useful in ranking the models and identifying those 
for which the fit was relatively poor. 

Underdispersion of the models for which the number of ob­
sevations is small was expected because in these cases most 
of the values for reporting rates for the grid cells arc zero and 
consequently the variability is less than that expected for a bi­
nom ially distributed variable. On the other hand, ovcrdisper­
sion for models where the number of observations is large is 
probably attributable at least in part to the fact that the distri­
butions are partly determined by variables other than those 
which were available for inclusion in the models. 

The fact that most of the birds for which the fit was rela­
tively poor were water birds indicates that the models for 
these specics would probably be improved by the inclusion of 
further variables representing the occurrence, nature and ex­
tent of wetlands. The variables used also probably do not ac­
count adequately for the effects of human activities on the 
environment. It is possible that the species most affected by 
human activities will be among those for which the fit is rela­

tively poor. 
One of the aims of this study was to explore methods for coding 

environmental variables from maps, and to determine which 
method is the most suitable at least for Swaziland. FU/1her stud­
ies in other regions and at different scales may help to establish 
whether these methods are generally applicable. 
Temperature could not be included as an explanatory variable 

because no data were available at the appropriate scale. As tem­
perature is highly correlated with altitude (Goudie & Price-Wil­
liams 1979), the inclusion of temperature might not make a 
significant difference to the models. Moreover. the variables lati­
tude and longitude are expected to act as surrogates (together 
with altitude) for temperature. Temperature decreases with lati­
tude (though this effect is small over the 1.5 degrees of latitude) 
and increases with longitude due to the influence or the Indian 
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Ocean which lies less than 50 km away to the cast. 
The appropriateness of logistic regression in this context is de­

pendent on the assumption of independence of observations of 
birds in different grid cells. This assumption would be violated jf 
the same individual were observed in different grid cells. It is be­
lieved that the assumption is reasonable for most small passer­
ines. The assumption might not be valid for some larger, more 
mohile species, especially those of the family Accipitridae and 
water birds. Use of the regression models also assumes that a 
species occurs wherever environmental conditions arc favoura­
ble irrespective of its occurrence or nOll OCCurrence in neighbour­
ing squares. Further research into the impact of these 
assumptions is needed. 
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