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The use of logistic regression in modelling the distributions of bird species in
Swaziland
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The method of logistic regression was used to model the observed geographical distribution patterns of bird
species in Swaziland in relation to a set of environmental variables. Reporting rates derived from bird atlas data
are used as an index of population densities. This is justified in part by the success of the modeliing process. For
each species the variables which were significantly related to its distribution were identified. Various methods for
coding environmental variables from maps were investigated. A jack-knifing technique was used to demonstrate
the predictive power of the logistic models. A criterion for assessing the goodness of fit of the logistic models

was derived.

Introduction

Logistic regression {McCullagh & Nelder 1989, Collett 1991)
was previously vsed to predict bird distributions in Lesotho
based on a binary response variable representing the presence
or absence of a species in a geographical grid unit by Osbome
& Tigar (1992). They reduced their set of explanatory varia-
bles describing habitat and land use to four principal compo-
nents, so that it was not possible to relate bird distributions to
the explanatory variables that were observed. This analysis
extends their work in three ways: firstly, it uses full binomial
(rather than binary presence/absence) modelling, thus taking
into account the relative abundance of species. Secondly, it
relates the distributions of the bird species to the individuai
environmental explanatory variables. Thirdly, the availability
of comprehensive data on the distribution of birds in the study
area (Parker 1994) s made use of to assess the fit of the mod-
els critically and to derive a criterion for measuring goodness
of fit.

Logistic regression was also used to model the distribution
of three kangaroo species in Australia in relation to a set of
climatic variables (Walker 1990). Here again, binary (pres-
ence/absence) modelling was used rather than binomial mod-
elling, Cluster analysis was used to relate the distribution of
Elapid snakes in Australia to climatic regions (Nix 1986) and
visual inspection of distribution maps to relate the distribu-
tional boundaries of wintering birds in North America to en-
vironmental variables (Root 1988). In the latter study,
estimates of relative densities were available, but were con-
verted to presence/absence data for the analysis.

Study area and methods
Data collection — bird distributions

The Kingdom of Swaziland covers an area of 17 364 km? and
has a diverse natural environment. The altitude ranges from
200 to 1800 m, the average rainfall varies from 500 to 1300
mm per annum and eleven distinct vegetation zones are rec-
ognized (Goudie & Price-Williams 1979).

Data on the distribution of bird species in Swaziland were
accumulated for the Swaziland Bird Atlas (Parker 1994) in
the form of more than 2600 checklists listing the species ob-

served within a 1/8 degree grid cell (/8 degree latitude by 1/8
degree longitude) within a calendar month. Most grid cells
falling only partly within Swaziland were omitted from the
analysis. The data were summarised in the form of reporting
rates for each species for each grid cell. The reporting rate is
the proportion of field cards for a grid cell on which the spe-
cies was recorded and is regarded as an estimate of the rela-
tive abundance of the species between grid cells (a species is
believed to be most numerous where it was recorded most of-
ten) (Underhill et af. |992). The fact that coverage of Swazi-
land was both comprehensive and far more even than that for
other atlas schemes in the region removes some of the possi-
ble problems related to considering the reporting rates as an
index of relative densities (Underhill ez al. 1992). A remain-
ing problem was that of observer bias. Inconspicuous and
more difficult to identify species are recorded less often by in-
experienced observers (Underhill et af. 1992). This problem
was eliminated by using a subset of the checklists consisting
of approximately 1700 checklists compiled by the author.
This subset consisted of at least 12 checklists per grid square
(except for one grid square with six checklists) with at least
35 species recorded per checklist.

Environmental variables

Data on the environmental variables were obtained from a se-
ries of 1 in 250 000 maps (Government of Swaziland 1930)
and from the Atlas of Swaziland (Goudie & Price-Williams
1679) (Table ). Rainfall data were obtained in the form of
the estimated mean annual rainfall for each one minute of lat-
itude by one minute of longitude from the Computing Centre
for Water Research, University of Natal, Pietermaritzburg,

Three alternative ways for coding altitude were used. It was
coded as a continuous variable, as a factor with eight levels,
or a set of eight separate binary variables corresponding to the
levels of the factor. The latter method was introduced because
it allowed some of the variables to be omitted from the model
when their coefficients were found to be not significant, thus
yielding a more parsimonious model.

The number of checklists was included as an explanatory
variable because for the few grid cells where the number of
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Table 1 Coding of the environmental variables

Variable Explanation

ALTITUDE The median of the altitude read at the north castern corner
of each of 40 random [x1 km quadrats

ALTITUDE The range of the altitudes read at the north eastern corner

RANGE (ABS)  of each of the 40 random quadrats

ALTITUDE The interquartile range of the altitudes read at the narth

RANGE {IQ) castern corner of each quadrat

RAIN The mean of the estimated mean annual rainfall valucs
for each minute of latitude by longitude

STREAMS The number of random quadrats which contain at least
0.5 km of stream

CARDS The number ot field cards accumulated for the grid cetl

GEOLOGY The value tor ¢ach of the six variables is the proportion of
the grid cell which is assigned 1o the corresponding geo-
logical type in the map by Goudie & Price-Williams
(1979

RIVERS The number of random quadrats which intersect a river at

least Sm in width
PLANTATIONS  The preportion of the grid celt which is covered by exotic
timber plantations

AGRICULTURE  The proportion of the grid cell which is utilized for
intensive cultivation of sugar, cotton or citrus

LATITUDE The latitude in minotes ot the southern boundary of the
grid cell

LONGITUDE The longitude in minutes of the western boundary of the
grid cell

VEGETATION  The valug for each ot the 1| variables is the proportion of

TYPE the grid cell which is assigned (o the cosresponding
vegetation type in the map by Goudie & Price-Williams
(1979)

DAMS A binary variable representing the presence or absence of
artifictal impoundments

FORESTS A binary variable representing the presence or ahsence of
natural forests

NATURE The prepertion ot the grid cell which falls within a nature

RESERVES reserve

checklists was considerably greater than the minimum, the
additional checklists related to specific localities within those
grid cells, so that reporting rates were biased in favour of spe-
cies occurring at those localities.

Three alternative methods of representing the vegetation
types as explanatory variables were assessed. The vegetation
types occurring within each grid cell were represented by a
set of |1 continuous variables corresponding to the 11 “veld
types’ of the natural vegetation map used (Goudie & Price-
Williams 1979). For each grid cell, the proportion of its area
falling within each wveld type was recorded. The second
method was 10 code the vegetation types as 11 levels of a sin-
gle factor. To achieve this, each grid cell was assigned to the
single vegetation type category which covered the largest area
within the square. The third method was to represent each
vegetation type as a binary variable reflecting either presence
ot absence in each grid cell.

Trials were made to compare Acocks (1975) veld-type clas-
sification with that of Goudie & Price-Williams (1979). The
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latter classification is less widely known than the former, but
is based on more extensive fieldwork in the region (I’ons
[967) and was considered to be possibly a more accurate rep-
resentation of the vegetation of the country. Logistic regres-
sion on vegetation types for nine species of the Cisticola
family using each veld-type classification was carried out and
the results compared. The Cisticola family was chasen for
this comparison because it has a wide variety of distribution
patterns, including species with widespread ranges and those
restricted to single topographic regions.

The geological data were coded in a manner similar to that
adopted for vegetation types. A set of six variables with val-
ues representing the proportion of the grid cell assigned to the
respective geological class in the map by Goudie & Price-
Williams (1979) was used. An alternative set of [8 variables
representing the geofogical classes in the more detailed Gov-
emment of Swaziland (1982) map was also used and results
of using the two different classifications were compared for
nine species of the Cisticola family.

Statistical methods

The Genstat statistical package was used to carry out the lo-
gistic regression analysis (Payne ef of. 1987). A set of envi-
ronmental variables (Table |) were entered as possible
explanatory variables in the logistic model, with reporting
rates of the bird species, expressed as a binomial random var-
iable as the response variable. This use of fully binomial lo-
gistic regression was used by Underhill ez «f (1992) to
describe seasonality; it is here used to model distribution. The
same caveats as described by Underhill ef al. (1992) are rele-
vant to this application. Although Osborne & Tigar (1992)
used arcsine and square root transformations to improve the
normality of some of the explanatory variables, no transfor-
mations were used in this study because the method of logis-
tic regression does not require that the explanatory variables
be nommnally distributed (McCullagh & Nelder 1989). For
each species, the significant explanatory variables were iden-
tified by first running the regression program with each varia-
ble alone. In the light of experience with fitting and cross
validating the models, criteria were established whereby vari-
ables were classified as significantly or not significantly asso-
ciated with the response variable at the univariate stage.
When using altitude to model the distribution of a species, a
decision was made as to whether to use altitude as a continu-
ous variable. which involves one explanatory variable. or
whether to use the factored variable or the separate variables,
which both involve up to seven explanatory variables. 1t was
felt that this decision should not be based solely on the
change of deviance associated with each option because the
latter two options involved models with a greater number of
variables and should not necessarily be regarded as fitting
better when they were associated with a greater change in de-
viance. The following procedure was therefore adopted.
Models were fitted using the first two options, and the result-
ing changes in deviance compared. This comparison was
made between models including all the significant explana-
tory variables. (Comparisons made between the univariate
models yielded inconsistent results becanse sometimes the
difference in deviance between the continuous model and the
factor model was accounted for by other variables in the full
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model.) The continuous variable was selected whenever it
was associated with a larger change in deviance. However,
when the factored variable was associated with a greater
change in deviance than the continuous variable, the cross
validation step was used to find the model with the smallest
sum of prediction residuals using each of the three coding
methods; this enabled the model with the best fit to be se-
lected. In these cases, the results were tabulated against the
values for the difference in change in deviance in order to es-
tablish how great the difference should be to offset the disad-
vantage of the greater number of variables in the models.

In cases where the response variable had zero values for
more than one level of the factor (zero cells), the fitting proc-
ess was unstable as indicated by large standard errors associ-
ated with the coefficients. Attempts were then made to adjust
the limits of the levels of the factor to amalgamate the zero
cells into one level. This model was then compared with the
model using the continuous variables described above.

A systematic forward selection procedure was used to fit a
‘combined’ model, including a subset of all the available var-
iables. Vegetation-type models were also fitted, which in-
cluded only those variables representing vegetation types in
which the species was known to occur. When including vege-
tation-type variables in the ‘combined’ model, variables with
similar coefficients in the vegetation-type model were com-
bined as a single variable after checking that the vegetation-
type mode] with the composite variables did not have a sig-
nificantly smaller change in deviance. In addition, a model
containing only abiotic variables (that is excluding vegetation
types) was firted and compared to the vegetation types only
model.

The standardised residual of a grid square in the ‘combined’
model was considered high if it exceeded 2.5 in absolute
value, which identifies approximately 1% of cases as outliers.
The number of bird species for which each grid square had a
high residual was counted.

In the initial model-fitting process, a dispersion parameter of
1 was assumed in all cases, as for the binomial distribution
(Collett 1991). In order to check whether overdispersion (var-
iability greater than that anticipated) could affect the models,
for the two species with the highest mean deviance of the re-
sidual, the actual dispersion parameter was estimated (Pear-
son’s chi-squared/degrees of freedom) and the models refitted
using the estimated dispersion parameter,

Cross validation

A jack-knifing technique was applied to test the predictive
power of the models (Quenouille 1949, Miller 1974). For
cach species, the reporting rate data for each of the grid cells
in turn were omitted and the regression coefficients calculated
for the restricted model. The new coefficients were then used
to calculate a predicted value for the reporting rate for the
omitted grid cell and this could then be compared to the ob-
served value. The deviance residuals between the observed
and predicted reporting rates for each grid cell were calcu-
lated (Hosmer & Lemeshow 1989} and used to identify possi-
ble outliers. The sum over the 98 squares of deviance
residuals (prediction residuals) was used to assess the good-
ness of fit of the predicted distributions.
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The predicted values of the response variable were repre-
sented on a map using the display method of the Swaziland
Bird Atlas (Parker 1994} and compared to the corresponding
representation of the observed values. On the maps, a circle
appears in each grid cell in which the species occurs {or is
predicted to occur) with a radius proportional to the reporting
rate. This display methed was also used by Hockey er ol
{1989). No circle appears when the predicted number of
records is less than one, although the corresponding predicted
reporting rate is not zero.

For each bird species, the distribution maps representing the
predicted and observed distributions were compared in rela-
tion to the sum of prediction residuals, to establish a criterion
for assessing the goodness of fit of the models in relation to
the prediction residuals.

Results
Comparisen of coding methods for explanatory vari-
ables

In selecting a coding method for altitude it was found that the
model using the continuous variable always produced a better
fit than that using the factored variable in terms of the sum of
prediction residuals in the cross validation whenever the dif-
ference in change in deviance was less than 27 and sometimes
produced a better fit when the difference was less than 55.
Only when the difference in change of deviance was greater
than 35 in favour of the factored variable did the latter invari-
ably produce a better fit (Table 2).

Table 2 Comparison of goodness of fit of the models
using continuous and factored variables for altitude.
The entries in the table represent the number of times
each coding method resulted in a better fit (as deter-
mined by sum of prediction residuals) for each range
of values for the difference in deviance

Coding method Difference in deviance (Factored — Continuous)

<27 27-55 =55
Continuous 257 8 0
Factored 0 15 32

In all cases where the factored variable was preferred to the
continuous, the method of using separate variables yielded a
slightly better fit, but the improvement was not signiticant
(less than 19%) and the factored variable was used for conven-
ience. However, in a total of three cases, both the continuous
and factored variables were found to be not significantly as-
sociated with the response, but a subset of the separate varia-
bles was significant and its inclusion improved the fit of the
model. In all cases where the factored variable was unsuitable
because it contained zero cells, the variable obtained by read-
justing the levels was not preferable to the continuous varia-
ble.

For vegetation-type coding methods, the continuous method
performed better than the binary method in all cases and bet-
ter than the factor method in all but two cases (Table 3) and in
these cases the differences were insignificantly small. When
using the factor method, the factor representing the vegetation
types often contained several zero cells, with the result that
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Table 3 Comparison of coding methods of vegetation
types with respect to change in deviance of the logis-
tic model. The table gives values of the change in
devianTce associated with the vegetation types coded
as: levels of a single factor (FACTOR), as 11 binary
variables (BINARY) and as 11 variables with values in
the range (0-10) (CONTINUQUS). The full data set
was used in these comparisons, which accounts for
discrepancies in the values of the change in deviance
between this table and table 4, where a restricted
data set consisting only of field cards compiled by the
author was used

Species Factor Binary Continuous
Waiting Cisticola 420 399 415
Rattling Cisticola 1158 1198 1226
Redfaced Cisticola 32 291 374
Levattlant’s Cisticola 924 10115 1035
Croaking Cisticola 240 243 266
Lazy Cisticola 760 (] 747
Neddicky 600 337 676
Water Dikkap 100 48 118
Purplecresicd Louric 571 556 689

the fitting process was unstable and the associated standard
errors were large. The continuous method was adopted as the
most suitable way of coding the vegetation-type data and was
used exclusively in the subsequent model-fitting processes.

In the comparison of veld-type classifications, the regression
analysis invariably produced greater changes in deviance us-
ing the Goudie & Price-Williams (1979} classification com-
pared to Acocks (1975) classification and the differences
were significant (with one exception) after taking into ac-
count the greater number of categories (11 versus 8) (Table
4). It is therefore likely that the former classification de-
scribes the vegetation of Swaziland more accurately.

In the comparison of geological classifications, using the
classification based on the map by Goudie & Price-Williams
(1979), the variables representing geological classes in which
the species predominantly occurs were found to be significant
for all but one of the species. By contrast, when using the

Table 4 Comparison of veld-type classifications
{Acocks vs Goudie & Price-Williams) with respect to
the change in deviance of the logistic model

Specics Acocks Gé&P-W Difference
Desert Cisticola 4) 66 26
Ayre’s Cisticola 318 360 42
Wailing Cisticola 456 463 7
Rattling Cisticola 1068 1166 102
Redfaced Cisticola 363 378 15
Levaillant's Cisticola 688 945 257
Croaking Cisticola 189 219 30
Lazy Cisticola 687 723 36
Neddicky 490 380 90
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alternative more detailed classification (Government of Swa-
ziland 1982), none of the individual variables were found to
be significant in the logistic models. The simpler classifica-
tion was therefore adopted for use in the modelling process.

Criteria for significance of variables

Variables whose inclusion in the combined model was found
to improve the fit of the model as measured by the sum of
prediction residuals in the cross validation step, were found to
be almost invariably among those which had Wald statistic (t)
values in excess of two and were associated with changes in
deviances of at least five in the univariate models (McCullagh
& Nelder 1989). These were then adopted as criteria for iden-
tifying which variables were significantly associated with the
response variable,

Over-dispersion

The aver- or under-dispersion of the models, as measured by
the mean deviance of the residual, was found to be closely re-
lated to the number of observations ol the species concerned.
The mean deviance was large for species recorded most often
and was considerably less than one for the least frequently
observed species (Table 5).

For the two species for which the model was refitted using
the estimated dispersion parameter. namely (nomenclature
follows Clancey 1980) Redfaced Cisticola Cisticola ervth-
rops and Croaking Cisticola Cisticola natalensis, it was found
that although the values of the Wald statistic for each variable
were smaller, nevertheless all of the variables selected in the
initial model fitting process remained significanl. The over-
dispersion, therefore, did not appear to make any real differ-
ence to the model fitting process.

Each of the environmental variables entered were significant
for at least some of the species and vegetation type was a sig-
nificant variable for all but four of the 335 species (Table 6).
Variables were denoted as highly significantly associated
when the variable was associated with a change in deviance
which was more than half the change for the combined
model. The combined models were found to account for an
average of 62.6% of the total deviance for passerine and near-
passerines (sensu Maclean 1985: xxiv) and 38.7% for non-
passerines (Table 7).

Models consisting of abiotic (climatic, topographic and geo-
logic) variables only were better (in terms of change in devi-
ance) than the vegetation type models in 321 cases out of 3335.
This indicates that the relative densities of the bird species
vary within vegetation types and that these differences are at
least partially accounted for by the abiotic variables.

Each grid cell had a large residual for a minimum of four
and a maximum of 39 out of 335 of the models (Figure 1). It
is apparent that high residuals occurred least often in the
lowveld, which is the most homogenous of the topographic
regions (Goudie & Price-Williams 1979)., The modelling
process assumes that the explanatory variables are constant
within a grid cell and therefore the models are expected to fit
less well where these variables vary most rapidly.

Cross validation

For the Lazy Cisticola Cisticola aberrans, one grid cell was
found to contribute 84 to the total deviance of 449, with no
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Table 5 Goodness of fit statistics (Cisticola family & selected species)

OB TOT DEY  COMBY%  ABIOTIC % VLGY% PRI-D RESID MUDR GFI Gr2
Fantailed Cisticola’l 452 237 48 48* 35 168 13 1.4 .4
Desert Cislicola 20 120 63* 56 835 d (.3 1.9 1.5
Ayre’s Cislicola 240 571 74 75* 71 294 1.4 23 1.8
Wailing Cisticola 206 663 H B3¥ 70 152 1.1 4.8 |4
Rutling Cisticolu 954 1438 87 g7* 80 238 2.0 6.1 13
Rediaced Cisticola 571 953 33 8% 39 39 55 |3 1.3
Levaitiant’s Cisticola 408 1219 R 33 77 kit N 40 1.3
Croaking Cislicola 332 §25 43 g1 35 R 39 1.4 1.3
Lusy Cisticola 679 1121 74* 72 Hd 494 36 25 1.6
Neddicky 674 PH] 72* [ G i3l 31 3.0 12
Cape Turtle Dove 1327 546 74 T8* 47 190 14 29 1.6
Yellow(ronted Tinkerbarbet 74 378 0 90* 47 197 04 1.9 36
Foresl Weaver [ 404 OR ¥ 98 74 20 0.1 20.2 25

Key:

(3BS — Number of observations f the species

TOTAL DEV - Total deviance

COMBM) — Percentage ol total devianee uccounted for by the combined modet
ABIOTICES) - Percentage ol intal deviance accounted tor by the abiatic model
VIG (%) = Pereentage of total devianee accounted for by the vegetation-types model
PRED RESID = Sum of prediction residuals

MR - Mean deviance of the residual (best modcel)

GFL = (Tetal deviance){(Sum of prediclion residuals)

GF2 — (Sum of prediction residuals)/(Sum of residuals of the full model)

* — Indicates which mode! vielded the best it for each specics

other grid cell points af the Chi-
contributing more Tahle 6 Numbers of species distributions with which each square  distribu-
than 30. This variable is significantly associated. tion (Hosmer &
point was then de- Variable T P n P N L.emeshow 1989)
leted and the anal- Vegetation type 13 23] 0 272 0 was found 10 be
/8 ated. The ing iate

ysis repe ted. Th Geology 124 124 0 06 0 ing pp.roprmte as a
exclusion of the N N , criterion for
grid  cell  was titudy : e 20 8 97 goodness  of  fit
found to make a Raintall 293 9 20 17 48 because the pre-
negligible  differ- Darms 225 147 78 14 ] diction residuals
ence fo the fit of Rivers 164 108 36 1 0 cannot  be  less
the remaining grid Cards 214 76 138 | 2 than the residual

. e othe ianc

cells» For th 91 r Plantations 250 4 166 | " deviance of.the
species, no single < , N i full model, When
grid cell was nireams 281 102 17 : H the total deviance
found to contrib- Latitude 194 19 B3 4 4 of the model was
ute much nore Longitude 292 190 102 32 28 large, these values
than the others to Agricullure 228 168 60 s 0 frequently ex-
the total deviance. Forests 250 " 166 7 2 ceeded the rele-
T icti vant Chi-squared
”,]C prediction Nature reserves 249 83 66 2 {1 squar

residuals  calcu- ) value even though
lated by jack-knif- Altitude range 206 1IR 88 4 4 the models  ac-
ing for some Key counted for high
species  are  in- T: No.of species significantly associated proportions of
cluded in Table S. p: No. of species signilicantly positively assogiated the total dewvi-
(..om.panson of the n: No. of species significantly negatively associaled ance. l}] many
prediction residu- L N . , cases, visual ex-

P: No. of species highly significantly positively assuciated L.
als lo percentage amination of the

N: No. ot species highly signittcantly negatively associated
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Table 7 Goodness of fit data
Summary statistics: Nuon Passerines Passerines and near passerines
MEAN 5D RANGE MEAN SD RANGE
Percentage of variation accounted for by:
Cembined model 587 16.6 592 62.6 17.5 12 98
Abiotic model 5.0 19.2 591 ob.G 18.1 12-9%
Vegetation 335 14.7 0-6h 4740 172 {-85
Gioodness ot DL statistics
G- 1.3 086 0.42 6.26 213 137 0.82-20.20
i 173 131 1.03-12.46 .68 I 82 1.02-26.14
1 51> — Standard deviation
2 GIF1 = (Tmal deviance/sum of prediction residuals)
3 G2 — (Sum of prediction residuals/sum of residuals Tor the [ull model)
aE adE for species where the ratio was close 1o one were examined, it
- - N was observed that where there was o large difference between
iAdhd N the predicted and observed reporting rates, the grid cell was
2675 @ o+ o - often cqntiguous with~ cells whose observed values match§d
/ .! . ole .J! . e .\\ the predlct‘ed value (F-lgure 2d): Th‘c actual fit of the rv'nnc!el in
i = these cases was therefore generally better than the ratio would
¢ - o R R suggest.
@000 .0 B G; This ratio had a value greater than one for 324 out of 333
o+ @ + - i o o A spe.cies and a mean vallle‘0f2.2 for pas.serines and near pas-_
e |- @ +lsle «]0l0! serines (nf_242)_ and .].9 for non passerines (n-93). Light of
1 : © ] the 11 species for which the ratio was less than one were wa-
L‘ ' ¢ ._ ) * I ) : . ’ , ::::;L:‘;:OGPAPIIIC REGICNS ter birds‘ .
\,_,Q oo e IR ) E : .—f N An a@ditif}nal measure oft_he_goodnt:ss nfﬁu_nfthemodels is
ofs @ : ® o o - | . - @ the ratio 01‘. the sum of prediction dcyjar.lce re_5|d'ual.5 Lo the re-
! | « sidual deviance of the full model. This ratio indicates how
\&._! ¢ v+ & much the predicted values differ from the fitted values of the
N @ @e @ - o] ¥ ‘ full model without reference to the obscrved values (Table 5).
B S | et ‘the maps representing predicted and observed distributions
by towaa for four species (Figure 2) illustrate the fact that the models

The size ol the circles is proportional to the number of species mod-
els for which the grid square had a high residual. Minimum= 4/335;
Maximum:=-39/333.

Figure 1 Distribution of high residuals within Swazilund. [nset
shows major topographic regions of Swaziland

predicted and observed distributions suggested that the fit of
the models was in fact cxcellent. On the other hand. when
the total deviance was very small, the prediction residual
was found to be considerably less than the Chi-square value
even when the fit of the predictions did not look particularly
good,

Comparison of the ratio of the total deviance of the full
model to the prediction residuals with the observed similar-
ity of the predicted and observed distribution maps yielded a
more appropriatc measure of goodness of fit. It was ob-
served that the fit always appeared to be good whenever this
ratio exceeded one.

A value of one for this ratio implies that the model fits no
better than a model represeating a constant reporting rate
throughout. However, when the predicted distribution maps

have predicted both the limits of the distributions of the spe-
cies as well as their reporting rates within these limits with
reasonable accuracy.

Discussion

This investigation has shown that logistic regression can be
used lo identify the environmental variables which are signif-
icantly associaled with the geographical distributions of bird
species. This is a stronger result than that of Osborne & ligar
(1992), who showed that species distributions could be re-
lated to latent variables derived from the environmental varia-
bles using principal components.

Comparison of the predicted distribution maps to the ob-
served distributions has established that if bird distribution in-
formation was available for some centres and lacking in the
intervening areas for some region, then the distributions in the
intervening areas could be reasonably accurately predicted.

The success of the modelling process is a justification of the
use of reporting rates as an index of population density be-
cause it is difficult to conceive of an alternative explanation
for the assaciation between reporting rates and the environ-
mental variables.

I'he model selection process used is in contrast to the
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Figure 2a Observed and predicted distributions: Cape Turtle Dove (Goodness of 11t stat: gf1=2.9)
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Figure 2b Observed and predicted distributions: Forest Weaver (Goodness of it stat.: gl1=20.2)
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Figure 2¢ Observed and predicted distributions: Wailing cisticola (Goodness of fit stat.: efl=4.8)
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Figure 2d Observed and predicted distributions: Yellowironted Tinker Barbet {Goodness of tit stal.: glt=1.02}
Note: This predicted distribution does not represent the best fittling model derived for this species { Tuble 3) but was selected to illustrate the fit
of a model for which gfl1=1



S, Afr. ] Zool. 1999, 34(2)

method of Osborne & Tigar (1992} who reduced all the avail-
able variables to the first four principal components. The first
four principal components of the variables do not necessarily
coincide with the components which are most significantly
related to the response variable, as demonstrated for example
by Cuadras (1993}, Moreover, during the model selection
process, the inclusion or exclusion of a single variable was of-
ten observed to make a large difference to the fit of the model.
as reflected in the value of the prediction residual. Noting also
that the models for very few of the species were identical in
respect of the variables included, the principal components
method was considered to be inadequate.

The method used by Osborne & Tigar (1992) of dentifying as
outliers individual points with high residuals was found to be po-
tentially flawed. In this study, it was often found that when the fit
of a model was poor, there were one or two points which ap-
peared to be outliers on the basis of their excessive residuals.
[However, in most of these cases it was possible 1o obtain a better
fitting model by using a different combination of variables, and
in the new madelf the points in question no longer had excessive
residuals. (When the model did not fit, the model was wrong, not
the data.)

More work needs 1o be done on the distribution of the sum
of prediction residuals before a criterion for goodness of fit
can be proposed for general use in logistic regression. How-
ever, for the purposes of this study, the criterion derived here
was found to be consistent with the observed goodness of fitl
and was uvseful in ranking the models and identifying those
for which the fil was relatively poor.

Underdispersion of the models for which the number of ob-
sevations is small was expected because in these cases most
of the values for reporting rates for the grid cells are zero and
consequently the variability is less than that expected for a bi-
nomially distributed variable. On the other hand, overdisper-
sion for models where the number of observations is large is
probably attributable at least in part to the fact that the distri-
butions are partly determined by variables cther than those
which were available for inclusion in the models.

The fact that most of the birds for which the fit was rela-
tively poor were water birds indicates that the models for
these species would probably be improved by the inclusion of
further variables representing the occurrence, nature and ex-
tent of wetlands. The variables used also probably de not ac-
count adequately for the effects of human activities on the
environment. It is possible that the species most affected by
human activities will be among those for which the fit is rela-
tively poor.

One of' the aims of this study was 10 explore methods for coding
environmental variables from maps, and to determine which
method is the most suitable at least for Swaziland. Further stud-
ies in other regions and at different scales may help to cstablish
whether (hese methods are generally applicable.

Temperature could not be included as an explanatory variable
because no data were available at the appropriate scale. As tem-
perature is highly correlated with altitude {Goudie & Price-Wil-
liams 1979), the inclusion of temperature might not make a
significant difference to the models. Moreover. the variables lati-
tude and longitude are expected to act as surrogates (together
with altitude) for temperature. Temperature decreases with lati-
tude (though this cffect is small over the 1.5 degrees of latitude)
and increases with longitude due to the influence of the Indian
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Ocean which lies less than 50 km away to the cast.

The appropriateness of logistic regression in this context is de-
pendent on the assumption of independence of observations of
birds in different grid cells. This assumption would be violated if
the same individual were observed in different grid cells. 1t is be-
lieved that the assumption is reasonable for most small passer-
ines. The assumption might not be valid for some larger, more
mabile species, especially those of the family Accipitridae and
water birds. Use of the regression models also assumes that a
species occurs wherever envirgnmental conditions arc favoura-
ble irrespective of ils occurrence or non occurrence in neighbour-
ing squares. Further research into the impact of these
assumptions is necded.
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