Species identification and antifungal susceptibility pattern of Candida isolates in cases of vulvovaginal candidiasis

Dalia Saad ElFekya,*, Noha Mahmoud Gohara a, Eman Ahmad El-Seidi a, Mona Mahmoud Ezzat a, Somaia Hassan AboElew b

a Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Egypt
b Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Egypt

Received 29 July 2015; accepted 1 October 2015
Available online 23 October 2015

Keywords Vulvovaginal candidiasis; Candida species; Phenotypic methods; PCR-RFLP; Antifungal susceptibility

Abstract Vulvovaginal candidiasis (VVC) remains one of the most common infections of the female genital tract. Correct identification of the isolated Candida species is essential to direct the empirical antifungal therapy. Objectives: This local study was conducted to identify the spectrum of Candida species associated with VVC using different phenotypic and genotypic methods and assess their antifungal susceptibility pattern. Materials and methods: High vaginal swabs were collected from 125 patients presenting with a clinical picture suggestive of VVC. Swabs were subjected to Gram-stain and culture on Sabouraud dextrose agar. Species identification of Candida isolates was done using phenotypic methods including germ tube test, Rice Tween-80 agar, Chrom ID (CAN2) agar and API 20C AUX, while PCR-RFLP was used as the gold standard method. Antifungal susceptibility testing was done using the disk diffusion method. Results: Vaginal swab cultures yielded Candida growth in 63 cases (50.4%). Candida albicans was the predominant isolated species (60.3%) while the most common non-albicans species was Candida glabrata (12.7%). Forty-five (71.4%) and fifty-five (87.3%) Candida isolates were correctly speciated by Rice Tween-80 Agar and API 20C AUX, respectively, while fifty-seven isolates (90.5%) were correctly assigned into the 3 groups of yeasts identified by CAN2 agar. Amphotericin B was more effective than azoles against vaginal Candida isolates. Conclusion: C. albicans is the most common species associated with VVC. API 20C AUX was the most accurate phenotypic method for the proper identification of most Candida species whereas PCR-RFLP could properly confirm Candida species identification genotypically.

© 2015 The Authors. Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.

Peer review under responsibility of Alexandria University Faculty of Medicine.

http://dx.doi.org/10.1016/j.ajme.2015.10.001

2090-5068 © 2015 The Authors. Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vulvovaginal candidiasis (VVC) is a common disorder in women. The majority of cases of VVC are caused by Candida albicans; however, episodes due to non-albicans species of Candida appear to be increasing in immunodeﬁcient as well as healthy women. The most commonly implicated non-albicans species include Candida glabrata, Candida tropicalis, Candida krusei and Candida parapsilosis. Azoles are the treatment of choice for VVC; however, resistance has been reported especially in non-albicans Candida species. Because of the different susceptibility of Candida species to antifungal agents, it is important to identify the causative Candida to the species level correctly; however, conventional methods are time-consuming and may lead to misdiagnosis among closely related species. Therefore, molecular methods may provide a rapid and accurate alternative.

2. Aim of the work

This local study was conducted to identify the spectrum of Candida species associated with VVC using different phenotypic and genotypic methods and assess their antifungal susceptibility pattern.

3. Materials and methods

The study has been approved by the Research and Ethical Committee of Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University. Informed consent was obtained from all individual participants included in the study.

3.1. Specimen collection

High vaginal swabs were collected from 125 married patients in the reproductive age period presenting to the Obstetrics and Gynecology outpatient clinics of Cairo University Hospitals during the period from January through June 2011 with a clinical picture suggestive of VVC. Patients who were non-married, outside the reproductive age period or using any systemic or local antifungal therapy in the previous month were excluded from the study.

3.2. Specimen processing

Vaginal swab specimens were subjected to direct Gram-stained smear examination as well as culture on Sabouraud dextrose agar (SDA) (Oxoid, UK) incubated at 37 °C for 24–48 h. Isolates on SDA were identiﬁed as Candida by colony morphology and Gram staining.

3.3. Phenotypic identiﬁcation of Candida species

Candida isolates were speciated phenotypically by germ tube test (GTT), in addition to Chrom ID Candida Agar (CAN2) (BioMérieux, France) and API 20C AUX (BioMérieux, France), which were performed according to manufacturers’ instructions. The Candida isolates were then stored in glycerol broth at −70 °C for further processing by PCR-restriction fragment length polymorphism (PCR-RFLP).

3.4. Genotypic identiﬁcation of Candida species

Genotypic identiﬁcation by PCR-RFLP was used as the gold standard method for Candida species identiﬁcation in the current study. C. albicans standard strain (ATCC 10231) supplied by Egypt Microbial Culture Collection (EMCC), Faculty of Agriculture, Ain-Shams University, was used as a positive control in both PCR and RFLP.

3.4.1. DNA extraction

DNA extraction was performed using QIAamp DNA Mini kit (Qiagen) proceeded by cell disruption using tissue homogenizer. Briefly, multiple fresh pure colonies of Candida were dissolved in 500 μL sterile distilled water in a sterile 1.5 mL microcentrifuge tube. Then, Candida cells were disrupted using tissue homogenizer (Qiagen) for 3 min followed by centrifugation at 13,000 rpm for 3 min. The sediment was then subjected to DNA extraction using QIAamp DNA Mini kit according to manufacturer’s instructions.

3.4.2. PCR

The ITS-1 and ITS-2 regions of Candida spp. were ampliﬁed using universal primers; ITS-1 (5′-TCC GGT GAA CCT GCG G-3′) and ITS-4 (5′-TCC TCC GCT TAT TGA TAT GC-3′). The ampliﬁcation was performed in Biometra T 3000 Thermal cycler as previously published with modiﬁcations in the concentration of each primer (50 pmol/reaction) and DNA template (5 μL extracted DNA/reaction), in addition to change the annealing temperature (53 °C). Ampliﬁed PCR products were run on 2% agarose gel electrophoresis and visualized by UV transilluminator (BiometraTi 3).

3.4.3. RFLP analysis

1 μL MspI enzyme 5000 units (BioLabs, England) and 2 μL enzyme buffer (NEB buffer 4) were added to 7 μL of each PCR product. Incubation at 37 °C for 16 h was done. Restriction fragments were separated by 3% agarose gel electrophoresis and interpretation was done accordingly as shown in Table 1.

3.5. Antifungal susceptibility testing

The Candida isolates were tested by disk diffusion method using Muller-Hinton agar supplemented with 2% glucose.

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Size of ITS1-ITS4 (bp)</th>
<th>Size of restriction products (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. glabrata</td>
<td>871</td>
<td>557 and 314</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>608</td>
<td>371,155 and 82</td>
</tr>
<tr>
<td>C. albicans</td>
<td>535</td>
<td>297 and 238</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>524</td>
<td>340 and 184</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td>C. krusei</td>
<td>510</td>
<td>261 and 249</td>
</tr>
</tbody>
</table>
and 0.5 μg of methylene blue/mL.19 The agar surface was inoculated by using a swab dipped in a cell suspension adjusted to the turbidity of 0.5 McFarland standard.19 The following antifungal disks were used: fluconazole (25 μg), voriconazole (1 μg), ketoconazole (50 μg), clotrimazole (50 μg), miconazole (50 μg) and amphotericin B (100 μg) (BioRad). Inhibition zones were interpreted using validated CLSI interpretive break points for fluconazole and voriconazole, while for other drugs, the interpretive break points were adopted from published studies (Table 2).6,20,21

3.6. Statistical analysis

Data were statistically described in terms of frequencies and percentages. Comparison between the study groups was done using Chi square (χ²) test. Exact test was used instead when the expected frequency is less than 5. Accuracy was represented using the terms sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy. P-value was considered statistically significant if less than 0.05. All statistical calculations were done using computer program Statistical Package for the Social Science (SPSS; SPSS Inc., Chicago, IL, USA) version 15 for Microsoft Windows.

4. Results

Culture on SDA was the gold standard method for the diagnosis of VVC in the current study.22 Accordingly, out of the 125 symptomatic patients included in the present study, 63 (50.4%) were positive for VVC. Direct Gram-stained smear was positive in only 13.6% of specimens with sensitivity, specificity, PPV and NPV of 26.98%, 95.16%, 85% and 56.19%, respectively.

Considering PCR-RFLP as the gold standard test for *Candida* species identification,13,14 *C. albicans* was the predominant isolated species (38 isolates, 60.3%), followed by *C. glabrata* (8 isolates, 12.7%), *C. krusei* and *C. parapsilosis* (5 isolates for each species, 7.9%), *C. tropicalis* (4 isolates, 6.3%) and lastly, *Candida guilliermondii* (3 isolates, 4.8%). Methods used for species identification in this study were unable to differentiate between *C. albicans* and *Candida dubliniensis*. Sensitivity, specificity, PPV and NPV of the different methods used for speciation of *Candida* isolates are shown in Table 3.

4.1. Colony morphology on SDA

In the current study, it was observed that colony morphology on SDA may help in the identification of *Candida* species (Fig. 1). All *C. albicans* isolates grew as convex dome-shaped pearl-like colonies on SDA. Moreover, 7 of 8 *C. glabrata* isolates (87.5%) produced colonies with dark center and light periphery. All *C. krusei* isolates grew as irregular colonies with mycelial fringe. Three isolates of the 4 *C. tropicalis* (75%) produced umbilicated colonies. However, *C. parapsilosis* and *C. guilliermondii* had no specific colony morphology.

4.2. Germ tube test (GTT)

GTT was positive in 38 isolates; however, only 33 of them were identified as *C. albicans* by PCR-RFLP.

4.3. Subculture on Rice-Tween-80 agar

Microscopic appearance of the different *Candida* species isolated in this study on Rice-Tween-80 agar was interpreted according to earlier studies.23 Forty-five (71.4%) of the 63 *Candida* species isolates were correctly identified by Rice Tween-80 Agar.

4.4. Chrom ID Candida agar (CAN2)

This chromogenic medium can differentiate between 3 groups of *Candida*. The first group includes *C. albicans*; the second

Table 2 Interpretive break points of different antifungal drugs.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Susceptible (mm)</th>
<th>Susceptible dose dependent (SDD)</th>
<th>Resistant (mm)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole (25 μg)</td>
<td>≥ 19</td>
<td>15-18 mm</td>
<td>≤ 14</td>
<td>19,21</td>
</tr>
<tr>
<td>Voriconazole (1 μg)</td>
<td>≥ 17</td>
<td>14-16 mm</td>
<td>≤ 13</td>
<td>6,19</td>
</tr>
<tr>
<td>Ketoconazole (50 μg)</td>
<td>> 20</td>
<td>10-20 mm</td>
<td>< 10</td>
<td>6</td>
</tr>
<tr>
<td>Miconazole (50 μg)</td>
<td>> 20</td>
<td>10-20 mm</td>
<td>< 10</td>
<td>6</td>
</tr>
<tr>
<td>Clotrimazole (50 μg)</td>
<td>> 20</td>
<td>12-19 mm</td>
<td>≤ 10</td>
<td>20</td>
</tr>
<tr>
<td>Amphotericin B (100 μg)</td>
<td>> 10</td>
<td>–</td>
<td>≤ 10</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3 Comparison between the sensitivity, specificity, PPV and NPV of the different methods used in the study for *Candida* species identification using RFLP as the gold standard.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony morphology on SDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>100</td>
<td>88</td>
<td>92.7</td>
<td>100</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>87.5</td>
<td>100</td>
<td>100</td>
<td>98.2</td>
</tr>
<tr>
<td>C. krusei</td>
<td>100</td>
<td>94.8</td>
<td>62.5</td>
<td>100</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>75</td>
<td>84.8</td>
<td>25</td>
<td>98</td>
</tr>
<tr>
<td>Germ tube test*</td>
<td>86.8</td>
<td>80</td>
<td>86.8</td>
<td>80</td>
</tr>
<tr>
<td>Rice-Tween-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>94.7</td>
<td>72</td>
<td>83.7</td>
<td>90</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>62.5</td>
<td>96.4</td>
<td>71.4</td>
<td>94.6</td>
</tr>
<tr>
<td>C. krusei</td>
<td>20</td>
<td>96.6</td>
<td>33.3</td>
<td>93.3</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>50</td>
<td>91.5</td>
<td>28.6</td>
<td>96.4</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>93.6</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>0</td>
<td>98.3</td>
<td>0</td>
<td>95.2</td>
</tr>
<tr>
<td>API 20C AUX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>89.5</td>
<td>96</td>
<td>97.1</td>
<td>85.7</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>62.5</td>
<td>100</td>
<td>100</td>
<td>94.8</td>
</tr>
<tr>
<td>C. krusei</td>
<td>100</td>
<td>96.6</td>
<td>71.4</td>
<td>100</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>100</td>
<td>93.2</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>66.7</td>
<td>98.3</td>
<td>66.7</td>
<td>98.3</td>
</tr>
</tbody>
</table>

a For *C. albicans* and *C. dubliniensis.*
includes C. tropicalis, Candida lusitaniae and Candida kefyr, while the third includes the rest of Candida species. Fifty-seven (90.5%) of the Candida isolates in this study were correctly assigned into 3 groups by CAN2 agar.

4.5. API 20C AUX

Fifty-five (87.3%) of the 63 Candida isolates were correctly identified to the species level by API 20C AUX.

4.6. PCR-RFLP

Discrete bands of 510–870 bp were obtained from amplification of the ITS-1 and ITS-2 regions of all isolated Candida species using the universal primers; IST-1 and IST-4. However, as previously published,17 only bands of C. glabrata (871 bp) and C. guilliermondii (610 bp) could be distinguished from bands of other species which were difficult to be differentiated from each other (510–535 bp) (Fig. 2). Thus, while PCR was sufficient for the identification of C. glabrata and C. guilliermondii, the RFLP technique using the restriction enzyme Msp I was used for the identification of additional four Candida species: C. albicans, C. tropicalis, C. krusei, and C. parapsilosis (Fig. 3a and b). There is no recognition site for this enzyme within ITS region of C. parapsilosis; therefore, the same band (520 bp) was obtained before and after digestion with Msp I enzyme. Repeated testing of the isolates was found to yield consistent results.

4.7. Antifungal susceptibility testing (Table 4)

The most effective antifungal agent used in this study was amphotericin B, where 62 isolates (98.4%) all except for one C. parapsilosis isolate were sensitive to it, followed by ketoconazole (54 sensitive isolates, 85.7%), voriconazole (52 sensitive isolates, 82.5%), fluconazole (49 sensitive isolates, 77.8%), clotrimazole (39 sensitive isolates, 61.9%) and finally miconazole (32 sensitive isolates, 50.8%). No resistance was detected for ketoconazole, clotrimazole and miconazole, while 7 isolates (11.1%) were resistant to fluconazole, 5 isolates (7.9%) were resistant to voriconazole and 1 isolate (1.6%) was resistant to amphotericin B. Susceptible dose dependent (SDD) isolates were detected for miconazole (31 isolates, 49.2%), clotrimazole (24 isolates, 38.1%), ketoconazole (9 isolates, 14.3%), fluconazole (7 isolates, 11.1%) and voriconazole (6 isolates, 9.5%).

4.8. PCR products before digestion with restriction enzyme Msp I

Figure 2 PCR products before digestion with restriction enzyme Msp I. Lanes (1, 2): C. tropicalis (band at 524), Lane (3): C. albicans (band at 535), Lane (4): C. glabrata (band at 871), Lane (5): C. parapsilosis (band at 520), Lane (6): C. krusei (band at 510), Lane (7): C. guilliermondii (band at 608) and Lane (M): 50 bp DNA ladder.

5. Discussion

The current local study was designed to identify the spectrum of Candida species associated with VVC in a group of 125 patients presenting with vaginal discharge and to assess their antifungal susceptibility pattern. Rate of prevalence of VVC was 50.4% among the studied group. Microscopic examination was not adequate for the diagnosis of VVC in the current study, with a poor sensitivity (26%) but excellent specificity (95.16%). Therefore, as previously reported, a negative smear result does not rule out the presence of disease.24

Precise identification of Candida at the species level is essential because of emergence of new pathogen species and because of the different antifungal susceptibility profiles.7,25,26 PCR-RFLP was used in the current study as the gold standard method for Candida species identification.13,14 C. albicans was the most common isolated species (60.3%), whereas the overall prevalence of non-albicans species was 39.7%. Earlier report from Egypt27 has recorded higher rate of C. albicans in VVC (86.6%), while rates of 59%, 65.95% and 73.9% were reported from Saudi Arabia,28 Yemen29 and Kuwait,30 respectively. Worldwide, rates of the isolation of C. albicans in cases of VVC ranged between 47% and 89% in studies from Nicaragua31, Australia,32,33 Turkey,34 Iran,35 Nigeria36,37 and India.38 In these studies, there was an increasing rate of non-albicans species in the more recent studies even in the same country, which possibly could be attributed to a wide spread resistance, inappropriate use of antifungal medications, long term treatments and the use of over-the-counter antimycotics.39–41 Similar to the current study, C. glabrata was the.
second most common isolate in cases of VVC in studies from Saudi Arabia (31%), 28 Turkey (34.5%), 34 and Australia (20%). 23 Studies have reported rates of isolation of other species were 0.6% for C. kefyr (20%).

In VVC ranged from 4% to 26.4% 27,31,38 while rates of isolation of C. Krusei ranged from 3% to 15.7%. 28,31,34,38 Reported rates of C. dubliniensis ranged from 0.17% to 29.52%. 2,38

While it has been reported that colonies of different yeast species on SDA cannot easily be distinguished from each other, 42 however, in the current study, colony morphology on SDA was found to be helpful in the identification of Candida species.

Traditionally, the preliminary identification of C. albicans was made through the use of the GTT. 43 However, this test gives also positive results in case of C. dubliniensis. 44 Consistent with our GTT results, some studies 45,46 reported similar sensitivity rates but with 100% specificity. Other studies 47 reported lower sensitivity and specificity rates (79.3% and 69.2%, respectively), or higher rates ranging from 92 to 98.8% and 99 to 100%, respectively. 23,27,48,49 Limitations of this test include misinterpretation of elongated blastoconidia as germ tube, absence of germ tube production in some strains of C. albicans, and health hazards of handling pooled sera. 10,49,50

Morphological media as Rice agar-Tween 80 were used for the differentiation of Candida species on the basis of mycelial characteristics, size and shape of pseudohyphae and the arrangement of blastoconidia along pseudohyphae. 51 In the current study, 71.4% of Candida species were correctly identified by Rice Tween-80 Agar. However its sensitivity for C. guilliermondii, C. krusei and C. parapsilosis was very poor (0%, 20% and 20%, respectively). Contrary to our results, other investigators 52,53 reported that morphology on morphologic media was sufficient to make a final identification.

Chromogenic culture media are very useful for the diagnosis of Candida 54 but their main limitation is the low discrimination power among Candida species. 35 In this study, 90.5% of Candida isolates were correctly assigned into the three groups of yeasts identified by CAN2 agar. However, this medium was actually useful for the identification of C. albicans with excellent sensitivity and specificity, while it showed lower sensitivity but excellent specificity for C. tropicalis (neither C. kefyr nor C. lusitaniae were isolated in this study). The other Candida species cannot be differentiated from each other by this medium. Our results were in accordance with other studies. 56,57

The most convenient and popular methods for Candida species identification consist of commercially available strips for carbohydrate assimilation and/or enzyme detection. 56 In the present work, 87.3% of the Candida isolates were correctly identified to the species level by API 20C AUX. Other studies 58-61 have reported almost similar results.

In addition, these techniques rely on phenotypic expression that makes them potentially unreliable due to documented phenotypic switching of Candida species. 63,64 Consequently,
genotype-based approaches may be preferable for *Candida* species identification. Currently, PCR-RFLP is the most commonly used method for identification of *Candida* species. Other molecular methods that have been developed for rapid diagnosis of Candida species include random amplified polymorphic DNA (RAPD), DNA sequence analysis and real-time PCR. However, these methods are expensive and need skilled workers.

As previously reported, the PCR-RFLP assay used in this study enables the identification of six medically important *Candida* species which represent up to 95% of *Candida* infection. In addition, some investigators have reported that *C. kefyr* and *C. famata* (which were not isolated in the current study) can also be identified using the same protocol used in this study by the size of their PCR products. However, additional enzymes are still needed for the differentiation of *C. albicans* and *C. dubliniensis* as both species have similar RFLP profiles when using *Msp I*.

Several studies have used the PCR-RFLP method for the identification of *Candida* species using the same single restriction enzyme (*Msp I*) used in the current study or a different restriction enzyme (*Hae III*). However, the later enzyme had a lower discrimination power. Other studies have used combination of *Msp I* and *Bln I* enzymes which enabled the additional differentiation between *C. albicans* and *C. dubliniensis*, while others reported that the combination of *Hae III*, *Dae I* and *Bfa I* restriction enzymes enabled the additional identification of *C. stellatoidea*.

In the current study, in-vitro susceptibility was performed by the disk diffusion method. Several studies have similarly reported that amphotericin B was the most effective drug against vaginal *Candida* isolates. Although some studies have reported that ketoconazole was the most effective azole, as the case in our study, however, since July 2013, the U.S. Food and Drug Administration (FDA) cleared that ketoconazole oral tablets can cause severe liver injuries, adrenal gland problems and harmful drug interactions with other medications and should not be a first-line treatment for any fungal infection. However, the topical formulations of the drug have not been associated with such side effects.

In accordance with our results, similar rates of fluconazole resistance were reported in studies from Egypt and Taiwan. Higher resistance rates were reported in studies from Brazil (32%) and India (16%) for *C. albicans*; while no fluconazole resistance or a very low level of resistance (0.6%) among *C. albicans* isolates was reported in other studies from Australia and Kuwait, respectively. It has been noted that no resistance to fluconazole was reported among *Candida* vaginal isolates in earlier studies conducted in several countries such as US, Italy, Brazil and England. As *C. dubliniensis* more easily develops fluconazole resistance than *C. albicans*, the high azole resistance rate detected for *C. albicans* in this study might be due to undifferentiating *C. albicans* and *C. dubliniensis*. In addition, some investigators have reported a high resistance rate for fluconazole (32%) by disk diffusion method, while no resistance to the drug was detected by the standard microdilution method. Although *C. krusei* is intrinsically resistant to fluconazole, only 40% of the isolates in this study were found to be resistant and *Candida* species exhibited a considerable azole cross-resistance as previously reported. Therefore, the azole resistance rate reported in this study warrants further investigation to reassess the usefulness of fluconazole as the most common drug used for the treatment of VVC.

6. Conclusion

C. albicans was the predominant isolated species (60.3%) while the most common non-albicans species was *C. glabrata* (12.7%). API 20C AUX was an accurate phenotypic method for *Candida* species identification, while Chrom ID Candida agar was an effective method for presumptive identification of *C. albicans*. The PCR-RFLP analysis was relatively simple to perform, rapid and highly valuable; however, its direct use on clinical samples has to be evaluated in further studies for more rapid diagnosis. *Candida* antifungal susceptibility testing is recommended to avoid treatment failures.

Limitations of the study include the lack of differentiation of *C. albicans* and the closely related species *C. dubliniensis* and the use of PCR-RFLP for the identification of clinical *Candida* isolates rather than using it directly on clinical specimens.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This study was funded partly by Faculty of Medicine, Cairo University and partly by the authors.

“All procedures performed in the study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

References

Species identification and antifungal susceptibility pattern

