Transcranial Doppler study in patients with cluster headache

Soleiman A.M. Tahoon, Mohamed M. Hamdy *, Horeya M.O. Saad Allah, Muhammad E.A. El-Bassiouny

Neuropsychiatry Department, Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt

Received 18 November 2012; accepted 17 January 2013
Available online 11 March 2013

Abstract Background: Hemodynamic changes occur in the cerebral blood flow during cluster headache.
Objective: The aim of the present work was to study the middle cerebral artery blood flow velocities and vasoreactivity in cluster headache patients as baseline values and after administration of 100% oxygen during the cluster period.
Materials and methods: Three groups were studied. The 1st consisted of 12 patients with cluster headache, the 2nd consisted of 12 patients with unilateral migraine, and the 3rd one was healthy controls. The three groups had baseline velocity measurement of the MCA bilaterally by transcranial Doppler at standard conditions and after inhalation of 100% O2. Then breath-holding was allowed to calculate the breath holding index.
Results: The breath holding index following administration of oxygen (BHI-O2) was higher in the cluster group compared to the migraine group and the difference was statistically significant ($t = 2.811$ when $P = 0.010$). There was a statistically significant inverse correlation between the severity of the cluster attacks and the breath holding index ($r = 0.750$ when $P = 0.005$).
Conclusion: Cerebral vessels are more reactive to stimuli after O2 inhalation in patients with cluster headache. Cerebrovascular reactivity may be one of the future predictors of good response to O2 therapy in patients with cluster headache.

* Corresponding author. Present/permanent address: Hadara University Hospital, Neuropsychiatry Department, Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt. Tel.: +20 01223980772.
E-mail address: hamdyeg@gmail.com (M.M. Hamdy).
Peer review under responsibility of Alexandria University Faculty of Medicine.

© 2013 Production and hosting by Elsevier B.V. on behalf of Alexandria University Faculty of Medicine.

1. Introduction

Hemodynamic changes in cluster headache (CH) have received less attention compared with the entity of signs/symptoms of the disease. Administration of oxygen during the CH attack has been demonstrated to reduce/interrupt the pain in 70% of the patients. Few studies have focused on cerebral blood flow (CBF) during the different phases of CH (active/remission), and the effect of oxygen therapy on it.

Recently, transcranial Doppler (TCD) monitoring of cerebral blood velocity (CBV) at the middle cerebral artery...
(MCA) level has been found to be a very useful method to investigate the intracerebral vascular changes, which may have a role in CH pathogenesis.3,4

2. Aim of the work

The aim of the present work was to measure middle cerebral artery blood flow velocities and vasoreactivity in cluster headache patients during the cluster period and following administration of 100% oxygen.

3. Patients

This study was conducted on 24 patients presented to the neurology department at El-Hadara University Hospital with cluster and migraine headaches and 12 healthy controls as follows:

- **Study group**: 12 patients complaining of cluster headache during the cluster period.
- **Control groups**:
 - Patient control group: 12 patients complaining of unilateral migraine without aura.
 - Healthy control group: 12-age matched-healthy volunteers.

Diagnostic criteria of cluster headache and migraine according to the International Headache Society (IHS) were applied for inclusion of the patients3,4:

Exclusion criteria:

- Patients with prior history of stroke.
- Patients on vasoactive drugs.
- Patients recently received acetazolamide.
- Patients with hematocrit < 33 or > 47%.
- Patients with mean arterial blood pressure > 150 or < 50 mmHg.

Both patient groups had not received abortive or prophylactic medications for at least 24 h prior to the examination.

4. Methods

4.1. All patients were subjected to the following:

1. Questionnaire for analysis of headache5 and headache pain severity scale.6
2. Thorough medical and neurological examination.
3. Laboratory investigations when needed.
4. Neuroimaging (CT brain or MRI brain) when needed.

5. Transcranial Doppler examination: recording was performed in a quiet comfortable place. A 2-MHz pulsed Doppler ultrasound system (Multidop P, DWL Elektronische System GmbH, Sipplingen, Germany) was used to measure the following parameters:

- Peak systolic velocity (PSV)
- Mean velocity (MV)
- End diastolic velocity (EDV)
- The breath holding index (BHI) was calculated as percent increase in MCA mean blood velocity recorded by breath holding divided by seconds of breath holding. ([Vbh − Vr/Vr] × 100/S) where Vbh is MCA mean blood velocity at the end of breath holding, Vr is MCA mean blood velocity at rest and S is the time in seconds of breath holding.7

The transcranial Doppler studies were done twice for each person; one as a baseline and the other after 5 min of 100% O2 inhalation at a flow rate of 10 liters per minute.

4.2. Statistics

Student’s t test, one way ANOVA, Pearson correlation test and Chi square test were done using SPSS package version 13.

5. Results

5.1. Demographic data

- The cluster group consisted of 12 patients; all were males (100%).
- The migraine group consisted of 12 patients; eight were females (66.67%).
- The control group consisted of 12 healthy volunteers; there were seven males (58.33%).

5.2. Comparing flow velocity changes after O2 administration

On comparing the cluster group to the migraine group after oxygen inhalation; MCA mean flow velocity in the cluster headache group was lower (44.58 ± 8.83 SD cm/s) compared to the migraine group (53.67 ± 6.01 SD cm/s), and this difference was statistically significant (Table 1).

5.3. Comparing BHI after O2 administration

On comparing the breath holding index following oxygen inhalation; (BHI-O2) was significantly higher in the cluster group than in either the migraine group, (mean 0.91 ± 0.19

<table>
<thead>
<tr>
<th>Mean velocity of MCA on the symptomatic side</th>
<th>Cluster headache</th>
<th>Migraine</th>
<th>Healthy control</th>
<th>F (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>72.08 ± 10.41</td>
<td>73.42 ± 5.16</td>
<td>70.75 ± 6.55</td>
<td>0.319 (0.729)</td>
</tr>
<tr>
<td>(t = 0.332 (when p = 0.743))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After O2 inhalation</td>
<td>44.58 ± 8.83</td>
<td>53.67 ± 6.01</td>
<td>62.61 ± 5.84</td>
<td>23.94 (0.001)</td>
</tr>
<tr>
<td>T 2701 = (when p = (0.001))^</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Statistically significant.
In recent years, TCD has been applied to studies of the pathophysiology of migraine, cluster headache, and tension-type headache, using TCD were studying the migraine headache, they showed variability, some studies found a normal cerebrovascular reactivity considering the cluster headache patients.

Most of the studies were in accordance with the findings of the present study, they have shown an increase in the cerebrovascular reactivity in the symptomatic side, compared to the non-symptomatic side, which goes with the vascular theory of the cluster headache.

On comparing the breath holding index following administration of oxygen (BHI-O2) it was higher in the cluster headache group which showed a statistical significance. But, they found that this difference disappeared 30 min after the headache phase. This study used voluntary hyperventilation rather than the breath-holding technique. They insolated the anterior cerebral artery. However, to the best of our knowledge, no study compared between the vasomotor reactivity before and after O2 administration.

Also, to the best of our knowledge, there was no study found correlating the severity of the attack with the vasoreactivity considering the cluster headache patients.

The cluster patients showed significantly lower mean flow velocity compared to the migraine group after oxygen inhalation following breath holding. The breath holding index following oxygen inhalation is significantly higher in the cluster patients compared to the migraine patients.

There was a statistically significant inverse correlation between the severity of the cluster attacks and the breath holding index.

8. Recommendations

More studies should be conducted to give a more clear explanation to the pathophysiology of the cluster headache.

More studies should be conducted to correlate the cerebral vasoreactivity after oxygen inhalation and the abortive effect of oxytherapy to the cluster attack.

References

Table 2 Comparison between the breath-holding indexes of the three groups before and after oxygen inhalation.

<table>
<thead>
<tr>
<th>BHI</th>
<th>Cluster headache</th>
<th>Migraine</th>
<th>Healthy control</th>
<th>F (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.86 ± 0.13</td>
<td>0.79 ± 0.13</td>
<td>0.75 ± 6.55</td>
<td>0.453 (0.640)</td>
</tr>
<tr>
<td>t = 0.332 (when p = 0.743)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After O₂ inhalation</td>
<td>0.91 ± 0.19</td>
<td>0.68 ± 0.20</td>
<td>0.62 ± 0.09</td>
<td>10.47 (0.001)*</td>
</tr>
<tr>
<td>t = 2.811 (when p = 0.010)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Statistically significant.