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Abstract Secondary damage after acute spinal cord compression injury (SCCI) exacerbates initial

insult. Nuclear factor kappa-B (NF-jB)-p65 activation is involved in SCCI deleterious effects.

Agmatine (Agm) showed neuroprotection against various CNS injuries. However, Agm impact

on NF-jB signaling in acute SCCI remains to be investigated. The present study compared the

effectiveness of Agm therapy and decompression laminectomy (DL) in functional recovery, oxida-

tive stress, inflammatory and apoptotic responses, and modulation of NF-jB activation in acute

SCCI rat model. Rats were either sham-operated or subjected to SCCI at T8–9, using 2-Fr. catheter.

SCCI rats were randomly treated with DL at T8–9, intraperitoneal Agm (100 mg/kg/day), com-

bined (DL/Agm) treatment or saline (n= 16/group). After 28-days of neurological follow-up,

spinal cords were either subjected to biochemical measurement of oxidative stress and inflammatory

markers or histopathology and immuno-histochemistry for NF-jB-p65 and caspase-3 expression

(n= 8/group). Agm was comparable to DL in facilitating neurological functions recovery, reducing

inflammation (TNF-a/interleukin-6), and apoptosis. Agm was distinctive in combating oxidative

stress. Agm neuroprotective effects were paralleled with inhibition of NF-jB-p65 nuclear
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translocation. Combined pharmacological and surgical interventions were proved superior in func-

tional recovery. In conclusion, present research suggested a new mechanism for Agm neuroprotec-

tion in rats SCCI through inhibition of NF-jB activation.

� 2015 The Authors. Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Acute spinal cord injury (SCI) frequently causes permanent

motor and sensory loss below the site of injury, and disruption
of the voluntary control of voiding.1 Presently, few treatments
for SCI are available; however, they do not provide satisfac-
tory neuroprotective effect and/or significant functional

improvement.2

The pathophysiology of acute SCI comprises primary
immediate irreversible mechanical injury to the cord which is

amplified by secondary damages induced by a variety of mech-
anisms including hypoxia, vascular insult, glutamate excitotox-
icity, mitochondrial dysfunction, oxidative stress,

inflammation, and cell death. Secondary injury takes place
over days or even weeks. Indeed, most studies are aiming for
modifying or preventing secondary injuries.3

Activation of nuclear factor kappa B (NF-jB) is a hallmark
of central nervous system (CNS) pathologies.4 NF-jB consists
of five subunits (RelA [also called p65], RelB, c-Rel, p105/50,
and p100/52). In un-stimulated cells, Rel/NFjB proteins are

sequestered in the cytoplasm and bound with specific inhibitor
proteins called IjBs that render them inactive.5,6 Tumor necro-
sis factor-a (TNF-a) and oxidative stress are activators of neu-

ronal NF-jB signaling.7,8 Once stimulated, degradation of
IjBs allows translocation of Rel/NF-jB to the nucleus and
expression of target genes.9 NF-jB may promote either protec-

tive or detrimental effects on CNS recovery, depending on
which subunit is activated. Activation of the transcriptional
activator subunit p65, promotes inflammatory and apoptotic
genes expression. By contrast, p50 acts as a transcriptional

repressor, while c-Rel is an antiapoptotic genes’ activator.4,10

Interference with the NF-jB pathway might hold clinical
potentials to improve functional restoration following trau-

matic CNS injury.4

Agmatine (Agm), [4-(aminobutyl)-guanidine-NH2-CH2-C
H2-CH2-CH2-NHAC(ANH2)(‚NH)], is an endogenous

neurotransmitter–neuromodulator stored in the synaptic vesicles
of the brain and spinal cord.11,12 Exogenous Agm administra-
tion showed neuroprotective effects in various experimental

models of neurological disorders,13–17 with multiple molecular
targets proposed including N-methyl-D-aspartate (NMDA)
receptors,15,16 a2-adrenergic receptors,

18 imidazoline receptors,19

inducible nitric oxide synthase (iNOS) and cAMP

pathway.12 Although Agm attenuated neuronal loss and
reduced pain following SCI,20 the precise cellular mechanisms
by which Agm acts in SCI are not yet well established. Few

studies have addressed the impact of Agm on NF-jB signaling
in the nervous system; however, controversial results were
observed.21–23

In the present study, we explored modulation of NF-jB
activity by Agm in an spinal cord compression injury
(SCCI) rat model, and investigated whether combined
pharmacological and surgical managements would be more
advantageous than providing each one individually.

2. Materials and methods

2.1. Experimental animals

Adult female Wistar rats weighing 250–300 g were used
(procured from Animal Experimental Center of Alexandria

University). Female animals were preferred since complete
manual bladder evacuation in male rats is difficult.24 Animals
were maintained at room temperature (25 ± 2 �C) under stan-
dard conditions of light–dark cycle with free access to rat chow
and water. Rats were allowed to acclimatize for one week prior
to experimentation. All animals received care according to

national animal care guidelines which are in compliance with
‘‘Guide for the Care and Use of Laboratory Animals (1996, 95
National Academy Press)” and the protocol was approved
by the Faculty of Medicine, Alexandria University Ethics

Committee.

2.2. Experimental groups

Rats were assigned to 5 experimental groups (16 rats each) as
follows: spinal cord compression injury (SCCI) group,
SCCI followed by decompression laminectomy at T8–9

(SCCI + DL), SCCI treated by Agm (SCCI + Agm), SCCI
followed by decompression laminectomy at T8–9 and Agm
treatment (SCCI + DL+ Agm), and control (sham-operated)

group.

2.3. Surgical procedure: induction of spinal cord compression
injury (SCCI)

As previously described,25 rats were anesthetized with
intraperitoneal (i.p.) injection of Ketamine and Xylazine
(100 mg/kg and 10 mg/kg, respectively). After midline incision

over L1–T10 spinous processes, a 2-French Fogarty catheter
(Edwards Lifesciences) was inserted into the epidural space
through a bur hole (laminotomy) drilled in the posterior arch

of the T10 vertebra. The catheter was advanced cranially until
the center of the balloon was resting on T8–9 spinal level and
then inflated with 15 ll water using a Hamilton syringe. The
inflated balloon was left in place for 5 min. Then, the catheter

was deflated and removed. Careful attention was paid not to
damage the dura mater. Soft tissues and skin were sutured in
anatomical layers. Animals in control (sham-operated) group

underwent the same surgical procedure except for balloon
insertion and inflation. For rats subjected to decompressive
laminectomy (DL), laminae opposite to injury site (T8 and

T9) were removed after performing SCCI. Immediately

http://creativecommons.org/licenses/by-nc-nd/4.0/
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following surgery, rats were placed on water heating pads.
When recovered from anesthesia, rats were housed in pairs
and given free access to food and water.

After surgery, rats were injected with ampicillin (20 mg/kg
for 1 week, i.m.) for prophylaxis against urinary tract infec-
tions, and with meloxicam (1 mg/kg for 3 days, s.c.) for anal-

gesia. Rats received 5-ml bolus of lactated ringers (s.c.)
immediately after urine collection at 7AM, for proper hydra-
tion. After SCCI, rats were monitored daily for general health

and mobility. Manual bladder compression was performed
twice daily until normal autonomic bladder voiding was
regained.

2.4. Drugs and reagents

For Agm and combined treated groups, Agmatine sulfate
(Sigma–Aldrich, St. Louis, USA) was freshly prepared on each

day and administrated i.p. in a dose 100 mg/kg/day in normal
saline.13 Other groups received daily i.p. saline in equivalent
volumes. Treatments started half an hour after SCCI and con-

tinued for 28 days. Rats died before completion of experiment
was replaced by others.

2.5. Neurological assessment of motor function

Gross and skilled motor testing was performed before surgery,
one day post-surgery, and weekly thereafter for 28 days.

2.5.1. Hindlimb locomotor activities (BBB open field rating
scale)

The hindlimb gross locomotion was assessed using the Basso,

Beattie, and Bresnahan locomotor rating scale (BBB).26 Rats
were placed in an open field (80 � 130 � 30 cm), monitored
by 2 digital cameras, and observed individually for 4 min
by 2 examiners, who were kept blind to treatment groups.

Briefly, the BBB is a 21-point scale ranges from complete
paralysis (score 0) to normal locomotion, balance and coordi-
nation (score 21), by assessing hindlimb joint movements,

stepping, trunk position and stability, forelimb–hindlimb
coordination, paw placement, toe clearance, and tail position.
To control for possible asymmetric injuries, left and right

hindlimbs were scored individually and the average score
for each individual rat was reported. Before surgery, rats
were tested to ensure that a maximum score of 21 was consis-

tently obtained.

2.5.2. Grid walk test

This test assesses skilled walking with a focus on forelimb-

hindlimb coordination. In this test, the animals had to walk
on a 1.3 m-long horizontal runway of 40 metal grid rods
(3 mm diameter) elevated 30 cm from the ground, for a total
of three trials. To prevent habituation to a fixed rod distance,

the rods were placed irregularly (1–4 cm spaced). Hindfoot
placements were scored on 30 of the rods, counting the total
number of errors in foot placing. Rats were trained on the grid

walk prior to baseline testing one day before surgery. Normal
rats place hindlimbs on alternate bars, so scoring 30 bars yields
15 steps/hindlimb for a total of 30 placements without errors.

Rats that could not step with their hindlimbs received scores of
30.24
2.5.3. Assessment of bladder function

Following SCCI, defective autonomic functions are reflected

by an inability to completely evacuate the bladder. The
amount of retained urine in the bladder is a measure of this
deficit. To assess residual urine volume, bladders were emptied

by manual massage on the lower abdomen twice a day at
morning and evening until 14 days post-injury. The expressed
urine volume was measured in ml/day.24 The percentage of rats

that regained bladder control by the end of 14 days was also
calculated.

2.6. Spinal cord tissue sampling and assessment

Four weeks following surgery, rats were euthanized after per-
forming the last motor testing. Then, rats were randomly sub-
jected to either biochemical estimations (n = 8/group), or

histological and immunohistochemical examination of the
spinal cord (n = 8/group).

2.6.1. Biochemical assessment of spinal cord tissue inflammatory
cytokines and oxidative stress

The injured segment of spinal cord was rapidly excised and
homogenized in phosphate buffered saline (PBS, pH = 7.4) at

4 �C containing protease inhibitor cocktail to prevent auto-
oxidation of spinal cord tissues. The homogenates were then
centrifuged at 3000 rpm for 15 min, and aliquots of supernatant

were stored at -80 �Cfor biochemical estimations. The inflamma-
tory cytokines, IL-6 and TNF-a, tissue levels were determined
using ELISA kits (WKEA MED Supplies, NY, USA), accord-

ing to the manufacturers’ instructions. The amount of protein
in each sample was measured as described by Lowry et al.27

The SC tissue total antioxidant capacity (TAC) was deter-
mined by the reaction of antioxidants in the sample with a

defined amount of exogenously provided hydrogen peroxide
(H2O2) (EGY TECH). The antioxidants in the sample elimi-
nated a certain amount of the provided H2O2. The residual

H2O2 was determined colorimetrically by an enzyme reaction
which evolves the conversion of 3,5,dichloro-2-hydroxy benz-
sulphonate to a colored product.28 Values were expressed as

mmol/l. In addition, Malondialdehyde (MDA) was measured
using commercial colorimetric kits (Biodiagnostic, Egypt),
according to the manufacturer’s instructions, as a biochemical
marker for lipid peroxidation. Values were expressed as nmol/

g tissue.

2.6.2. Histopathological examination of spinal cord tissue

sections

For animals undergoing histopathological processing, rats
were intracardially perfused with physiological saline, followed
by 4% paraformaldehyde in PBS. The vertebral column was

removed and the spinal cord was left in bone overnight in
10% formalin. Three cross sections were sampled from the
spinal cord, at the site of injury, rostral and caudal to it. Sec-

tions biopsied were embedded in paraffin for tissue sectioning.
Alternating 3–5 lm sections were stained with hematoxylin
and eosin (H&E) for histopathological analysis. The segments

of each spinal cord tissue were evaluated by a histopathologist
in a blinded fashion. The histopathological changes evaluated
were neuronal nuclear pyknosis or loss associated with

dark eosinophilic or basophilic staining of the cytoplasm,
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congestion, edema, infarction as well as neutrophilic infiltra-
tion of the gray matter parenchyma. Damaged neurons were
counted and scored on a 6-point scale: (0), no lesion observed;

(1), gray matter contained 1 to <5 dead neurons; (2), gray
matter contained 5–10 dead neurons; (3), gray matter con-
tained more than 10 dead neurons; (4), small infarction (less

than one third of the gray matter area); (5), moderate infarc-
tion (one third to one-half of the gray matter area); (6), large
infarction (more than half of the gray matter area).29 The

scores of all the sections from each spinal cord were averaged
to give a final score for each individual rat.

2.6.3. Immunohistochemical expression of NF-jB p65 and

caspase-3 proteins in the spinal cord

To investigate the expression of activated NF-jB and Caspase-
3 after SCCI, sections 3–5 lm thick from each spinal cord were

cut on coated slides. The immunostaining procedure was done
following the streptavidin–biotin-immunoenzymatic antigen
detection method, performed according to the manufacturer’s
protocol. The primary antibodies (NF-jB-p65 subunit Rabbit

Polyclonal Antibody, Cat. #RB-9034-R7 and Caspase-3 Cat.
#RB-1197) as well as the detection system kit (UltraVision
detection system) were purchased from Lab Vision Corpora-

tion (Neo Markers, Fremont, USA). Negative controls (where
the primary antibody has been omitted) were included in all
runs. Sections from normal prostate gland known to be posi-

tive for NF-jB expression served as a positive control and
were also included in each run. Similarly, sections from human
tonsils known to be positive for caspase-3 expression served as

a positive control and were also included in each run. Images
were observed and captured on an Olympus BX53 microscope
equipped with a UC-30 digital camera (Olympus, Japan). As a
measure for NF-jB activity, the numbers of cytoplasmic- and

nuclear-positive neurons were separately counted and their
percentages to the total number of neurons were calculated.30

The percentage of caspase-3 positively stained (neuronal and

non-neuronal) cells to the total number of cells was estimated
in 4 non-overlapping fields in 4 sections (obtained from 1 and
2 mm length around the injury site). These regions were chosen

because of the spared tissue even after SCCI.

2.7. Statistical analysis

Statistical analysis was performed using the Statistical Package

for Social Sciences 20.0 for Windows (SPSS, Chicago. IL).
Results were presented as means ± S.D., and analyzed by
one-way and repeated measures analysis of variance

(ANOVA), as indicated. When significant, pairwise compar-
isons between groups were made using Post-hoc with least sig-
nificant difference test. In all statistical comparisons, P < 0.05

was considered as significant difference.

3. Results

3.1. Neurological assessment

No significant difference was observed between-groups in the
results of any test before surgery. This confirms that all rats
were normal prior to experimentation.
3.1.1. Gross motor: BBB open field rating scale

On the 1st day post-injury, there was a drop of BBB score to

zero, whereas sham-operated controls have mean score of
19.75 ± 0.37. During the weekly locomotor BBB assessment
to evaluate functional recovery, we observed a significant

improvement of BBB scores in the medical and surgical treated
groups started at the first week and progressed overtime, com-
pared to SCCI saline-treated group. Combined therapy group

showed better overall scores than mono-therapy (P < 0.001,
versus Agm or DL groups) (Fig. 1A), and the best BBB score
after 4 weeks (Table 1).

3.1.2. Fine motor: hindlimb placement in grid walk (GW) task

In the GW task, sham-operated rats crossed the grid with
minimal, if any, footfalls errors. Next day following SCCI,

all rats were not able to bear weight, and had scores of 30.
As the rats recover, the number of footfall errors decreases
in groups. However, the overall decrease in errors in the SCCI
was significantly less than other treated groups (P < 0.001,

repeated measures ANOVA). Combined Agm + DL group
gained the uppermost decrease in foot miss-placement
(P < 0.001, versus individual treatment) (Fig. 1B), and the

least total number of errors four weeks following surgery
(Table 1).

3.1.3. Residual urine volume

The sham-operated rats demonstrated bladder control, with
no residual urine. However, in rats subjected to SCCI, the
retained urine volume increased over days to peak at about

6 days post-injury, and then declined thereafter till day 14
post-injury, showing differential rates of improvement in
self-voiding and bladder function. The overall residual urine

volume in Agm-treated groups (alone, or combined with
DL) was significantly reduced (P < 0.001 for both, by
repeated measures ANOVA, versus SCCI group) (Fig. 1C).
After 14 days post-injury, 87.5%, 68.8% and 62.5% of

combined-, Agm- and DL-treated rats, respectively, estab-
lished spontaneous voiding reflex, versus 37.5% of the SCCI
rats.
3.2. Biochemical estimations of spinal cord tissue levels of

inflammatory cytokines and oxidative stress parameters

As shown in Fig. 2, there was a significant increase in IL-6 and
TNF-a levels (P < 0.001 for both), as well as a marked
increase in free radical generation and lipid peroxidation as

depicted by a significant depletion of TAC (P < 0.001) and
rise in MDA (P < 0.001) levels in spinal cord tissues of the
SCCI group as compared to sham group. Treatment with
Agm for four weeks and/or DL resulted in a significant reduc-

tion of the inflammatory cytokines levels versus SCCI rats.
Yet, no significant difference was found between pharmacolog-
ical, surgical and combined treated groups. Agm supplementa-

tion alone or combined with DL caused a significant induction
of TAC and inhibition of MDA levels (P < 0.001 for all) ver-
sus untreated SCCI. However, the effect of DL on TAC and

MDA levels was insignificant (P = 0.297, P = 0.163, respec-
tively) versus SCCI rats.
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Figure 1 Effect of agmatine (Agm) and/or decompression laminectomy (DL) on neurological functions after spinal cord compression

injury (SCCI); (A) the time course of hindlimb motor recovery as measured by open-field BBB score and (B) the number of foot

misplacements (footfall errors) in grid walk task, where animals were evaluated weekly over 28 days after injury. (C) Assessment of daily

volume of retained urine as a measure of bladder function over 14 days following SCCI. Data are expressed as means ± SD of sixteen

animals per group and assessed by repeated measures ANOVA.

Table 1 Motor performance of different groups 28 days following acute spinal cord compression injury (SCCI).

Sham SCCI SCCI + DL SCCI + Agm SCCI + DL+Agm

Open-field BBB scoring 21 ± 0.00 8.63 ± 0.38* 14.38 ± 0.18*#$ 13.38 ± 0.32*# 18.25 ± 0.37*#$$

Number of Foot-fall errors 00.00 25.50 ± 1.05* 12.88 ± 0.55*# 13.88 ± 0.52*# 7.38 ± 0.42*#$$

Data are expressed as means ± SD of sixteen animals per group and assessed by one-way ANOVA.
* p< 0.001 versus sham.
# p< 0.001 versus SCCI group.
$ p< 0.05.

$$ p< 0.001 versus SCCI + Agm group.
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3.3. Histopathological and immunohistochemical findings

3.3.1. Histopathological examination

The degree of the spinal cord injury at the perilesional seg-

ments was evaluated. Sections in the spinal cord of sham group
showed normal neurons with round and pale stained nuclei.
Samples of the SCCI group showed marked damage of the

gray matter parenchyma in the form of variable infarction,
hemorrhage, congestion and neutrophilic infiltration. After
counting the dead neurons and estimating the extent of infarc-

tion, a significant damage to the spinal cord was observed in
the SCCI group with a mean score 4.5 ± 1.2, which was ame-
liorated after Agm or DL treatment (mean scores were 2.25

± 1.0 and 2.5 ± 1.1, respectively). Of note, combined Agm
administration and DL resulted in the minimum histopatho-
logical damage and neuronal death with a histological score
of 1.5 ± 0.5 (Fig. 3).
3.3.2. NF-jB-p65 protein immunohistochemical expression

In the sham-control group, neuronal expression of NF NF-jB-
p65 was mainly cytoplasmic. Constitutive expression of NF-
jB-p65 in nuclei of normal neurons was minimal. However,

after SCCI, positive cells for nuclear staining of NF-jB-p65
were increased, compared to sham controls. This denotes
translocation of from NF-jB-p65 cytoplasm to nucleus. In

the DL group, NF-jB-p65 protein was expressed mainly in
the nuclei of neurons. Nuclear translocation of NF-jB-p65
subunit decreased in samples of the Agm- and combined-
treated groups, as the positive cells for cytoplasmic staining

were increased compared to SCCI untreated rats (Fig. 4).

3.3.3. Immunohistochemical detection of caspase-3 expression

As shown in Fig. 3, immunohistochemical staining results

revealed that SCCI induced caspase-3 expression in neuronal
and non-neuronal cells around the injury site. However,
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number of caspase-3 positive neurons was reduced in the Agm

and DL treated groups compared to SCCI group at 28 days
post-injury. The least percentage of caspase-3 positive cells
was observed in the combined-treated group.

4. Discussion

In the past, administration of high-dose steroids has been the
only specific pharmacological therapy in acute SCI in human.

Besides the harmful adverse effects, their therapeutic outcome
was not satisfactory.2 Recently, pharmacological intervention
by targeting NF-jB pathway was recommended.4

Several studies have focused on Agm neuroprotective
potentials in CNS disorders. The present study demonstrated
that Agm monotherapy or in combination with DL improved

gross and fine motor activities, restored bladder function and
regained micturition reflex in about two weeks following SCCI
in most rats. Agm functional recovery was associated with bio-

chemical improvement in injured spinal cord tissues, reflected
by reduction of inflammatory cytokines (IL-6 and TNF-a)
and oxidative stress, increase in total antioxidant capacity
TAC, together with decline in histopathological damage and

neuronal apoptosis. Interestingly, these results were paralleled
with inhibition of nuclear translocation of NF-jB in the
injured segments. Combined pharmacological and surgical

treatments showed better motor and bladder recovery and less
histopathological insult and neuronal apoptosis than individ-
ual treatment.

In line, previous reports showed that Agm treatment
improves functional recovery and reduces tissue damage in
different models of SCI in rats.14,31 Several mechanisms have

been proposed to stand beyond Agm beneficial effects. Agm,

as an inhibitor of NMDA receptors,15 may reduce

glutamate-mediated neuronal excitotoxicity involved in SCI

damage. Recent studies reported an Agm enhancement of

neuro-regeneration and re-myelination through modulation

of expression of multifunctional growth factors in neurons,

oligodendrocytes and astrocytes, such as transforming growth

factor b-2 (TGFb-2) and bone morphogenetic proteins

(BMPs), thereby reducing the collagen or glial scar formation

at the site of lesion.32,33 Moreover, Agm can potentiate opioid

analgesia, possibly by modulating opioid receptors, reducing

subsequently pain perception and allowing better recovery of

motor functions after SCI.20,34 All of which may help to accel-

erate motor recovery and restoration of bladder function that

are of high priority for the patients’ quality of life.

Activation of NF-jB is thought to play a central role in SCI

associated secondary effects.4,10 Our finding revealed that
SCCI led to the activation and nuclear translocation of
NF-jB-p65 subunit within the neurons of the injured segment.

In line, NFjB-p65 was increased in injured spinal cord, stimu-
lating transcription of many genes and mediating deleterious
responses after SCI,10 while inhibition of this up-regulation

exerted neuronal protection.35 Previous trials of treatment of
SCI by inhibition of NF-jB activity was proved effective.
For example, tetramethylpyrazine improved functional recov-

ery after contusion SCI by inhibiting the transcriptional
activity of NF-jB through increasing the expression of its
cytoplasmic inhibitor IkBa.36 Similarly, DNA decoy blockade
of SCI-induced p65 activity decreased SC damage, enhanced
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(original magnification 400�). H&E stained spinal cord section of a rat from the SCCI saline-treated group shows marked hemorrhage,

hemorrhagic infarct and vacuolation of the neuropil; the section in the spinal cord of DL treated rat shows vascular congestion (arrow)

and moderate vacuolation of the neuropil. Three necrotic neurons can be discerned (arrow heads); in the section from an Agm treated rat,

5 necrotic/apoptotic neurons are seen in this field (arrow heads) with evident paraneuronal oligodendrocytes around necrotic/apoptotic

neurons (satellite cells). A slight vacuolation of the neuropil is noted; in the section from the spinal cord of combined-treated rat, 2

necrotic/apoptotic neurons are evident in this field (arrow heads). Neuronal damage is scored from 0 to 6 (A) (as described in the

methods). Caspase-3 immunohistochemical staining of spinal cord sections shows numerous positively stained neuronal (arrow heads) as

well as neuroglial (arrows) cells of an SCCI rat. Agm and/or DL treatment significantly reduced the percentage of caspase-3 positive cells

(B). A non-specific background staining is observed within the neuropil. Data are presented as means ± SD. (n= 8/group). *P < 0.001

versus sham group; #P < 0.001 versus SCCI group; NS, nonsignificant versus SCCI group.
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locomotor recovery and limited inflammatory and apoptotic

events.10

Although different mechanisms and multiple signaling
molecules have been proposed for the neuroprotective actions

of Agm, the possible contribution of NF-jB modulation by
Agm in SCI recovery was not previously investigated. Treat-
ment with Agm alone or in combination with DL was found

to inhibit neuronal activation and translocation of NF-jB-
p65 from cytoplasm to nucleus. However, DL alone did not
suppress this activation. Recently, the relationship between
Agm and NFjB was studied in different pathological animal

models. Consistent with our results, Agm suppressed the phos-
phorylation and nuclear translocation of NFjB in rotenone-
induced Parkinson’s disease21 and in hypoxic-damaged retinal

ganglion cells.22 In addition, Agm blocked the activation of
NF-jB and consequently, protected mice against acute lung
or hepatic injury.37,38 However, in contrast to our findings,

Agm was shown to facilitate translocation of NFjB-p65 from
cytosol to nucleus in an in vitro model of astrocytes oxygen
glucose deprivation.23
Oxidative stress and inflammation are implicated in the

pathophysiologic mechanisms underlying secondary damage
in SCI.3 Consistent with previous studies,39,40 our findings
showed a significant increase in injured tissue level of MDA,

exceeding the tissue TAC, as well as, a significant increase in
injured tissue level of IL-6 and TNF-a, concomitantly with
obvious inflammatory histopathological insult. Lesion-

induced oxidative stress and inflammatory cytokines are not
only implicated as NF-jB activators after SCI,7,8 but also
develop as a sequel of NF-jB activation, since it induces tran-
scription of genes encoding pro-inflammatory cytokines

(TNF-a, IL-lb, IL-6 and IL-12), cell adhesion molecules,
iNOS, cyclo-oxygenase-2 (COX-2) and apoptotic cascades.4,10

In SCI, the contribution of apoptotic cell death in tissue

injury and neurological dysfunction is established through
the implication of caspases as principal mediators of pro-
grammed cell death. Of concern, we reported caspase-3 expres-

sion up-regulation in neuronal and non-neuronal cells in
injured spinal segments, in line with previous findings.41,42

Caspase-3 expression is preceded by upstream events initiated
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Figure 4 Effect of agmatine (Agm) and/or decompression laminectomy (DL) on NF-jB immunohistochemical staining in injured spinal

cord segments after 28 days of spinal cord compression injury (SCCI) (Original magnification 400�). (A) Positive nuclear staining in most

of the neurons of SCCI rats; (B) Positive nuclear staining in some of the neurons of DL rats; (C) and (D) Positive cytoplasmic staining in

most of the neurons of the Agm-treated and combined-treated rats, respectively; (E) Percentage of positive neurons for nuclear and

cytoplasmic expression of NFKB. Data are presented as means ± SD. (n= 8/group). *P< 0.001 versus sham group; #P < 0.001 versus

SCCI group; NS, nonsignificant versus SCCI group.
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by expression of TNF-a and activation of its death receptor
(TNFR) mediating neuronal apoptosis.43 Interestingly, the
constitutive expression of the transcriptionally active member

of NF-jB family, c-Rel induces an early resistance against
TNF-a-induced apoptosis; however, it has been reported that
c-Rel is decreased in neurons after SCI, consistent with the

observed failure of anti-apoptotic responses.10,44 Moreover,
activation of NF-jB is known to trigger a growth-permissive
genetic program, which causes neuronal death and hampers

neuronal regeneration.4

In the present study, Agm rather than DL significantly
enhanced antioxidant defenses and combated oxidative stress.
However, Agm and DL had equivalent anti-inflammatory and

anti-apoptotic effects by inhibiting TNF-a and IL-6 levels in
the injured segments along with decreasing caspase-3 neuronal
expression. Consistent with our findings, Agm exerted in vitro

and in vivo neuroprotective effects against oxidative damage,
inflammation and/or apoptosis in retinal cell ganglia,22 injured
peripheral nerves,45 and even against rotenone23 or

lipopolysaccharide-induced neuronal damage.46 On the
contrary, Feng and LeBlanc47 demonstrated that Agm had
no effect on the early release of inflammatory cytokines
(IL-6 and TNF-a) in model of brain injury in rats pups after

carotid artery ligation. The observed antioxidant and/or anti-
inflammatory effects of Agm in some lung and liver disorders,
suggested Agm may serve as a novel therapeutic strategy for

diseases associated with these conditions.37,38,48

Since enhancing antioxidant defenses and combating
inflammation and apoptosis were reported to reduce post-

traumatic lesion size and improve motor performance,41,46

the present observations suggest a neuroprotective role for
Agm in acute SCCI in rats. The close interrelation between
oxidative stress, inflammation and apoptosis with NF-jB acti-

vation, allows us to postulate that Agm beneficial effects in
SCCI were mediated, at least in part, via inhibition of
NF-jB activation. It is unlikely that Agm anti-inflammatory

or antiapoptotic properties are behind its inhibition of
NF-jB activation, as the DL alone, though implementing sig-
nificant anti-inflammatory, and antiapoptotic actions, did not

suppress NF-jB activation. It is possible that Agm inhibition
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of oxidative stress may have a role in decreasing NF-jB
nuclear translocation. However, the exact mechanism by
which Agm modulates NF-jB activation remains to be

elucidated.
5. Conclusion

The present research identified a new mechanism for the ben-
eficial effects of Agm against SCCI in rats. Functional recov-
ery and restoration of bladder function, observed by Agm

treatment herein, were associated with reduced inflammatory
response, oxidative stress and apoptosis. These neuroprotec-
tive actions of Agm in SCCI were mediated, at least in part,

via inhibition of NF-jB activation. Considering these specific
functions, treatment with Agm (in combination with surgical
intervention) might hold clinical potentials to improve func-

tional recovery following traumatic SCI.
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