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A step towards the application of an artificial intelligence model in the 
prediction of intradialytic complications
Ahmed Mustafa Elbashaa, Yasmine Salah Nagaa, Mai Othmanb, Nancy Diaa Moussab and Hala Sadik Elwakila

aDepartment of Internal Medicine, Nephrology Unit, Faculty of Medicine, Alexandria, Egypt; bDepartment of Biomedical Engineering, 
Medical Research Institute, Alexandria, Egypt

ABSTRACT
Introduction: Acute intradialytic complications remain a major burden in end stage renal 
disease (ESRD) patients on hemodialysis (HD). They often lead to early termination of the HD 
session affecting dialysis adequacy and patient overall health. The aim of the study was to 
create an artificial intelligence model and to assess its performance in the prediction of the 
occurrence of intradialytic clinical events.
Methods: We studied 6000 HD sessions performed for 215 ESRD patients, recording many 
predictors that included: patient, machine, and environmental factors. These data were col-
lected within 24 weeks, including 12 weeks in the COVID 19 era and were used to develop and 
train an artificial neural network model (ANN) to predict the occurrence of intradialytic clinical 
events such as: hypotension, headache, hypertension, cramps, chest pain, nausea, vomiting, 
and dyspnea.
Findings: Our ANN model showed mean precision and recall of 96% and AUC of 99.3% in 
binary ANN to predict occurrence of an intradialytic complication (event or no event), while the 
accuracy of the categorical ANN in predicting the type of event was 82%. We found that heart 
rate changes, mean systolic pressure, ultrafiltration rate, dialyzate sodium, meal, urea reduction 
ratio, room humidity and dialysis session duration most strongly influence occurrence of an 
intradialytic complication.
Discussion: Our ANN model can be used to predict the risk of intradialytic clinical events 
among HD patients and can support decision-making for healthcare in the frequently under- 
staffed dialysis units, especially in COVID 19 era.
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1. Introduction

In 2017, the worldwide prevalence of ESRD reached 
2,203 per million with an increase of 1.7% since 2016 
and 65.0% since 2000 [1]. The number of patients 
undergoing renal replacement therapy (RRT) world-
wide has increased to 2.5 million and is expected to 
rise to 5.4 million by 2030 [2]. In the main North 
African countries including; Egypt, Sudan, Libya, 
Tunisia, Algeria, and Morocco, the average incidence 
of ESRD is estimated to be 182 patients per million 
populations (pmp) [3], which is around 31,000 new 
cases per year, including 1,700 cases of renal trans-
plantation [3].

Hemodialysis is the main RRT modality in all 
North African countries [4]. In 2006, the estimated 
annual incidence of ESRD was around 74 per million 
[5] and the prevalence of dialysis patients has 
increased from 225 pmp in 1996 to 483 pmp in 2008 
(according to the Egyptian renal registry) [6]. In 2019, 
the Egyptian renal data system estimated that dialysis 
patients exceed 50,000 (an estimated prevalence of 
around 50,000/Egypt’s population in millions) [7]. In 

Alexandria (the second-largest city in Egypt) the esti-
mated HD prevalence rate was around 710 pmp in 
2019 [8].

Hemodialysis is associated with many intradialytic 
as well long-term complications; cardiovascular com-
plications are the most common in both categories. 
Among intradialytic complications, intradialytic 
hypotension is the most frequent event, occurring in 
20–50% of patients [9]. Muscle cramps are also com-
mon during dialysis and two or more interdialytic 
cramps per week occur in 25% of patients [10]. 
Other common complications include nausea, vomit-
ing with a rate of 5%–15% and headache with a rate of 
5%–10% [11].

In Egypt, ESRD mainly affects patients in their 
economically productive years with some predilection 
to male gender [8]. Therefore, inadequate dialysis in 
these patients renders them incapable of continuing 
work. In addition, there is understaffing in dialysis 
units, making close monitoring of the over-crowded 
dialysis units difficult and leading to more intra- 
dialytic complications.
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Artificial intelligence (AI) is a field of science and 
engineering concerned with the computational infor-
mation of what’s generally referred to as intelligent 
behavior, and with the development of objects that 
exhibit such behavior [12]. Machine learning (ML) is 
one of the prime branches of AI. Machine learning can 
be described as a collection of algorithms that have the 
capability of learning and improving from experience, 
without being specifically programmed for a particular 
task. Random forest, support vector machine and arti-
ficial neural network (ANN) are examples of machine 
learning algorithms [13]. Many artificial intelligence- 
based algorithms have been accepted by the Food and 
Drug Administration (FDA) to be used in clinical 
practice, they do not replace the role of physician but 
they may complement it in a wide range of applica-
tions in medicine. This ranges from predicting patient 
outcomes such as diagnosis and treatment efficacy, to 
discovering patterns in large databases and to under-
standing disease pathogenesis.

Artificial neural network has been widely used in 
many medical fields including computer-aided sur-
gery operation navigation systems [14], virtual tools 
for surgery [14], pain management, and psychiatric 
disorders [15]. Artificial neural network has effectively 
been used for solving complex and unpredictable pro-
blems in many fields of clinical medicine without the 
need for statistical models [16]. Examples of the use of 
artificial intelligence in nephrology are diagnosis of 
chronic kidney diseases (e.g. IgA nephropathy [17], 
glomerular vs tubular renal disease [18]), evaluation of 
hemodialysis efficiency by urea kinetic modeling [19] 
and diagnosis of renal transplant rejection [20].

Large quantities of data can be collected during HD 
sessions. Biostatistical methods have been traditionally 
used in medical data analysis. However, exploring 
large sets of data and complex non-linear associations 
is better achieved by artificial neural network. 
Artificial neural network has been successfully used 
to detect relevant connections in a database and has 
been commonly used for the detection, evaluation, 
and estimation of outcomes in many clinical set-
tings [21].

Most developing countries suffer from insufficient 
number of medical personnel and limited resources 
that may not allow adequate monitoring of patients 
during the dialysis procedure and that raise the risk of 
intradialytic complications. Application of a predictive 
artificial intelligence -generated model may aid in 
identifying patients who need closer monitoring and 
allows timely and appropriate intervention [22].

The aim of this work was to develop an artificial 
neural network model that can predict the risk of 
intradialytic clinical events among regular HD 
patients in order to prevent its occurrence and 
improve patients’ quality of life and suggesting proper 
individualized management.

2. Materials and methods

2.1. Setting, design and study sample

In this study, we included 215 patients on regular HD 
sessions at El-Mowasah University Hospital, 
Alexandria, Egypt with exclusion of patients on hemo-
dialysis for less than 6 months, patients younger than 
18 years-old and patients who received renal trans-
plantation during the study course. El-Mowasah hos-
pital is one the Alexandria University hospitals and is 
considered as a tertiary referral dialysis center receiv-
ing dialysis patients with multiple comorbidities. 
Approval of the ethics committee of research of the 
Alexandria Faculty of Medicine and an informed con-
sent from each patient were obtained.

2.2. Measures

2.2.1. Endpoint definitions
Clinical event was defined as experience on of the 
following complications: muscle cramps, headache, 
dyspnea or nausea and vomiting even if not requiring 
session termination.

Intradialytic hypotension (IDH) was defined accord-
ing to the Kidney Disease Outcomes Quality Initiative 
(KDOQI) as a decrease in SBP ≥20 mm Hg or a decrease 
in MAP by ≥10 mm Hg associated with a clinical event 
and the need for nursing intervention [23].

Because no standard definition of intradialytic 
hypertension exists, we used a definition used in 
prior clinical studies. Intradialytic hypertension was 
defined as any of the following: (a) an increase of 
15 mmHg or more in (MAP) of within or after dialysis 
[24], (b) an increase of 10 mmHg in the systolic blood 
pressure before and after dialysis [25,26].

HD sessions were categorized into two groups, ses-
sions in which the patient experienced a clinical event 
(CE group) and sessions without any significant event 
(no-event group), depending on presence or absence 
of the following intradialytic clinical events: intradia-
lytic hypotension, hypertension, muscle cramps, head-
ache, dyspnea, nausea, and vomiting. If multiple 
events occurred, only the first event was recorded.

2.2.2. Input variables
During each HD session, the following data were 
captured: patient factors including: heart rate, blood 
pressure, weight gain, demographic data, laboratory 
investigations, original kidney disease, and other 
comorbidities; machine factors including: modality, 
duration, clotting, ultrafiltration rate, dialyzate 
sodium, bicarbonate, flow and temperature; and 
other factors namely, room temperature and humid-
ity, medications, meal, fluid and caffeine intake 
(Table 1).

Our raw data included collection of 50 variable in 
6000 HD sessions counting about 300,000 data entry.

ALEXANDRIA JOURNAL OF MEDICINE 19



2.2.3. Data engineering (data cleaning, feature 
generation and handling of missing data)
The machine-learning estimation depends mainly on 
the quality of the used data. The initial dataset must be 
structured in a way that simulates the real-world 
environment, to make sure that the model will cor-
rectly predict unseen data.

Three analyses were performed on the collected 
data, namely:

(I) The first analysis (A1): The 6000 dialysis 
sessions were divided into two groups 
based on the occurrence of an intradialytic 
event: a clinical event occurred in 47.9% 
(2,874 sessions), while no event occurred 
in 52.1% (3,126 sessions).

(II) The second analysis (A2): The 6000 dialysis 
sessions were divided into two groups 
based on the occurrence of an intradialytic 
hypotension, as it is the most frequently 
recorded event: an intradialytic hypotension 
event occurred in 16.4% (982 sessions), 
while no hypotension occurred in 83.6% 
(5,018 sessions).

(III) The third analysis (A3): The 2,874 events cases 
were divided into the 7 recorded outcomes in 
the third analysis, no event was also included, 
so 8 outcomes were examined (Table 2).

As data were unsuitable to be processed by machine 
learning algorithms, preliminary data preparation 
procedures were carried out. Before starting, catego-
rical features were checked and converted into numer-
ical form. The missing data were recovered by using 
standard statistical methods. To deal with missing 
data, we applied the following imputation strategy:

(1) If the missing information was categorical, it 
was replaced with the median.

(2) If the missing information was continuous, it 
was replaced with the mean.

Since different magnitudes of data would lead to 
domination of the higher features over the smaller 
ones, depending on the units adopted and the design 
of the operation, we normalized the data before the 
study. Using this method, the features were transformed 
so that their values were located within the specified 
range, between 0 (lower bound) and 1 (upper bound).

After preprocessing and dealing with missing 
values, the dataset was divided into 80% training set 
and a 20% test set from different dialysis sessions in 
the training set patients. The training subset was fed as 
input to the artificial neural network classifier. Finally, 
the test subset was used to check the performance of 
the trained classifier network.

2.2.4. Statistical analysis (ML framework and 
analytic strategy)
After data was collected, it was revised, coded and 
entered to the statistical software SPSS version 21. 
Descriptive statistics were used for summarization of 
data using frequency distribution tables and graphs. 
SPSS and SAS software were used for statistical analy-
sis and construction.

For quantitative variables, mean and standard 
deviation (SD) were calculated. Quantitative variables 
were expressed as percentage. Several testes were used 
and P value of <0.05 was considered significantly.

The following statistical tests were used..

Table 1. List of variables used and frequency of collection.
Predictor Frequency Collected

Demographic factors:Age (years) 
Gender (male)Dialysis vintage

OnceOnceOnce

Patient comorbidities:Original 
kidney diseaseDiabetes, Heart 
disease and Peripheral vascular 
diseases

OnceOnce

Dialysis-specific factors:Modality 
(HDF, HD)Duration and 
frequency of the sessionsMean 
dialyzer blood flow (ml/min) 
Mean Blood pump flow (ml/ 
min)Ultrafiltration rate (ml/min) 
Dialyzer membrane 
charactersDialyzate fluid 
temperature (0 C) and 
componentsOccurrence of 
dialysis lines clottingType of 
vascular accessWeight loss 
percentage (%)Interdialytic 
weight gain

Every sessionEvery sessionEvery 
sessionEvery sessionEvery 
sessionEvery sessionEvery 
sessionEvery sessionOnceEvery 
sessionEvery session

Dialysis hemodynamics:Heart 
rate (HR)Mean heart rate (bpm) 
HR changes (increase, decrease 
or steady)Blood pressure (BP): 
Systolic pressure (mmHg) 
Diastolic pressure (mmHg)Mean 
arterial pressure MAP (mmHg) 
Pulse pressure (mmHg)Blood 
pressure changes (increase, 
decrease or steady)

Predialysis,1st and 2nd hourAfter 
1st hour of sessionPredialysis,1st 

and 2nd hourPredialysis,1st and 
2nd hourPredialysis,1st and 2nd 

hourPredialysis,1st and 2nd 

hourAfter 1st hour of session

Laboratory investigations:Urea 
reduction rate (%)Creatinine 
(Pre HD)Phosphate (mg/dl) 
Calcium (mg/dl)Hemoglobin (g/ 
dl)White cell count (cells per 
liter)Platelet cell count (cells per 
liter)Serum Albumin (mg/dl)

Every 4 weeksEvery 4 weeksEvery 
8 weeksEvery 8 weeksEvery 
4 weeksEvery 4 weeksEvery 
4 weeksEvery 8 weeks

Intravenous medications: 
Epoetin alfaHeparinIron sucrose

Every sessionEvery sessionEvery 
session

Other factors:Room temperature 
and humidityMeal and coffee 
intake

Every sessionEvery session

Table 2. The percentage of the target outcomes.
The output The rate in the dataset

No event 52.1%
Hypotension 16.4%
Hypertension 7.4%
Headache 7%
Cramps 5.8%
Nausea Vomiting 4.6%
Chest Pain 3.4%
Dyspnea 3.3%

20 A. M. ELBASHA ET AL.



(1) Chi-square (X2) test (Fisher or Monte Carlo) 
was used for analysis of categorical data. The 
5% level was used as the cut-off value for 
Statistical significance.

(2) Student t-test was used to compare two groups 
for normally distributed quantitative variables.

ANN is composed of a hierarchical organization set 
of artificial neurons organized in successive layers. It is 
trained on data to predict the target outcome for a new 
input of similar data. To compute a specific input- 
output non-linear relation, the model should be 
trained with a sufficiently large set of input and output 
data pairs [27].

To design the ANN framework, the number of 
neurons in each layer, the required activation func-
tion, the optimizer used, and a few other network 
parameters were adjusted [28].

The sequential ANN model was implemented. It 
consisted of a dense input layer, hidden layer, and 
output layer. The input layer included 50 neurons 
(corresponding to the 50 variables), as well as 128 
neurons in the hidden layer. The number of neurons 
in the hidden layer follows the following rule: If the 
final number of input attributes in each training subset 
is x, we should use at least the closest number to 2x in 
the power of 2. It is good to have the number in the 
power of 2, as it helps the computation of the network 
to be faster. For example, the 50 input attributes in our 

training subset, preferably started with (2 × 50 = 100) 
and used the closest power of 2, so 128, as shown in 
Figures 1 and 2.

The number of one hidden layer and two hidden 
layers were tested, but the evaluation metrics showed 
that artificial neural network with 1 layer had the same 
evaluation metrics as with 2 layers. Therefore, there 
was no need to use 2 layers as it is more complex.

For the hidden layer, an activation function should 
be implemented to enable non-linearity. For this rea-
son, Rectified Linear Unit (ReLU) was applied to the 
hidden layer. Finally, the output layer, responsible for 
the final classification, had a value of one neuron for 
the binary classification in the first two analyses, where 
class 0 referred to the no event sessions and class 1 
indicated the presence of clinical event during the 
dialysis session as shown in Figure 1, sigmoid activa-
tion was added to the output layer. Binary cross- 
entropy was used as a loss function.

Furthermore, in the third analysis, eight neurons (7 
events and no event) in the output layer were applied 
for the categorical classification as shown in Figure 2. 
In this case, the SoftMax function was applied as the 
output layer activation function, as it is a multi- 
classification problem. Categorical cross-entropy was 
used as a loss function.

The grid search estimator was used to optimize and 
find the model hyper-parameters (epochs and batch 
size) that give the highest accuracy. We used grid 

Figure 1. The neural network structure for binary classification.

Figure 2. The neural network structure for categorical classification.
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search to optimize batch size and epochs. The range 
for batch size was = [16,32,64] and for epochs 
was = [25,50,100]. For the first analysis, the best values 
were 32 and 50 for batch size and epochs respectively. 
For the first analysis, the best values were 32 and 50, 
for the second, 64 and 100, while for the third analysis 
it was 32 and 100 for batch size and epochs, 
respectively.

All experiments were based on computer program-
ming Python interpreted language. Jupyter notebook 
Python 3.6 is an open-source programming language 
that was used to develop the proposed techniques. The 
experiments were performed with a 2 GHz Intel Core 
i7 Lenovo with 8GB of RAM, running on Windows 10 
operating system. NumPy, Pandas, Scikit learn, Keras, 
and matplotlib libraries were used in preprocessing 
training, and evaluation of the used models.

The performance of artificial neural network in the 
three analyses was presented, and the most effective 
features in prediction were analyzed. Multiple mea-
sures were used to judge the performance of the 
model. In this study, the precision, recall, accuracy, 
and f1-score were calculated. In the binary classifica-
tion, we also estimated receiver operating characteris-
tic (ROC), and Precision-Recall curves as evaluation 
measures of the model.

2.2.5. Features selection
The most effective 26 features were selected based on 
filter feature selection technique. It is based on ranking 
the features according to their usefulness in the pre-
diction and evaluating the importance of features 
based on the properties of data. Then, the output of 
the selected features is applied to the machine learning 

algorithm. The filter approach uses a variety of meth-
ods, such as Pearson’s correlation coefficient, and 
mutual information. Pearson’s determines the correla-
tion between the features and the output class, while 
mutual information shows the amount of information 
between the feature, and the output class. For feature 
selection, we first removed the correlated input fea-
tures, assuming that the features were highly corre-
lated if their correlation coefficient is greater than 0.75. 
In this step, we removed seven features. Second, we 
chose only features that are highly correlated with the 
output, the feature that had no impact on the output 
was removed. If the correlation coefficient was 
between −0.05 and 0.05, we neglected it. In this step 
we removed 15 features. Third, we chose features that 
had high mutual information with the output. In this 
step, we removed two features.

3. Results

A total of 6,000 HD sessions were observed within 
24 weeks (from November 2019 to May 2020). 
Prospective clinical data were collected manually every 
session, while laboratory investigations were reported 
from the routine monthly investigations. Our study 
included 215 regular hemodialysis patients, the main 
demographic and clinical characteristics of the studied 
patients are summarized in (Table 3). Of note, 56.8% of 
these patients had comorbidities including: uncon-
trolled HTN and DM, cardiac or liver diseases, stroke 
and malignancy. 55.3% of patients were males and 
70.6% aged between 18 and 60 years old. The most 
common cause of renal failure was hypertension 

Table 3. Demographic and clinical description of (215) HD patients.
Variable Mean (± SD), Number (Percent)

Age (year)Percentage of patients aged (18–60 year) 55.11 ± 12.9 years old152 (70.6%)

Gender:
MaleFemale 119 (55.3%)96 (44.7%)

Employment:
UnemployedFull timePart timeRetired 111 (51.6%)22 (10.2%)35 (16.3%)47 (21.9%)

Original kidney disease
HypertensionDiabetes mellitusGlomerulonephritisPyelonephritisContrast induced 

nephropathyAnalgesic nephropathyObstructive uropathySystemic lupus 
erythematosusAdult polycystic kidney disease Unknown

82 (38.1%)42 (19.5%)19 (9.0%)8 (3.7%)4 (1.9%)8 (3.7%) 
10 (4.6%)5 (2.3%)10 (4.6%)27 (12.6%)

Comorbidities
No comorbiditiesUncontrolled hypertensionUncontrolled diabetes mellitusCardiac 

diseaseHepatic diseaseStrokeMalignancy
93 (43.2%)35 (16.3%)29 (13.5%)36 (16.7%)13 (6.1%)5 

(2.3%)4 (1.9%)

Virology
NegativeHepatitis C virus positiveHepatitis B virus positiveHepatitis C & B virus positive 171 (79.5%)39 (18.1%)4 (1.9%)1 (0.5%)

Vascular access
Arterio-venous fistula (AVF)Arterio-venous graft (AVG)Permanent catheterTemporary 

catheter
173 (80.5%)4 (1.9%)29 (13.5%)9 (4.1%)

Type of dialysis
Hemodialysis (HD)Hemodiafiltration (HDF) 4281 session (71.3%)1719 session (28.7%)
Dialysis vintage (years) 6.1452 ± 4.63 years

Frequency of intradialytic events
NoLess than one event /weekOne event or more/week 67 (31.2%)57 (26.5%)91 (42.3%)

22 A. M. ELBASHA ET AL.
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followed by DM then glomerulonephritis (GN) and 
adult polycystic kidney disease (APKD). Most patients 
are dialyzing using a functioning AVF. 28.7% of dialysis 
sessions were online HDF.

Statistical analysis was done comparing between 
event and nonevent group regarding different para-
meters and the comparison between the event and no 
event group according to the 26 important variables 
was shown in (Table 4).

Primary analysis of the data identified that 26 of the 
variables had the greatest impact on the risk of 
a clinical event. These feature are ranked in descend-
ing order: blood pressure, heart rate changes (increase 
or decrease in blood pressure (BP) and heart rate (HR) 
after one hour of HD session), age, session duration, 
ultrafiltration rate, hemoglobin level, room humidity, 

white blood cells (WBCs), dialyzate sodium (that was 
variable in sessions ranged from 133 to 142 mEq/L), 
dialyzate temperature, urea reduction ratio (URR), 
serum creatinine, interdialytic period, serum albumin, 
dialysis lines clotting, heart disease, dialyzer surface 
area, meal intake, peripheral vascular disease (PVD), 

HD modality, antihypertensive medications, DM, dia-
lyzate flow, room temperature, serum calcium, pre- 
dialysis mean arterial pressure (MAP).

The developed artificial neural network model 
had an accuracy of 96% in predicting event and 
nonevent, 94% in predicting hypotension, and 82% 
in the multi-classes prediction to specify which 
event will happen.

(Table 5) shows the performance of the neural net-
work algorithm applied to two different analyses with 
binary target output. The proposed artificial neural 
network had better performance for the first analysis, 
as the dataset was balanced (52.1% nonevent, and 
47.9% event) while the second analysis was imbal-
anced (83.6% non-hypotension, and 16.4% hypoten-
sion). This shows that the performance of an artificial 

neural network in general is better in balanced binary 
analyses.

Figure 3 shows the ROC curve of A1 and A2. We 
can observe that in the first analysis, the line 
approaches its goal, which is to obtain the curve near-
est to one on the Y-axis because the ROC value is 

Table 5. The performance of the binary and categorical ANN.
Binary ANN

Accuracy Specificity Sensitivity F1- score AUC-ROC

Event vs no-Event(first analysis) 96% 96% 96% 96% 99.3%
Hypotension vs no-hypotension(second analysis) 94% 94% 94% 94% 97.8%
Categorical ANN

Accuracy Specificity Sensitivity F1- score
0 (No event) 82% 95% 97% 96%
1 (Hypotension) 76% 89% 82%
2 (Headache) 74% 50% 60%
3 (Dyspnea) 69% 52% 59%
4 (Chest pain) 40% 27% 32%
5 (Nausea-Vomiting) 67% 21% 32%
6 (Cramps) 47% 53% 49%
7 (Hypertension) 68% 98% 80%

Figure 3. The ROC curve for the two binary analyses A1 and A2.
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99.1% for both classes. In the second analysis, its 
performance decreased slightly but still gives high 
results of 98.3%. The performance of the second ana-
lysis is lower because of the lower event rate making 
the data imbalanced.

Finally, the precision-recall curve for the two binary 
analyses is showed in Figure 4. We can observe that in 
the first analysis, the line approaches its goal, which is 
to obtain the curve nearest to one on the Y-axis 
because the AUC value is 0.99 for both classes. This 
value indicates that the classifier performs well in 
detecting the occurrence of complications during the 
dialysis session. In the second analysis, its value is 92%.

After features selection, the performance of the two 
binary analyses was the same with the selected features 
(Table 5). While reducing the number of features, 
reduced the complexity of the model. However, the 
total accuracy of multi-classification was decreased by 
only 1%, the sensitivity, f1-score of hypotension were 
increased by 2%. The result of this model is shown in 
(Table 6).

4. Discussion

Despite improvement in the dialysis techniques and 
machines, the occurrence of intradialytic complica-
tions in HD patients is still common. These 

complications are attributed to many factors and 
most of which are preventable. The prediction of 
these complications could help staff at dialysis units 
to identify those patients at higher risk, who need 
closer monitoring and timely intervention to prevent 
the intradialytic complication and its effect on the 
session duration and quality.

In our study, we selected a model using a neural 
network for the prediction of complications in regular 
hemodialysis patients because it is simple, accurate, 
and relatively stable to outliers and noise. In addition, 
it offers useful internal error estimates, strength, cor-
relations and variable significance [29].

Our proposed model (artificial neural network with 
grid search) allowed the prediction of intradialytic 
complications during the dialysis with high accuracy.

Our ANN model used routinely measured variables 
as predictors. Indeed, we used patient characteristics, 
co-morbidities, treatment parameters, laboratory 
investigations, and some environmental variables 
that are easily collectible by nurses or physicians. 
Therefore, this model may be easily applied in under- 
equipped dialysis units.

This study focused on the most common seven 
complications occurring during the HD session. We 
applied our model in three analyses with different 
targets. It is quite accurate in all aspects of binary 
and multi-classification. Our result in binary classifi-
cation showed accuracy of 96% with area under ROC 
of 99.3% and accuracy in multi-classification 
reached 82%.

Intradialytic hypotension was the most common 
complication in our study followed by hypertension, 
headache, and muscle cramps. This findings are simi-
lar to the results of other studies [30,31].

The accuracy of the artificial neural network applied 
to the third analysis with eight categorical outcomes was 
82% which is less than the performance of the artificial 

Figure 4. The precision-recall curve for the two binary analyses.

Table 6. The performance of the categorical ANN with the 
most significant 26 features.

Accuracy Specificity Sensitivity F1- score

0 (noevent) 81% 93% 98% 96%
1 (Hypotension) 78% 91% 84%
2 (Headache) 68% 62% 65%
3 (Dyspnea) 38% 35% 37%
4 (Chest pain) 21% 18% 20%
5 (Nausea-Vomiting) 60% 16% 25%
6 (Cramps) 67% 45% 54%
7 (Hypertension) 69% 85% 76%
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neural network model on the binary analyses, as it is 
more complex for the model to distinguish between 
eight different classes. Despite the low accuracy in mul-
ticlassification, the high precision can help identify 
patients at risk of the complication and may allow 
timely intervention. The precision and f1-score vary 
among the different outcomes as the ratio of each 
event in the data differs. Indicating that artificial neural 
network may give better results in cohorts where the 
studied outcome is more common.

The mean values of all predictors are shown in 
Table 7. The basic statistical analysis shows statistically 
significant differences in most of the studied para-
meters between the sessions with an event and those 
without event.

Another method to improve artificial neural net-
work output is to reduce the number of features. 
Feature selection allowed us to identify 26 of the 50 
features with the highest impact on outcome. The 
most significant 26 features were extracted to reduce 
the total number of features. The advantage of redu-
cing the total number of features is: it makes the model 
easier to apply as it reduces the number of variables 
that dialysis unit staff have to collect 26 features rather 
than 50 and the complexity of the artificial neural 
network model was reduced.

Other recent studies have also attempted to 
establish an artificial intelligence model to predict 
intradialytic events. In 2019, Putra FR et al. [32] 
conducted a similar artificial neural network 
model in which 3,237 sessions were analyzed in 
109 patients over 23 weeks. They used three main 
predictors including heart rate, respiration rates, 
and movement data measured by a special device 
that is not widely available, in addition to the 
demographic details of patients, such as gender, 
age, height, and weight. They then combined the 
five events in a binary classification problem 
(event vs. nonevent). Patients who reported emer-
gency visit, muscle spasm, inpatient, emergency 
visit and inpatient or sudden death during obser-
vation were classified in the class-event. Their 
model had a mean precision and recall of 
93.45%, and area under ROC was 96.7%. however 
their model could not predict which event would 
occur [32].

Thakur SS et al. [33] also used a non-contact sensor 
device to monitor vital parameters like the heart rate, 
respiration rate, and heart rate variability of 109 
hemodialysis (HD) patients, then developed 
a supervised machine-learning-based prediction 
model to predict event or no-event based on the sen-
sor data and demographic information. A mean area 
under ROC of 90.16% with 96.21% mean precision, 
and 88.47% mean recall was achieved. These two stu-
dies used advanced devices like non-contact sensor 
that are not widely available in dialysis units so their 
model cannot be widely applied unlike our model 
which utilizes easily measured variables. Also, they 
used only 3 vital parameters while we used more 
than 50 parameters.

In addition, Barbieri C et al. [34] formed an artifi-
cial neural network model analyzing 766,000 HD ses-
sion records during hemodialysis sessions in 2019 that 
included roughly 60 variables representing patient 
characteristics including session-specific Kt/V, ultra-
filtration volume, heart rate, and BP. This study used 
large number of sessions with a wide variety of vari-
ables but despite the large number of data used, they 
did not consider dialysis machine parameters or envir-
onmental factors in their collected variables. They 
created a neural network model to predict the indivi-
dualized, session-specific patient reaction to dialysis- 
related prescriptions on multiple relevant hemody-
namic parameters (e.g. intradialytic heart rate and 
BP changes and trends) and dialysis adequacy para-
meters (e.g. Kt/V and fluid removal), but no other 
complications were studied in contrast to our study, 
which included seven common intradialytic 
complications.

Cheng J et al. [35] also has formed a new predictive 
model for prediction of intradialytic hypotension in 
chronic hemodialysis using AI based on a database of 
55,516 HD sessions of 653 HD patients, resulting in 
285,705 valid BP records. Their logistic regression 
model showed the sensitivity of 86% and specificity 
of 81% for both nadir systolic BP (SBP) of <90 mmHg 
and <100 mmHg, suggesting good performance in 
prediction of IDH. This model used dialysis settings 
(including machine temperature, conductivity, and 
UF rate), baseline demographic variables (such as 
age, sex, DM, and dry weight) as predictors, but our 
model showed higher specicifty and sensitivity in pre-
dicting intradialytic hypotension. The common lim-
itation of this study and ours that we defined IDH 
based on SBP values, without considering symptoms 
and interventions.

Hojun L et al. [36] created a model capable of 
predicting intradialytic hypotension. They applied 
a deep learning model using data from 261,647 hemo-
dialysis sessions, divided them into training (70%), 
validation (5%), calibration (5%), and testing (20%) 
sets. Their artificial neural network model achieved an 

Table 7. The performance of the binary ANN with the most 
significant 26 features.

Accuracy Specificity Sensitivity
F1- 

score
AUC- 
ROC

Event vs nonevent 
(first analysis)

96% 96% 96% 96% 99.3%

Hypotension vs non- 
hypotension 
(second analysis)

94% 94% 94% 94% 97.8%
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AUC of 0.94 (95% confidence intervals, 0.94 to 0.94). 
They used three definitions for IDH. IDH-1 was 
defined when intradialytic nadir systolic BP was 
<90 mm Hg within 1 hour [2]. When IDH was defined 
as a decrease in systolic BP of ≥20 mm Hg and/or 
a decrease in mean arterial pressure of ≥10 mm Hg 
within 1 hour, the reference BPs were determined at 
initial (IDH-2) or prediction (IDH-3) time point. 
Variables recorded included age, sex, vital signs, 
comorbidities, medications, and laboratory findings. 
However, our prediction model not only included 
intradialytic hypotension but also examined overall 
intradialytic complications instead of only focusing 
on the hypotension.

Most recently, in 2021 2021, Liu Y et al. [37] devel-
oped machine learning algorithms to predict intradia-
lytic adverse events. Data were collected from 108 
patients on regular HD in a total of 4221 HD sessions. 
Dialysis data were collected automatically by HD 
devices, and physiological data were recorded by med-
ical staff but in our study whole data are collected 
manually by physicians and nurses. Their developed 
algorithm predicted overall intradialytic adverse 
events, with an area under the curve (AUC) of 0.83, 
sensitivity of 0.53, and specificity of 0.96. The algo-
rithm also predicted muscle cramps, with an AUC of 
0.85, and blood pressure elevation, with an AUC of 
0.93. The most common adverse event in their study 
was muscle cramps but, in our study, IDH was the 
most common complication. Their results shown the 
top 16 features that majorly contributed to predicting 
muscle cramps included patient characteristics, 
venous pressure, trans-membranous pressure, ultrafil-
tration, blood flow rate, and pulse pressure, we didn’t 
include venous pressure and trans-membranous pres-
sure as predictors in our study.

Artificial intelligence has also been used to predict 
long-term outcome in HD patients. Titapiccolo 
J et al. [38]trained a Lasso logistic regression model 
and a random forest model and used it for predicting 
the cardiovascular outcome of incident hemodialysis 
(HD) patients. Data relating to the dialysis machine 
properties and the vital signs of 4246 incident hemo-
dialysis patients were collected during the first 
18 months of HD and then used to predict the 
occurrence of cardiovascular events within 
a 6-month time interval. Random forest showed 
higher performance with AUC of the ROC curve 
and sensitivity higher than 70%. The most important 
variables in the model were blood test variables such 
as the total protein content, percentage value of albu-
min, total protein content, creatinine, C reactive pro-
tein, age of patients and weight loss in the first six 
months. Although the studied outcome is different 
from our study, some variables like serum albumin 
level, patient age, and ultrafiltration rate were also 

predictive in our study, indicating that they play 
a role in short-term as well as long-term outcomes 
in HD patients.

As early as in 2001, Akl et al. [19] in a study con-
ducted in Mansoura university applied an artificial 
neural network model to study and predict concentra-
tions of urea during a hemodialysis session. Urea 
blood concentrations, patient weight and total urea 
clearance were calculated at 30-minute intervals dur-
ing the HD session by direct dialysis quantification (in 
15 chronic hemodialysis patients), then they trained 
an artificial neural network model to recognize the 
evolution of measured urea concentrations and were 
then able to anticipate the time taken for the hemo-
dialysis session to achieve a target solute removal 
index.

Another study, exploring outcome in HD patient 
was published by Akibilgic et al. in 2019 [39]. This 
study included 27,615 US veterans who had devel-
oped ESRD. To predict 30-, 90-, 180-, and 365-day 
all-cause mortality after start of HD, they used 
a random forest method on 49 variables obtained 
before dialysis initiation to predict the outcomes. 
The final random forest model provided C-statistics 
of 0.7185, 0.7446, 0.7504, and 0.7488 for predicting 
risk of death within the 4 different time windows. 
However, their study did not include multiple vari-
ables known to affect mortality early in dialysis 
including: vascular access at the time of dialysis tran-
sition, the use of certain medications or the length of 
dialysis period, highlighting the fact that models may 
miss important factors not included in the analysis by 
their designers.

Most mentioned models did not reach the same 
level of specificity and accuracy that our model 
reached in the binary classification analyses. The 
lower accuracy in multi-classification analysis is 
due to the limited number of patients who faced 
some of the described events in each class. Despite 
the relatively lower accuracy, it may prove very 
useful.

Our study has several strengths:

● We used a large dataset comprised prospectively 
collected data of 50 variables recorded during 
6000 sessions, in a diverse cohort of patients 
recorded every session for 24 weeks.

● We used variables routinely and easily collected 
by limited number of nurses and without the 
need for special devices or advanced dialysis 
machines that record patient’s vitals continu-
ously, where this study was performed in 
COVID 19 era, so our model will be easily applic-
able in the underequipped clinics and units.

● We analyzed the occurrence of seven common 
intradialytic complications.
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● We used a multiclassification artificial neural net-
work model that can identify and predict which 
event of the 7 events can happen which was not 
previously attempted in other studies.

● We included some unique environmental predic-
tors as room humidity and temperature that can 
be important factors in a hot humid climate 
country like Egypt and could be applied in var-
ious developing countries.

Our study also has some limitations: Although 
our dataset is relatively dense, there are many 
other factors that may increase the probability of 
intradialytic complications like CRP, parathor-
mones and dialyzate calcium and potassium. This 
study shows effects of several variables simulta-
neously and no single factor can be blamed for 
the intradialytic event, so further studies compar-
ing each factor separately can better delineate 
causality. We developed our prediction models 
from data in a single tertiary referral center 
including a high percentage of patients with co- 
morbidities, which precludes the direct application 
to other patient groups as routine dialysis care, 
and patient characteristics may vary from center 
to center.

We will soon start to externally validate our artificial 
neural network model in a multi-center trial set to include 
a larger number of patients and sessions. Use of a larger 
dataset will also allow us to increase the accuracy of the 
model especially in multiclassification analysis. Another 
future step for artificial intelligence models in this field 
would be interventional studies to examine the role of 
artificial intelligence in preventing intradialytic complica-
tions and in the prescription of HD.
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Appendix

True negatives (TN): The negative labels which are correctly 
classified as negative.

False positives (FP): The negative labels which are incor-
rectly classified as positive.

True positives (TP): The positive labels which are cor-
rectly classified as positive.

False negatives (FN): The positive labels which are incor-
rectly classified as negative.

Classification Accuracy: For any ML model, this is one of 
the most intuitive and standard metrics to measure the 
performance if the dataset is balanced, it is defined as the 
rate of true prediction [1]. 

Accuracy ¼
TPþ TN

TP þ FP þ TN þ FN
(2) 

Sensitivity (Recall): is a critical measure in medical studies 
because it identifies all real positive cases that have a disease. 
It is the number of positive classes that are predicted cor-
rectly. (e.g. the percentage of sick people who are correctly 
identified as having some illness) [2]. 

Sensitivity ¼
TP

TP þ FN
(3) 

Precision: It is the ratio of the true positive label over the 
positive prediction [3]. 

Precision ¼
TP

FPþ TP
(4) 

F1- score: It is the harmonic mean of confidence and sensitivity 
[2]. 

F1 � score ¼
2 � TP

2 � TPþ FP þ FN
(5) 

False Positive Rate (FPR): The number of Positive class that 
has been predicted wrong [1]. 

Falsepositiverate ¼
FP

FP þ TN
(6) 

Receiver Operating Characteristic (ROC): It is one of the 
widely accepted evaluation criteria in medical applications. 
It represents true positive rate against the false-positive rate 
[1].

Precision-Recall curve: It is a graph that represents 
Precision against Recall. The best scenario that the trained 
model has both high precision and recall. But most machine 
learning algorithms often involve a trade-off between the 
two. A perfect PR curve has greater AUC (area under the 
curve) [4].
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