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Abstract Background: Asthma is an inflammatory airways disease caused by an interaction

between susceptibility genes and a diverse group of environmental factors. The GSTP1 Ile105Val

polymorphism has been associated with asthma in several studies.

Objective: To examine the hypothesis that polymorphism in the GSTP1 locus is associated with

asthma and related phenotypes in a population of subjects stratified by airway obstruction as well

as atopic status (IgE level and history).

Methods: Fifty patients with bronchial asthma and fifty normal control subjects were enrolled in

this study and were subjected to asthma questionnaire, spirometric studies, conventional polymer-

ase chain reaction (PCR) with enzyme digestion to determine GSTP1 genotype, serum immuno-

globulin E (IgE) measurement and eosinophilic count.
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Results: The genotype distributions for GSTP1 gene polymorphism in bronchial asthma subjects

and controls showed no significant difference. Both patients and controls were found to be in

Hardy-Weinberg equilibrium. Presence of the Val/Val genotype did not confer a decreased risk

for developing bronchial asthma (odd ratio (OR) = 0.34, 95% confidence interval (CI) = 0.06–

1.91, P = 0.0331). There was no significant relationship between GSTP1 genotypes and the severity

of asthma. In addition, the frequency of GSTP1 genotypes distribution achieved no significance

when assessed according to degree of airway obstruction or control of asthma. No associations

between the GSTP1 genotypes and atopic status or IgE level were identified.

Conclusion: The present study does not support a substantial role of GSTP1 gene polymorphism in

the development of asthma. However, large studies with accurate measurement of the environmen-

tal exposure are needed in order to reach adequate power to detect gene-environment interactions

and other genes involved in the antioxidant pathway.

ª 2011 Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V. All rights

reserved.
1. Introduction

Bronchial asthma is a complex chronic inflammatory disorder
of the airways characterized by reversible airflow obstruction,
airway hyperresponsiveness, and activation of inflammatory
cells and mediators in the airways. It is a complex multifacto-

rial disease with airway oxidative stress being a cardinal fea-
ture and an important pathway in asthma pathogenesis.1–3

Advances in asthma management are likely to depend on a

better understanding of how genetic factors influence suscep-
tibility to, outcome in3,4 and pharmacogenomics5 of this
disease.

Although asthma is polygenic, present knowledge suggests
that candidate genes include those that determine the key clin-
ical phenotypes of bronchial hyperresponsiveness and atopy.

Bronchial hyperresponsiveness could be considered as an exag-
gerated response to bronchoconstrictor stimuli. It reflects the
presence of bronchial inflammation and usually its severity
parallels that of asthma symptoms, although some individuals

with bronchial hyperresponsiveness remain asymptomatic.6

While host atopy is a recognized risk factor for airway
inflammation, atopy alone cannot cause asthma.6 Indeed,

although 30–50% of the population is atopic, only 5–7% will
develop asthma.1

The presence of inflammation in the airway is an important

biochemical feature of asthma. Oxidative stress, with the for-
mation of reactive oxygen species (ROS), is a key component
of inflammation.1,7 Although host antioxidant defenses should
detoxify ROS, individuals differ in their ability to deal with an

oxidant burden, and such differences are in part genetically
determined.7 Inability to detoxify reactive oxygen species
should perpetuate the inflammatory process, activate broncho-

constrictor mechanisms, and precipitate asthma symptoms.
Glutathione-S-transferase (GST) enzymes, which play an

important role in antioxidant defenses, may therefore influence

asthma risk. GST are recognized as a supergene family of
enzymes critical in cell protection from the toxic products of
reactive oxygen species (ROS)-mediated reactions, and modu-

lation of eicosanoid synthesis.6

Many candidate genes are implicated in the pathogenesis of
bronchial asthma.8–10 Glutathione S-transferase (GST) is such
a gene due to its role in protection against oxidative stress.11

The GST enzyme (E.C.2.5.1.18) superfamily consists of alpha,
kappa, mu, omega, pi, sigma, theta, and zeta isoforms in hu-
mans;11 enzymes encoded by members of the mu, theta, and
pi class GST gene families are critical in the protection of cells
from reactive oxygen species.7,12 GSTP1 – the predominant
GST expressed in human lung – is a candidate because it cat-

alyzes the detoxification of byproducts of lipid and DNA oxi-
dation.13,14 Genetic polymorphisms in GSTP1 have been
implicated as risk factors for asthma. Four alleles of this gene

have been identified: GSTP1*A (Ile105-Ala114), GSTP1*B
(Val105-Ala114), GSTP1*C (Val105-Val114), and GSTP1*D
(Ile105-Val114).14,15

A common polymorphism results in a substitution of valine
(Val) for isoleucine (Ile) at codon 105, which forms part of the ac-
tive site for binding of hydrophobic electrophiles, and affects sub-
strate-specific catalytic activity. Homozygotes for the Val allele

have been shown to be at reduced risk of asthma in some studies.16

In this context our aim was to study the genetic polymor-
phisms in GSTP1 in Egyptian patients suffering from bron-

chial asthma and comparing them with control subjects. We
have examined the hypothesis that polymorphism in the
GSTP1 locus is associated with asthma and related pheno-

types. We have determined the prevalence of these genotypes
in a population of subjects stratified by atopic status (IgE level
and history) as well as by airway obstruction.
2. Methods

This case-control study included fifty patients with bronchial
asthma and fifty normal subjects as control for the genotyping.
All subjects were lifelong nonsmokers and had not suffered a
viral infection within at least the 6 weeks preceding the study.

The study protocol was approved by the local ethics commit-
tee, and all subjects provided written informed consent.

All Patients with bronchial asthma were selected according

to GINA guidelines.17 The questionnaire, used in the present
study, was derived from the Asthma Therapy Assessment Ques-
tionnaire (ATAQ),18 asthma-related quality-of-life score,19 and

the Asthma Control Questionnaire (ACQ).20
2.1. Spirometric study

Spirometric measurements were made by using Chestgraph
HI-701 (version 1).

The ATS/ERS standards21,22 were followed for spirometric

measurements and reversibility test. The standards for choos-
ing FEV1, VC, FEV1/VC and reversibility are:
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(1) The best FEV1 and VC, not necessarily from the same

tracing.
(2) FEV1 is referred to VC rather than just FVC. Ratio of

FEV1 to VC is capable of accurately identifying more

obstructive patterns than its ratio to FVC, because
FVC is more dependent on flow.
The patients were either asthmatic and atopic or asthmatic
but nonatopic. Individuals were diagnosed as nonatopic on
the basis of having no past history of allergic symptoms and

normal IgE levels. Atopic individuals were defined by: (1) a per-
sonal history of allergies, seasonal rhinitis, eczema, or allergic
conjunctivitis and (2) total serum IgE level > 100 IU/ml. Pa-

tients were diagnosed as having asthma by: (1) a history of
wheezing, cough, dyspnea, and/or chest tightness; (2) spiromet-
ric demonstration of airflow obstruction reversible with a

b-agonist bronchodilator.21 Patients were classified into mild,
moderate and severe, and controlled and uncontrolled accord-
ing to GINA guidelines.17 Subjects with any other past or
current disorder, respiratory or nonrespiratory, were excluded.
2.2. Genotyping for Ile105Val GSTP1 polymorphism2

Genomic DNA was extracted from blood lymphocytes using
Wizard Genomic DNA purification kit (Promega) by alcohol
precipitation method and following instructions of the

manufacturer.
The GSTP1 c.313A fi G resulting in Ile105Val polymor-

phism was determined using PCR based restriction fragment
length polymorphism described by Harries et al.23 The oligo-

nucleotides used to amplify the target DNA of a 176 bp frag-
Figure 1 Captured gel image of GSTP1genotype polymorphism

using Aw261 RFLP. The PCR and digested products were

resolved in 3% agaorse gel stained with ethidium bromide and

visualized using UV transilluminator. Lane 1: DNA marker, Lane

2: Undigested PCR product (176 bp), Lane 3: Val/Val genotype

(homozygous digestion by Aw261 resulting in 85 and 91 bp

bands), Lanes 4 and 6: Ile/Val genotype (heterozygous digestion

by Aw261 resulting in 176 bp band of wild allele and 85 and 91 bp

bands of variant allele), Lane 5: (Ile/Ile) wild genotype and

absence of digestion by Aw261 restriction endonuclease.
ment are as follows F: ACCCCAGGGCTCTATGGGAA

and R: TGAGGGCACAAGAAGCCCCT. Genomic DNA
(100 ng) was used as a DNA template in a total of 50 ll reac-
tion containing 1· PCR master mix of master mix GoTaq�
Master Mix (Promega, Inc, Madison, USA) and 25 picomoles

of each primer. The reaction condition was as follows: initial
denaturation step at 97 �C for 5 min followed by 35 repetitive
cycles of denaturation at 94 �C for 30 s, annealing at 55 �C for

60 s and extension at 72 �C for 60 s. Final extension at 72 �C
for 5 min was also included. The PCR products were digested
in 25 ll for 1 h at 37 �C with 2U Alw261 (Fermentas, Life Sci-

ence, EU). The digested products were then resolved in 3%
agarose gel stained with ethidium bromide. The presence of
a-176 pb fragment indicated the wild-type genotype (Ile/Ile),

whereas the 85 and 91 pb fragments indicated the homozygous
polymorphic genotype (Val/Val). Heterozygote was recorded
in presence of all three fragments as shown in Fig 1. Negative
and positive controls were included in all reactions.

2.3. Serum IgE estimation

IgE was analyzed by nephelometery, in which polysterene par-
ticles coated with monoclonal antibodies to IGE are aggre-
gated when mixed with sample containing human IgE.

Method standardization was performed against the IFCC/
PCR/CAP reference preparation. The samples were automati-
cally diluted 1:20 to obtain a measuring range from 25.0 to
975.8 IU/mL. Reference interval in adults is <100 IU/mL.24

2.4. Eosinophilic count

Total and absolute eosinophil count were estimated using auto-
mated count on Sysmex counter and Romanowsky stain.25

2.5. Statistical analysis

The raw data were coded and transformed into coding sheets.

The results were checked. Then, the data were entered into
SPSS system files (SPSS package version 18) using personal
computer. Output drafts were checked against the revised
coded data for typing and spelling mistakes. Finally, analysis

and interpretation of data were conducted.
The following statistical measures were used:

� Descriptive statistics including frequency, distribution,
mean, and standard deviation were used to describe differ-
ent characteristics.

� Kolmogorov–Smirnov test was used to examine the nor-
mality of data distribution.
� Univariate analyses including: t-test, ANOVA test, and
Kruskal Wallis test were used to test the significance of

results of quantitative variables. Moreover, Pearson Chi-
Square test were used to test for significance among qualita-
tive variables.

� Genotypes frequency of GSTP1 gene polymorphism in
bronchial asthma subjects were tested for being expressed
in Hardy-Weinberg equilibrium using Chi-Square test.

� Odds ratio and 95% confidence interval were calculated to
estimate risk causedbyGSTP1gene polymorphismanddiffer-
ent studied parameters among cases with bronchial ashma.

� The significance of the results was at the 5% level of
significance.



Table 1 The personal characteristics of the studied cases and controls.

Personal characteristics Cases (n= 50) Controls (n = 10) Significance (P)

Sex

Males 28% 50% 0.172

Females 72% 50%

Age (years)

Range 18–63 19–63 0.573

Mean ± SD 38.4 ± 12 40.8 ± 14.4

BMI (kg/m2)

Range 17.0–50.2 17.9–37.9 0.770

Mean ± SD 28.8 ± 6.7 29.5 ± 6.6

X2: Pearson chi-square test.

Table 2 The laboratory and pulmonary function results among studied cases and controls.

Laboratory/pulmonary function results Cases (n = 50) Controls (n= 10) Significance (P)

WBC count/ml (·1000)
Min–Max 4.5–9.7 4.7–8.4 t = 0.46 (0.65)

Mean ± SD 6.8 ± 1.4 6.6 ± 1.3

Esinophils count/ml

Min–Max 135–840 130–694 t = 0.234 (0.023)*

Mean ± SD 448.2 ± 170.5 311.5 ± 159.9

Esinophils%

Min–Max 3–10 2–9 t = 2.61 (0.012)*

Mean ± SD 6.5 ± 1.9 4.7 ± 2.0

FEV1 (L)

Min–Max 0.6–4.4 2.1–4.7 t = 2.18 (0.033)*

Mean ± SD 2.8 ± 0.9 2.9 ± 0.9

FEV1%

Min–Max 27.6–116.9 88.8–102.9 t = 7.024 (<0.0001)*

Mean ± SD 71.5 ± 20.4 93.5 ± 3.9

FVC (L)

Min–Max 1.4–5.7 2.6–5.6 t = 0.94 (0.351)

Mean ± SD 3.5 ± 1.1 3.9 ± 1.0

SVC (L)

Min–Max 1.4–5.7 2.6–5.6 t = 0.842 (0.403)

Mean ± SD 3.6 ± 1.1 3.9 ± 1.0

FEV1/SVC

Min–Max 37.3–81.4 71.1–83.7 t = 6.538 (<0.0001)*

Mean ± SD 61.5 ± 14.2 77.6 ± 4.4

* Significant at P = 0.05.

Table 3 Distribution of GSTP1 Genotypes among patients with bronchial asthma and control subjects.

GSTP1 genotypes Cases (n= 50) Control (n= 50) P Odds ratio (95%CI)

Ile/Ile 22 (44.0%) 15 (30.0%) X2 = 2.62 (0.269)

Val/Val 3 (6.0%) 6 (12.0%) 0.34 (0.06–1.91)

Ile/Va 25 (50.0%) 29 (58.0%) 0.59 (0.23–1.49)

ORs were calculated against Ile/Ile.
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3. Results

The personal characteristics of the studied cases and controls

are summarized in Table 1. The cases and controls were
matched as regards age, sex and body mass index (BMI).
Table 2 shows the laboratory and pulmonary function
results among studied cases and controls.

Eosinophilic count and percent, FEV1, FEV1% pre-
dicted, and FEV1/SVC showed a statistically significant dif-

ference between cases and controls whereas FVC and SVC



Table 4 Distribution of GSTP1 Allele frequencies among patients with bronchial asthma and control subjects.

No. GSTP1 genotypes Allele frequencies

Ile/Ile Val/Val Ile/Val Ile Val

Cases 50 22 (44.0%) 3 (6.0%) 25 (50.0%) 0.69 0.31

Controls 50 15 (30.0%) 6 (12.0%) 29 (58.0%) 0.59 0.41

X2 = 2.17, P= 0.141.
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did not show a significant difference. We stratified the fifty

patients with bronchial asthma into ordered categories as
regards airway dysfunction. First, patients with mild asthma
(17 patients = 34%) to be compared with those with moder-

ate and severe asthma (33 patients = 66%) (Table 6).
Second, those having FEV1 P 80% predicted (16 pa-
Table 5 Laboratory and pulmonary function results of the studied

Laboratory/pulmonary function results GSTP1 genotype

Ile/Ile (n = 22) V

WBCs count/ml (·1000)
Min–Max 4.5–9.65 4

Mean ± SD 7.4 ± 1.5 5

Esinophils count/ml

Min–Max 135–840 2

Mean ± SD 482.4 ± 170.9 5

Esinophils%

Min–Max 3–9 6

Mean ± SD 6.5 ± 1.8 8

Ig E (IU/ml)

Min–Max 16.4–3070 2

Mean ± SD 672.1 ± 896.3 3

FEV1 (L)

Min–Max 0.92–4.43 1

Mean ± SD 2.4 ± 1.0 1

FEV1%

Min–Max 43.3–115.1 4

Mean ± SD 76.2 ± 22.3 6

FVC (L)

Min–Max 1.8–5.7 3

Mean ± SD 3.7 ± 1.3 3

SVC (L)

Min–Max 1.88–5.71 3

Mean ± SD 3.7 ± 1.3 3

FEV1/SVC

Min–Max 43.2–81.4 4

Mean ± SD 63.5 ± 10.9 5

Change of FEV1 (L)

Min–Max 0.02–0.73 0

Mean ± SD 0.32 ± 0.2 0

Change of FEV1%

Min–Max 0.01–34.1 1

Mean ± SD 15.6 ± 9.6 2

Change of FVC%

Min–Max 0.02–17.6 2

Mean ± SD 6.8 ± 5.8 7

KX2: Kruskal Wallis test.
tients = 32%) and those with FEV1 < 80% predicted (34

patients = 68%) (Table 7). Third, as regards control of
asthma, we classified the patients into patients with
controlled (10 patients = 20%), partially controlled (5 pa-

tients = 10%) and uncontrolled (35 patients = 70%) asthma
(Table 8).
cases according to GSTP1 genotypes.

Significance (P)

al/Val (n = 3) Ile/Val (n= 25)

.8–6.7 4.6–9.3 KX2 = 5.75 (0.056)

.9 ± 0.9 6.5 ± 1.4

83–643 139–749 KX2 = 2.199 (0.333)

14.7 ± 201.0 410.0 ± 165.2

–10 3–9 KX2 = 3.26 (0.196)

.7 ± 2.3 6.2 ± 1.9

62–375 16.4–4250 KX2 = 0.187 (0.911)

29.7 ± 59.7 848.2 ± 1279.2

.4–2.3 0.62–4.12 KX2 = 0.934 (0.627)

.9 ± 0.5 2.2 ± 0.9

5.9–75.7 27.6–116.9 KX2 = 2.03 (0.362)

2.1 ± 15.1 68.4 ± 18.8

.0–3.5 1.4–5.4 KX2 = 1.209 (0.546)

.3 ± 0.3 3.4 ± 1.0

.0–3.6 1.4–5.4 KX2 = 0.904 (0.636)

.3 ± 0.3 3.4 ± 1.0

5.7–67.4 37.3–77.9 KX2 = 0.925 (0.630)

7.1 ± 10.8 62.8 ± 12.0

.39–0.41 0.07–0.57 KX2 = 2.651 (0.266)

.4 ± 0.01 0.3 ± 0.1

7.6–28.1 0.02–36.5 KX2 = 2.641 (0.267)

1.8 ± 5.5 14.9 ± 9.5

.3–14.6 0–44.8 KX2 = 0.604 (0.739)

.3 ± 6.4 6.9 ± 9.1
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3.1. PCR results

Using Alw261 restriction enzyme analysis for the GSTP1 poly-
morphism three genotypes were found: Ile/Ile, Ile/Val, and

Val/Val. Samples showing a band of 176 bp band are homozy-
gous for the Ile allele (restriction site absent), samples revealing
85 and 91 pb fragments bp bands are homozygous for the Val

allele (restriction site present) and samples showing all three
fragments are heterozygous (Tables 3 and 4, Fig. 1).

3.2. Genotype distributions for GSTP1 gene polymorphism in
bronchial asthma subjects and controls (Table 3 and 4)

The genotype distributions for GSTP1 gene polymorphism in

bronchial asthma subjects and controls showed no significant
difference (P = 0.269) where the homozygous Ile/Ile genotype
was present in 22 cases (44%) and 15 of the control group

(30%),the Val/Val genotype was observed in only 3 cases
(6%) and 6 of the control group (12%), while the heterozygous
Ile/Val was found in 50% of cases (25 subjects) and 58% of the
Table 6 Association of GSTP1 genotypes with degree of severity o

GSTP1 genotypes Cases

Mild asthma Moderate/severe asthma

Ile/Ile 10 (58.8%) 12 (36.4%)

Val/Val 0 (0.0%) 3 (9.1%)

Ile/Val 7 (41.2%) 18 (54.5%)

P1: significance between mild and moderate/severe asthma.

P2: significance between cases and controls.

Table 7 Association of GSTP1 genotypes with degree of airway ob

GSTP1 genotypes FEV1% less than 80 FEV1% 80 or

Ile/Ile 12 (36.4%) 10 (58.8%)

Val/Val 3 (9.1%) 0 (0.0%)

Ile/Val 18 (54.5%) 7 (41.2%)

NA: cannot be calculated.

Table 8 Association of GSTP1 genotypes with age of onset, level o

Medical history GSTP1 genotype

Ile/Ile (n = 22) V

No. % N

Age of onset of asthma

Childhood 12 54.5 3

Adulthood 10 45.5 0

Control of disease

Uncontrolled 14 63.6 3

Partially controlled 2 9.1 0

Controlled 6 27.3 0

Severity of asthma

Mild 10 45.5 0

Moderate 4 18.1 2

Severe 8 36.4 1
controls (29 subjects) (Table 3). The allele frequencies of the

Val and Ile alleles in asthmatic patients (Table 4) were 0.31
and 0.69 respectively whereas in controls we reported frequen-
cies of 0.41 and 0.59 for Val and Ile alleles respectively with no
significant difference between both groups (P = 0.141). Both

patients and controls were found to be in Hardy–Weinberg
equilibrium (P = 0.233 and 0.159 respectively). Presence of
the Val/Val genotype did not confer a decreased risk for devel-

oping bronchial asthma (OR = 0.34, 95% CI = 0.06–1.91,
P = 0.0331). Moreover, no association was found between
GSTP1 gene polymorphism and degree of asthma severity

(P = 0.269) (Table 6).
Table 5 shows laboratory and pulmonary function tests

results of the studied patients with bronchial asthma accord-

ing to GSTP1 genotyping. There were no significant differ-
ences between patients with different GSTP1 genotypes as
regards WBCs count, eosinophilic count, eosinophilic per-
centage and IgE levels. Also there were no significant differ-

ences between patients with different GSTP1 genotypes as
regards variables related to the degree of airway obstruction
f asthma.

Control P1 P2

15 (30.0%) X2 = 3.23 (0.198) X2 = 2.62 (0.269)

6 (12.0%)

29 (58.0%)

struction.

more P Odds ratio (95%CI)

X2 = 3.23 (P = 0.198) 1.0

NA

2.14 (0.55–8.62)

f control and degree of severity of asthma.

al/Val (n= 3) Ile/Val (n = 25)

o. % No. %

100.0 11 44.0

0.0 14 56.0

100.0 18 72.0

0.0 3 12.0

0.0 4 16.0

0.0 7 28.0

66.7 11 44.0

33.3 7 28.0



Table 10 Atopic history of the studied patients with bronchial asthma according to GSTP1 genotyping.

Variables GSTP1 genotype Significance (P)

Ile/Ile (n= 22) Val/Val (n= 3) Ile/Val (n= 25)

No. % No. % No. %

History of atopy

Absent 13 59.1 1 33.3 15 60.0 X2 = 0.88 (0.67)

Present 9 40.9 2 66.7 10 40.0

Significance: chi-square test.

Table 9 IgE level according to Genotype distributions for GSTP1 gene polymorphism in patients with bronchial asthma.

GSTP1 genotypes Ig E P Odds ratio (95%CI)

Less than 100 More than 100

Ile/Ile 7 (31.8%) 15 (68.2%) X2 = 1.90 (0.386) 1.0

Val/Val 0 (0.0%) 3 (100.0%) 0.0 (0.0–6.6)

Ile/Val 5 (20.0%) 20 (80.0%) 0.54 (0.12–2.41)
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or response to bronchodilators including FEV1, FEV1% of
predicted, FEV1/SVC, change of absolute FEV1 and
FEV1% of predicted after administration of inhaled

bronchodilator.
3.3. Association of GSTP1 genotypes with severity of airway
obstruction

The frequencies of GSTP1genotypes in the studied patients

with bronchial asthma achieved Hardy–Weinberg equilib-
rium. We stratified the fifty patients with bronchial asthma
into ordered categories as regards airway dysfunction. First,

patients with mild asthma (17 patients = 34%) to be com-
pared with those with moderate and severe asthma (33 pa-
tients = 66%) (Table 6). Second, those having
FEV1 P 80% predicted (16 patients = 32%) and those with

FEV1 < 80% predicted (34 patients = 68%) (Table 7).
Third, as regards control of asthma, we classified the patients
into patients with controlled (10 patients = 20%), partially

controlled (5 patients = 10%) and uncontrolled (35 pa-
tients = 70%) asthma (Table 8). The data were inspected
according to the stratification to determine whether GSTP1

genotypes were associated with severity of airway dysfunc-
tion. Table 6 shows the GSTP1 genotype frequencies accord-
ing to the severity of asthma. Chi - square test analysis
showed absence of significant relationship between GSTP1

genotypes and the severity of Asthma. In addition, the fre-
quency of GSTP1 genotypes distribution achieved no signifi-
cance when assessed according to degree of airway

obstruction or control of asthma (Tables 7 and 8). The rela-
tive frequencies of the GSTP1 Ile105 and GSTP1 Val105 al-
leles in the groups stratified by severity of airway obstruction

were not found to be significantly different.

3.4. Association of GSTP1 genotypes with atopy

As regards atopy we repeated stratification of patients: First,
those with IgE < 100 (12 patients = 24% patients) and those
with IgE > 100 (38 patients = 76%). Second, those with
history of atopy (21 patients = 42%) and those without his-
tory of atopy (29 patients = 58%). Table 9 shows GSTP1
genotype frequencies in relation to IgE level. Frequencies for

GSTP1 genotypes in subjects with IgE levels < 100 IU/ml
and >100 IU/ml were not significantly different (P = 0.44).
Table 10 shows association of GSTP1 genotypes with atopic

history. No associations between the GSTP1 genotypes and
atopic status were identified.
4. Discussion

Asthma is a complex multifactorial disease with an obvious ge-

netic predisposition, immunological aberration, and involve-
ment of environmental factors. Polymorphisms of the GST
genes are known risk factors for some environmentally-related

diseases. Several population studies have linked genetic varia-
tion in human GSTP1 with enhanced susceptibility to asthma
and the severity of symptoms.26–28

In 2000 Fryer et al.14 identified associations between

GSTP1 genotype and both bronchial hyperresponsiveness
and atopy. Ile105/Val105 genotype was linked with a signifi-
cantly reduced risk of airway reactivity/obstruction that was

intermediate to that with the GSTP1 Ile105/Ile105 and GSTP1
Val105/Val105 genotypes. They suggested that GST genes are
candidates for having a role in bronchial hyperresponsiveness

because the enzymes they encode modulate ROS levels.29 Fryer
et al.14 hypothesized that individual ability to detoxify ROS
and their products, determined by polymorphism in genes such
as those for GST, contributes to the development of bronchial

hyperresponsiveness and asthma. They reported that the pres-
ence of GSTP1Val/Val genotype conferred a sixfold lower risk
of asthma than did GSTP1Ile/Ile and that the frequency of

GSTP1Val/Val genotype correlated negatively with severity
of airway dysfunction.

In 2001 Hemmingsen et al.13 suggested that GSTP1 (Val

105- Ala 113) and possibly GSTP1 (Val105-Val114) are protec-
tive against asthma and related phenotypes.

In 2000 Spiteri et al.6 reported that the association between

the GSTP1 genotype and severity of airway dysfunction
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remained significant after correction for potential confounding

factors (age, sex, skin prick tests, and IgE levels). They sug-
gested that GSTP1 genotypes have potential implications for
individual susceptibility to the damaging effects of ROS.

In 2004 Aynacioglu et al.27 have also reported that the fre-

quency of GSTP1 Val homozygote was significantly lower in
the group of patients with asthma than in the control individ-
uals (3.8% versus 12.1%, P = .01).

In 2006 Romieu et al.16 found that asthmatic children with
glutathione S-transferase P1 Valine/Valine genotypes appear
more susceptible to developing respiratory symptoms related

to ozone exposure.
In 2007 Hanene et al.30 in their works on Tunisian children,

suggested the presence of associations of GSTM1, T1, and P1

with childhood asthma and atopy. As for the GSTP1, they
found significant differences between cases and control regard-
ing the genotype frequencies of the GSTP1Ile105Val polymor-
phisms. They found that asthmatic children have low

frequency of GSTP1Val allele compared with healthy children
(P = .002).

In 2008 Imboden et al.31 suggested that GSTP1 Ile105Val

genotype strongly determines the progression of BHR to phy-
sician-diagnosed asthma in the general population.

In 2009 Babusikova11 suggested that increased oxidative

stress and GST-T1 genetic polymorphism are associated with
children asthma and atopy and, therefore, may contribute to
the pathogenesis of asthma.

In 2010 Piacentini et al.2 studied the gene-environment

interactions in a multicentre Italian field study and reported
that GSTA1, GSTM1, GSTO2 and GSTT1 genotypes found
in the group of asthmatic patients seem to differ from the fre-

quencies of those found in the control group.
In 2008 Jiansheng Zhou et al.32 performing their work in

Mouse Model of Asthma demonstrated that the ability of

GSTP1 to attenuate allergic responses directly correlated with
the levels of GSTP1 expression in the mouse lung. They
defined GSTP1 as an important modulator of allergic airways

disease.
In the present study, the homozygous genotype (Ile/Ile) was

present in 44% of the patients and in 30% of the controls, the
Val/Val genotype was observed in only 6% of patients and

12% of controls while the heterozygous genotype Ile/Val was
found in 50% of patients and 58% of controls with no signif-
icant difference between both groups (P = 0.331) (Table 1).

The present study took place between 2007 and 2011. In
2010 Minelli et al.8 performed their meta-analysis using a total
of 14 published and 3 primary studies with 3363 affected and

14 442 non-affected. Although these studies suggested a possi-
ble protective effect of the Val allele, but heterogeneity was
extreme. Few studies of them evaluated wheezing and BHR

and most reported no associations, although weak evidence
was found for positive associations of GSTM1 null and
GSTP1 Val allele with wheezing and a negative association
of GSTP1 Val allele with BHR. Minelli et al.8 findings did

not support a substantial role of GST genes alone in the
development of asthma.

Mak et al.33 investigated the association of GST gene poly-

morphisms and its enzyme activity with the risk of asthma in
Hong Kong Chinese adults. They reported that the distribu-
tion of various genotypes or alleles of the GSTT1, GSTM1

and GSTP1 was not significantly different between patients
with asthma and healthy controls.
Presence of the Val/Val genotype in our study did not con-

fer a decreased risk for developing bronchial asthma
(OR = 0.34, 95% CI = 0.06–1.91, P = 0.0331); also, no asso-
ciation was found between GSTP1 gene polymorphism and
degree of asthma severity. Minelli et al.8 also reported a non

significant risk in his Meta-analyses on GSTP1 Ile105Val poly-
morphism in a total of 14 published and 3 primary studies with
3363 affected and 14 442 non-affected individuals, where OR

equaled 0.79 (CI = 0.57–1.08) for Val/Val vs Ile/Ile.8

Several studies were not in agreement with our results sug-
gesting that subjects with the GSTP1 Val/Val genotype have

reduced risk of asthma compared to Ile/Ile subjects.6,16,34–36

Romieu et al.16 also stated that children with GSTP1 Ile/Ile
genotype were more likely to have moderate-to-severe asthma

(P = 0.009) than children with GSTP1 Ile/Val or Val/Val
genotypes.

Many factors could account for the observed discrepancies
among studies with the racial and environmental differences

among the populations being highly significant contributors.
Piacentini et al.2 analyzed the possible association between

polymorphism in several cytosolic GST genes including

GSTP1, air pollution and asthma development. Among all
the polymorphisms studied, the frequencies of GSTA1,
GSTM1, GSTO2 and GSTT1 genotypes but not GSTP1

genotypes found in the group of asthmatic patients seem to
differ from the frequencies of those found in the control
group. They concluded that the final result of their research
should hopefully lead to a better understanding of gene-envi-

ronment interactions, so allowing earlier prediction and diag-
nosis of asthma disease and providing an efficient means of
prevention.

In the present study both patients and controls were found
to be in Hardy Weinberg equilibrium (P = 0.233 and 0.159
respectively). This was in agreement with Fryer et al.14 who

reported that allele frequencies achieved Hardy–Weinberg
equilibrium. The Hardy–Weinberg equilibrium states that both
allele and genotype frequencies in a population remain constant

– that is, they are in equilibrium – from generation to genera-
tion unless specific disturbing influences are introduced. Those
disturbing influences include non-random mating, mutations,
selection, limited population size, ‘‘overlapping generations’’,

random genetic drift, gene flow andmeiotic drive. Genetic equi-
librium is an ideal state that provides a baseline against which
to measure change.37

4.1. Association of GST genotypes with atopy

In the present study atopy and eosinophilia were significantly
associated with asthma.

Asthma and allergy represent complex phenotypes. Strong

evidence for genomic factors predisposing subjects to asth-
ma/allergy is available. However, methods to utilize this infor-
mation to identify high risk groups are variable.38

We stratified our patients into asthmatic and atopic (42%),

and asthmatic but not atopic (58%). We did not identify signif-
icant associations between GSTP1 and atopy in our study pop-
ulation. Also, in our study there was no significant difference

in subjects carrying different GSTP1 genotypes as regards lev-
els of IgE (whether > or <100 IU/ml) P = 0.44. The sample
size of fifty patients with asthma limited our power to detect

statistically significant associations. This is not in agreement
with Fryer et al.14 who reported that subjects with IgE levels



The association between glutathione S-transferase P1 polymorphisms and asthma in Egyptians 113
>100 IU/ml demonstrated significantly reduced GSTP1

Val105/Val105 frequencies as compared with those with IgE
levels <100 IU/ml.

In contrary to our findings, Tamer et al.36 found that sub-
jects with the GSTP1 homozygous Val/Val genotype had a

3.55 fold increased risk of having atopic asthma compared to
nonatopic asthma (OR = 3.55; 95% CI, 1.10–12.56). These
results suggested that the GSTT1 and GSTM1 null genotypes

and the GSTP1 Val/Val polymorphism may play important
roles in asthma pathogenesis. It is possible that intermediate
electrophilic metabolites, arising in the first phase of detoxifi-

cation, are not metabolized by GST enzymes in asthmatic
patients and are not excreted. These intermediate metabolites
may damage cells and generate oxidative stress, and so con-

tribute to the pathogenesis of asthma.36

A variety of review papers describe genes associated with
allergy/asthma.38–41 Ober et al.40 list genes associated with
asthma or atopy in more than 10 studies. Joubert et al.9 sug-

gested that GSTP1’s role in xenobiotic metabolism and antiox-
idation is consistent with asthma etiology. They suggested that
variation in this gene may result in differing metabolism of

environmental toxins across individuals. They speculated that
individuals with multiple risk alleles across GSTP1 genes are
more susceptible to harmful effects of environmental toxins,

and that this sensitivity may contribute to the development
of asthma or asthma exacerbation.

Spiteri et al.6 showed that the frequency of the GSTP1 Val/
Val genotype was reduced in atopic subjects compared with

nonatopic control. They hypothesized that susceptibility to
persistent airway inflammation in atopic individuals is charac-
terized by an inherited deficiency in the effectiveness of detox-

ification of inhaled irritants and products of oxidative stress
such as reactive oxygen species (ROS).

4.2. Eiosinophilic count

In the present study there were statistically significant differ-

ence between asthmatic patients and control as regards eosin-
ophilic count and eosinophilic percentage. However there was
no association between them and GSTP1.

An imbalance between the oxidative forces and the antiox-

idant defense systems favoring an oxidative injury has been
implicated in the pathogenesis of asthma.42 Oxidative injury
leads to increased lipid peroxidation, increased airway reactiv-

ity and secretions, production of chemoattractant molecules,
and increased vascular permeability,7,43 which collectively lead
to an augmentation of the existing inflammation that is a hall-

mark of asthma. There is ample evidence supporting the pres-
ence of a systemic oxidative injury in asthma. An increased
production of reactive oxygen species was shown for eosino-

phils and macrophages obtained from the peripheral blood
of patients with asthma.44,45

It was found that the increased oxidative burden in asthma
was the result both of increased oxidative stress as evidenced

by increased malondialdehyde; and of decreased antioxidant
capacity as evidenced by the lowered reduced glutathione.46

GSTP1 works by catalyzing the detoxification of base prope-

nals that arise from DNA oxidation forming reduced glutathi-
one i.e. it is responsible for the antioxidant defense system.29

This may explain absence of correlation between eosinophilic

count and GSTP1 as each of them works on the different limb
of the oxidants/antioxidant system.
4.3. Association of GSTP1 with airway obstruction and severity
of asthma

In the present study, as expected, there were significant differ-

ences in FEV1 values between the asthmatic and control
groups. We examined the relationship between GSTP1 geno-
types and ordered categories representing various methods to

classify airway dysfunction. Patients with mild asthma were
compared to those with moderate and severe asthma. Also we
repeated stratification of patients into two groups: those having
FEV1 P 80% predicted and those with FEV1 < 80% pre-

dicted. Finally as regards control of the asthma, we classified
the patients into patients with controlled, partially controlled
and uncontrolled asthma. We did not find any association be-

tween GSTP1 genotypes and either form of degree of airway
dysfunction in asthma.

Although the val105 val genotype of the GSTP1 enzyme was

found to be a significant determinant of the oxidative burden in
the systemic circulation,8 Dut et al.3 reported that it had no ef-
fect on the airways. Dut et al.3 examined the variables that had

a potential to influence the oxidative stress such as age, sex, age
of onset, skin test positivity, IgE levels, eosinophil counts,
smoke exposure, pet ownership, family history of atopic dis-
eases, asthma diagnosis, asthma severity, and polymorphisms

at GSTM1, GSTT1, and GSTP1 genes. They concluded that
the only factor that determines the oxidative stress is the pres-
ence of the airways disease, i.e. asthma. This is consistent with

our finding as regards absence of correlation between polymor-
phism at GSTP1 gene and airway dysfunction which is related
to oxidative stress and inflammation. In this respect, it was

found to be some difference between the systemic circulation
and the airways. Dut et al. used exhaled breath condensate as
a noninvasive method to investigate the oxidative burden in air-
ways. They showed that in addition to the systemic level, there

is a very strong oxidative burden at the local level, i.e., in the
airways of asthmatic children.3 The increased oxidative burden
in the airways has two components: increased oxidative stress

as evidenced by increased malondialdehyde and decreased anti-
oxidant capacity as evidenced by the lowered glutathione.3

Kelly et al. in a study involving 20 asthmatics and 20 controls,

had found that oxidized glutathione content in bronchoalveo-
lar lavage was higher in asthma patients than in controls
whereas reduced glutathione content was similar.47 As reduced

glutathione is the factor that is affected by GSTP1, this explains
absence of GSTP1 polymorphism effect on airway dysfunction.
Any therapeutic approach targeting the oxidative burden in
asthma should definitely take this into account because abolish-

ing the oxidative insult in both the systemic and local compart-
ments may be necessary to achieve a full therapeutic effect.

In agreement to our findings, Minelli et al.8 performed a

systematic review and meta-analysis including unpublished
data from the large Avon Longitudinal Study of Parents and
Children (ALSPAC). They reported lack of evidence of an

important role of GST genes in the development of asthma,
wheezing and bronchial hyperresponsiveness which is in agree-
ment with negative findings on lung function in children for all
three GST genes from the ALSPAC, although an association

between GSTM1 and GSTP1 genes and lung function in child-
hood has been previously suggested.48

In their systematic review, Minelli et al.8 found that few

studies evaluated the effects of GSTP1 on wheezing and bron-
chial hyperresponsiveness, and the findings were in opposite
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directions for the two outcomes. The Val allele was protective

for bronchial hyperresponsiveness, in agreement with the
results for asthma, but associated with increased risk of wheez-
ing. These effects were suggested by two relatively small studies,
but the large ALSPAC cohort did not provide convincing

evidence of any association with either outcome. Moreover,
the results from the ALSPAC, which represented the largest
sample in the meta-analysis, were negative. On the other hand,

GST genes could interact with genes coding for other detoxify-
ing enzymes which induced in response to oxidative stress. Sup-
porting this hypothesis is some evidence of interaction between

GSTM1 null genotype and NQO1 Pro187Ser polymorphism on
asthma.34

This systematic review8 only focused on asthma risk, and

did not consider the possible association of GST genes with
asthma severity in patients affected by the disease. A finding
from the Southampton study was the association of the
GSTT1 null allele with an increased severity score in patients

with asthma. There is evidence suggesting that GST genes, in
particular GSTM1 and GSTP1, might also interact with air
pollution and tobacco smoke exposures in exacerbating respi-

ratory symptoms and decreasing lung function in asthmatic
individuals.49,50

In contrast to our findings, Fryer et al.14 found that com-

pared with GSTP1 Ile105/Ile105, GSTP1 Val105/Val105 was
associated with a decreasing severity of bronchial hyperrespon-
siveness. The association between GSTP1 Val105/Val105 and
airway obstruction/reactivity remained significant after correc-

tion for atopic status, age, and gender. Compared with GSTP1
Ile105/Ile105, the heterozygote genotype GSTP1 Ile105/Val105
was linked with a significantly reduced risk of airway reactivity/

obstruction that was intermediate to that with the GSTP1
Ile105/Ile105 andGSTP1Val105/Val105 genotypes. These find-
ings are compatible with their view that the association of

GSTP1 genotypes with clinical asthma phenotypes is predomi-
nantly with bronchial hyperresponsiveness. An underlying
cause for absence of association between airway dysfunction

and GSTP1 genotypes in our study may be the relatively small
number of patients with asthma.

Spiteri et al.6 found that trend analysis showed a significant
decrease of GSTP1 Val/Val (with parallel increase of GSTP1

Ile/Ile) genotype frequency with increasing severity of airflow
obstruction/bronchial hyperresponsiveness.
5. Conclusion

The present study does not support a substantial role of

GSTP1 gene polymorphism in the development of asthma.
Also, it is not related to the severity of asthma, degree of air-
way obstruction and/or atopy. However, large studies with

accurate measurement of the environmental exposure are
needed in order to reach adequate power to detect gene–envi-
ronment interactions and other genes involved in the antioxi-

dant pathway.
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