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Abstract Background: Nucleophosmin/B23 (NPM) is a 38 kDa molecular phosphoprotein

involved in ribosome assembly and transport. Findings have revealed a complex scenario of

NPM functions and interactions, pointing to proliferative and growth-suppressive roles. NPM

appears to be more abundant in tumour cells than in normal cells.

Objective: The aim of the work was to identify cytoplasmic localization of NPM using bone mar-

row clot biopsy and correlate it with disease and patient characteristics and the known prognostic

factors, induction chemotherapy response and survival after 12 months of follow up.

Methods: The present work was undertaken on 50 cases of normal karyotype acute myeloid leu-

kaemia classified according to modified FAB system. Bone marrow aspirates were obtained, clotted

and a formalin-fixed, paraffin embedded cell block was prepared. Sections were immunostained for

NPM.

Results: Twenty-six cases (52%) had cytoplasmic positivity (cNPM+) while the remaining 24 cases

(48%) had nuclear restricted NPM (cNPM�). cNPM positivity was significantly variable among

the different FAB subtypes being the most prevalent among M5 and M2 cases, was associated with

high blast and white blood cell count at diagnosis. It was significantly correlated with CD34
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negativity, CD14 positivity but not with FLT3 mutations. Clinically no relation between cNPM

positivity and age, sex nor extramedullary involvement of the studied patients was proven. The

cytoplasmic positivity for NPM was significantly correlated with increased survival and better out-

come after cycles of chemotherapy. So it can be regarded as a good prognostic marker. FLT3 pos-

itivity affected the survival of the cNPM negative group of patients remarkably, denoting the

importance of combining both their statuses to predict outcome of therapy and survival.

Conclusion: Our data confirm that cytoplasmic NPM1 immunoreactivity is predictive of NPM1

mutations and can be included in the routine diagnostic and prognostic workup of AML.

ª 2011 Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V. All rights

reserved.
1. Introduction

Acute myeloid leukemia (AML) is clinically, cytogenetically,
and molecularly heterogeneous.1 About 30% of cases carry

recurrent chromosomal abnormalities that identify leukemia
entities with distinct clinical and prognostic features,2 and
10–15% of AMLs have nonrandom chromosomal abnor-

malities. In cytogenetic analysis, 40–50% of AMLs show
normal karyotype (AML-NK) and, biologically and clini-
cally, are the most poorly understood group.1,3,4 Attempts
to stratify AML-NK using gene microarrays succeeded in

associating gene-expression patterns with differences in
response to treatment, but no specific genetic subgroups
emerged.5,6

Molecular analyses of AML-NK identified several muta-
tions that target genes encoding for transcription factors
(AML1 and CEBPA: 2–3% and 15–20% of cases, respec-

tively),7–10 receptor tyrosine kinases (FLT3 and KIT:
25–30% and 1%, respectively),11–13 and the RAS genes
(10%),14 as well as a partial tandem duplication of MLL gene

(MLL-PTD: 5–10%).15–17

Our understanding of acute myeloid leukemia (AML) has
improved dramatically in the past years with the discovery
by Falini et al.18 that Nucleophosphamin 1 (NPM1) is mutated

in around half of cases with a normal karyotype, making it the
most common molecular lesion identified in this disease to
date.

Nucleophosmin is a highly conserved phosphoprotein that
is ubiquitously expressed in tissues.19 It is one of the most
abundant of the approximately 700 proteins identified to date

in the nucleolus by proteomics.20,21 Although the bulk of
NPM resides in the granular region of the nucleolus,22,23 it
shuttles continuously between nucleus and cytoplasm,23,24 as

proven by interspecies heterokaryon assays. NPM nucleocyto-
plasmic traffic is strictly regulated, since important NPM func-
tions, including transport of ribosome components to the
cytoplasm and control of centrosome duplication, are closely

related to its ability to actively mobilize into distinct subcellular
compartments.25

The NPM1 gene, mapping to chromosome 5q35 in humans,

contains 12 exons.26 It encodes for 3 alternatively spliced
nucleophosmin isoforms: B23.1, B23.2, and B23.3.27,28

Functions of NPM1 are not completely understood, it is

thought to play an important role in centrosome assembly,
and has RNA binding and chaperone activity. It regulates
the Arf-p53 pathway, suggesting that NPM1 has tumor-
suppressor activity, a hypothesis supported by murine models

of NPM1 loss of function.29
NPM1 mutations occur in 50–60% of adult acute myeloid
leukemia with normal karyotype (AML-NK) and generate
NPM mutants that localize aberrantly in the leukemic-cell

cytoplasm, hence the term NPM-cytoplasmic positive (NPMc
AML).30

The various NPM1 mutations identified in AML are het-
erozygous and involve the C-terminal region encoded by exon

12. These not only disrupt key tryptophan residues that are
required for localization to the nucleolus, but also generate a
nuclear export signal leading to delocalization of mutant

NPM1 to the cytoplasm where it sequesters residual wild-type
protein from the nucleus. As an alternative to sequence analy-
sis, the presence of an underlying NPM1 mutation can be in-

ferred by immune-histochemistry, which shows an abnormal
cytoplasmic localization of the protein in leukemic blasts.31

NPM1 mutations are reliably identified by various molecu-
lar biology techniques,32,33 which also allow simultaneous

detection of NPM1 and FLT3-ITD or CEBPA mutations34,35

(all prognostically relevant in AML-NK).10

Immunohistochemical detection of cytoplasmic NPM in

AML is predictive of NPM1 mutations.36 The main advanta-
ges of immunohistochemistry are simplicity, low cost, and abil-
ity to correlate cytoplasmic NPM with morphology and

topographic distribution of leukemic cells. It is the first-choice
technique for detecting NPM1 mutations in cases of dry-tap or
small biopsies (e.g., skin involvement in myeloid sarcoma),37

and also helps rationalize cytogenetic/molecular studies in
AML.36

2. Methods

The present study was conducted on 50 newly diagnosed (de
novo) patients with Acute Myeloid Leukemia with normal
karyotype of all FAB subtypes except M3. Subjects were taken

from the Medical Research Institute hospital in Alexandria.
Consent of the patient was required for participation in the
study.

Cases of AML were taken consecutively, only adult cases
were included, i.e., 18 years and above, both sexes were
included in the study. AML secondary to MDS, AML therapy

related, and cases that have received any type of chemotherapy
were excluded.

The treatment schedule for newly diagnosed patients con-

sisted of induction cycle(s) using the (3 + 7 protocol) consist-
ing of a combination of Cytosine arabinoside (Ara C), and an
anthracyclin. Patients less than 50 years of age received late
consolidation cycles with a high dose Ara-C regimen with or

without novantrone. Patients more than 50 years received
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either low dose or high dose regimens for consolidation
according to their general conditions. Some patients above
60 years of age did not take any chemotherapy along the

course of the disease; only supportive measures were adminis-
tered to them. Patients not responding to 2 cycles of the
conventional (3 + 7) protocol were treated with high dose

Ara-C and mitoxantrone (novantrone) (HAM regimen) and
were then filed for bone marrow transplant if possible.

2.1. Follow up of patients

For all patients in the study, a follow up of 12 months was
included to detect the effect of cNPM on response to therapy.

Cases that died during induction therapy, or cases who did not
receive chemotherapy were non-evaluable cases and were
excluded from the follow up study.

2.2. Methods

All newly diagnosed AML cases in the study were subjected to:

Detailed history taking and complete clinical examination.
Laboratory investigations including:

(a) Diagnostic investigations:
1. Complete blood picture,38 bone marrow aspiration

and examination39 and cytochemical stains.40

2. Immunophenotyping41: B lymphoid markers: CD19,
CD10 and cytoplasmic CD22, T-lymphoid markers:
CD2, CD7, myeloid markers: CD13, CD33, CD117
and cytoplasmic myeloperoxidase, non-lineage spe-

cific markers which are expressed in haematopoietic
progenitor cells: CD34, HLADr (commonly positive)
inAMLM3andTdT.A second line ofmAbwere used

to further classify AML cases such as CD14 to lineate
monocytic differentiation for all AML cases, CD41,
CD42 and CD61 for cases of megakaryocytic leuke-

mia and antiglycophorin A and CD36 for erythroid
leukemia and expression of CD19 in M2 AML.

(b) Routine investigations: For all patients the following was

done at diagnosis: Blood chemistry including liver func-
tion test (AST, ALT),42 serum uric acid, kidney function
tests (urea and creatinine),43 serum albumin and
LDH.43 ESR and C-reactive protein. CSF examination

for blast cells and culture, ultrasonographic examination
of the abdomen and chest X-ray were done to all patients.

(c) Conventional cytogenetics: Cytogenetic study was done;

the karyotype of the blast cells was determined by band-
ing techniques to detect visually accessible aberrations.
G banding either direct or after 24 h culture in RPMI

without stimulation with methylacetic acid fixation was
done to cases. Cases with any visible abnormality in
karyotype were excluded from the study.44

(d) FLT3 mutational status was retrieved from patients’
records.

2.3. Morphologic examination and NPM immunostaining of
bone marrow clot biopsy18,45

Cell blocks of bone marrow clot biopsy obtained from each
patient were processed. They were routinely fixed in 10%

neutral buffered formalin and embedded in paraffin. Tissue
sections (4 lm) were routinely stained with Haematoxylin
and Eosin (H&E) stain to confirm the diagnosis.

Similar sections were deposited on SuperFrost Plus Slides

(Menzel-Gläser, Braunschweing, Germany). Immunostaining
was performed using a standard avidin-biotin-peroxidase com-
plex method. Antigen retrieval was accomplished by boiling in

10 mM citrate buffer, pH 6 for 10–20 min. The slides were
incubated with anti-NPM antibodies (mouse monoclonal
immunoglobulin (Ig)G/j; NA24; ready to use; Lb Vision

Corporation, USA). Negative controls included omitting the
primary antibody and substituting it with a normal mouse
IgG. A section of NPM positive chronic tonsillitis was used
as a positive control.

Interpretations were performed blind to patient back-
ground information. The sub cellular distribution of NPM
(i.e., restriction to the nucleus or presence in the cytoplasm)

was assessed without knowledge of the FAB subtype, or
molecular and immunophenotyping characteristics. Cases were
classified as either NPMc+ (positive for cytoplasmic NPM) or

NPMc� (negative for cytoplasmic NPM). No grading system
for the intensity of immunostaining was adopted.

The aim of the present work is to identify the presence of

cNPM in 50 primary diagnosed AML cases with normal
karyotype. The NPM cytoplasmic localization is correlated
with: the FAB typing, the known prognostic factors, induction
chemotherapy response and survival after a follow up period

of 12 months.

2.4. Methods of statistical analysis

After data entry into a specially designed sheet using Microsoft
Excel, a print out of the data was thoroughly revised and data
entry mistakes were corrected. Then the file was transferred into

Statistical Package for Social Science (SPSS) version 17 format
and data explore was carried out. Descriptive statistics were
carried out for scale variables and they were compared using

independent Student’s t-test, while categorical variables were
tested for association using cross-tabulation with v2 testing.
Survival analysis using Kaplan–Meier statistics and compari-
son of factors was carried out by Log Rank (Mantel–Cox). Sur-

vival and hazard functions were also plotted with cytoplasmic
NPM as a comparison factor. The study adopted a 0.05 level
of significance (alpha error) and beta error was set to be 20%.
3. Results

3.1. Characteristics of the total cohort of AML patients

The present study included 50 newly diagnosed adult patients

with de novo AML. The ages of the patients ranged from 19 to
85 years with a mean of 52.44 ± 17.96 years. Of all AML
patients in the study, 31 (62%) were females and 19 (38%)

were males. Sixteen cases (32%) cases show extra-medullary
infiltrations.

3.2. FAB classification

3.2.1. Morphologic examination

Morphologic features of the neoplastic population in bone

marrow aspiration cell blocks helped by the peripheral blood
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film, flow cytometry and genetics results classified the studied
cases accurately into the following subtypes:
3.2.1.1. Undifferentiated M0, 6 cases (12%). These were cases
showing no signs of maturation (Fig. 1a).

3.2.1.2. M1 AML with minimal maturation, 9 cases (18%).
‘‘Thumbprinting’’ – an indentation of the nuclear contour is
noted (Fig. 1b).

3.2.1.3. M2 AML with maturation, 6 cases (12%). Monocytes
comprise <20% of bone marrow cells (Fig. 1c).
Figure 1 H&E stain: (a) M0 acute myeloid leukaemia. ·1000. (b

promyelocytes (arrow) having abundant cytoplasm with variable size, m

(arrow head). ·1000. (d) M4 note giant multilobulated nuclei (ar

hemophagocytosis (arrow heads). ·1000. (f) M6 with erythroblastic dif

megakaryocytes (arrows). ·400. (h) Biphenotypic acute leukaemia (BA
3.2.1.4. M4 acute myelomonocytic leukaemia, 5 cases (10%).

Acute leukemia with differentiation along both myeloid and
monocytic lines (Fig. 1d).
3.2.1.5. M5 AML (monocytic), 20 cases (40%). Large mono-
blasts and promonocytes with abundant cytoplasm. Granulo-
cytes <20% of cells (Fig. 1e).
3.2.1.6. M6 acute erythroid leukaemia, 1 case (2%). In acute
erythroid leukemia, erythroid elements make up more than
50% of the cells in the bone marrow (Fig. 1f).
) M1, note thumbprinting (arrows). ·1000. (c) M2 prominent

arkedly lobulated and invaginated nuclei. Note abnormal mitosis

row) with the prominent nucleoli. ·1000. (e) M5 with evident

ferentiation and nucleated RBC (arrow heads). ·1000. (g) M7 with

L), mixture of small and large blasts. ·400.
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3.2.1.7. M7 acute megakaryoblastic leukaemia, 2 cases (4%).

AML with >30% megakaryoblasts (Fig. 1g).

3.2.1.8. Biphenotypic acute leukaemia (BAL) 1 case (2%).

Acute leukemias having features characteristic of both the
myeloid and lymphoid lineages and for this reason are desig-
nated mixed-lineage, hybrid or biphenotypic acute leukemias
(BAL) (Fig. 1h).

3.2.2. Haematologic profile

For the total cohort of AML patients, the hemoglobin
concentration ranged from 3 to 10 g/dl with a mean of

6.44 ± 1.50 g/dl. The platelet count ranged from 2 · 109 l�1

to 91 · 109 l�1 with a mean of 20.46 ± 23.458 · 109 l�1, while
the total leukocytic count ranged from 1.2 · 109 l�1 to

222 · 109 l�1 with a mean of 71.116 ± 51.895 · 109 l�1. The
percentage of the bone marrow blasts ranged from 22% to
98% with a mean of 59.16 ± 24.73%.

3.2.3. Analysis of NPM mutation

3.2.3.1. Immunostaining of NPM. A variable pattern and sub-
cellular localization of NPM immunostaining was noted
among the 50 newly diagnosed AML patients with normal
karyotype included in the study. A cytoplasmic expression

(NPMc+) with or without nuclear labeling was identified in
26 cases (52%) (Fig. 2a). The NPMc+ cases were easily recog-
nized since they exhibited strong cytoplasmic expression of

NPM in most leukemic cells (Fig. 2b). Nucleus-restricted
NPM expression (NPMc�) was detected in 24 AML cases
(48%). These NPMc� AML specimens exhibited either heter-

ogeneous or homogenous diffuse strong nuclear expression
although in some cases nucleolar labeling became evident
(Fig. 2c and d).

3.2.3.2. Correlation between subcellular localization of NPM
immunostaining and acute myeloid leukaemia subtype (Table 1
and Fig. 3). Cytoplasmic NPM (NPMc+) was predominantly
Figure 2 Patterns of NPM immunostaining in AML: (a) nuclear a

Nuclear and cytoplasmic positivity with some leukemic cells showing

immunostaining majority of leukemic cells. ·1000. (d) Strong nuclear
observed in M2, M5a and M5b categories (15,4%, 19.2% and
46.2%) with either cytoplasmic alone or cytoplasmic in addi-
tion to the nucleus (Fig. 3a). M0, M1 and M4 categories

showed predominant normal nucleus restricted pattern of
immunostaining, and few cases showed cNPM (Fig. 3b).
BAL and M6 cases had only an nNPM pattern (Fig. 3c and d).

Thus though most FAB subtypes expressed cytoplasmic
NPM in variable ratios, yet statistically, a significant difference
between the different FAB subtypes and cytoplasmic NPM

expression was noted (v2 = 21.125, with P value of 0.007).
White blood cell count in the NPMc negative group ranged

from 1.2 · 109 l�1 to 120 · 109 l�1 (mean = 55.08, standard
deviation = 394.50) while in the NPMc positive group ranged

from 1.8 · 109 l�1 to 222 · 109 l�1 (mean = 88.48, standard
deviation = 58.65), this was a significantly positive relation
associating higher WBCs to cNPM negativity (t = 2.379,

P = 0.021), and blast percentage in the NPMc negative group
ranged from 22% to 90% (mean = 67.58, standard devia-
tion = 24.99) while in the NPMc positive group ranged from

25% to 98% (mean = 51.38, standard deviation = 22.20), this
was a significantly positive relation associating higher blast
percent to cNPM positivity (t= 2.426, P = 0.019) were signif-

icantly higher within the cNPM negative group than the
cNPM positive group, whereas no significant difference was
noted as regards sex, age, platelet count, nor hemoglobin level
between the studied groups. CD34 negativity was significantly

highly associated with cNPM expression (v2 = 15.751,
P = 0.000), CD14 positivity was significantly associated with
cNPM expression (v2 = 9.782, P = 0.002), whereas no signif-

icant relation was detected between either FLT3 mutations
(v2 = 2.891, P = 0.84) (Table 2) or extramedullary manifesta-
tions with cNPM positivity in the AML studied cases.

As regards outcome to therapy and survival studies, the
NPMc positive group showed statistically significant higher
overall survival rates in comparison to the NPMc negative

group (v2 = 5.155, P = 0.023) (Fig. 4), and the cumulative
hazard was significantly higher in the cNPM negative group
nd cytoplasmic (arrows) positivity of leukemic cells. ·1000. (b)
only cytoplasmic staining (arrow). ·1000. (c) Nucleus restricted

and nucleolar (arrows) positivity in leukaemic cells. ·1000.



Table 1 The correlation between the AML subtype and

cytoplasmic expression of NPM (cNPM).

Crosstab

FAB subtype cNPM Total

Negative Positive

M1

Count 8 1 9

% within CNPM 33.3% 3.8% 18.0%

M4

Count 4 1 5

% within CNPM 16.7% 3.8% 10.0%

M5b

Count 1 12 13

% within CNPM 4.2% 46.2% 26.0%

M5a

Count 2 5 7

% within CNPM 8.3% 19.2% 14.0%

M2

Count 2 4 6

% within CNPM 8.3% 15.4% 12.0%

M0

Count 4 2 6

% within CNPM 16.7% 7.7% 12.0%

Biphenotypic

Count 1 0 1

% within CNPM 4.2% 0% 2.0%

M7

Count 1 1 2

% within CNPM 4.2% 3.8% 4.0%

M6

Count 1 0 1

% within CNPM 4.2% 0% 2.0%

Total

Count 24 26 50

% within CNPM 100.0% 100.0% 100.0%
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than the cNPM positive one (Fig. 5). The outcome of the first
cycle was better for the cNPM positive group than the cNPM
negative group (v2 = 11.917, P = 0.008) (Table 3). Continu-

ously, the outcome of the second cycle showed significantly
better outcomes in the cNPM positive group than the cNPM
negative one (v2 = 17.157. P = 0.002) (Table 4). As regards

FLT3 negativity was associated with statistically significant
better survival after first cycle of chemotherapy (v2 = 5.805,
P = 0.018), and also the second cycle (v2 = 8.696, P =

0.003). overall survival for the study group as regard both
cytoplasmic NPM positivity and presence or absence of
FLT3 mutations showed that the worst survival lied within
the NPMc�/FLT3+ group and there was a statistically signif-

icant difference between this group and the NPMc+ groups
regardless of their mutational status (t = 11.725, P = 0.003)
(Figs. 6 and 7).

4. Discussion

Nucleophosmin (NPM) is a ubiquitously expressed nucleolar

phosphoprotein which shuttles continuously between the nu-
cleus and cytoplasm. Many findings have revealed a complex
scenario of NPM functions and interactions, pointing to pro-
liferative and growth-suppressive roles of this molecule.46

Remarkably, heterozygous mutations of NPM are found in
�35% of acute myeloid leukemias (AMLs), which make NPM
the most frequently mutated gene in AML. Previous reports

concluded that immunostaining serves as a highly specific pre-
dictor of all exon-12 NPM mutations.36

The choice in the present study to detect nucleophosmin

aberrant cytoplasmic expression on bone marrow clot biopsy
was meant to overcome technical difficulties that appeared in
previous studies, questions arose about which samples and
techniques should be used. Falini et al. and Luo et al. proved

that aberrant cytoplasmic expression of nucleophosmin is opti-
mally detected in paraffin sections from B5-fixed/ethylenedi-
aminetetraacetic acid-decalcified bone marrow trephines.47,48

Konoplev et al. reported less reliable results in bone mar-
row biopsies fixed in formalin and decalcified in formic acid.49

Falini et al. preliminarily suggested that discrepancies may re-

sult from the decalcifying agent (formic acid) rather than to
formalin fixation. In the methodology used in our study, clot
biopsy choice was to overcome these difficulties of choosing

the right decalcifying agent, and skipping the step of decalcifi-
cation which leads to denaturation or change of immunogenic-
ity of some of the proteins which leads to false results.

Consequently, use of immune staining of bone marrow clot

biopsy as surrogate for molecular analysis can serve as first-
line screening in AML and should facilitate implementation
of the 2008 World Health Organization classification of mye-

loid neoplasms that now incorporates AML with mutated
NPM1 (synonym: NPMc+ AML) as a new provisional entity.

In the present study cytoplasmic localization of NPM

(NPMc+) was identified in 26 out of the 50 (52%) of primary
AML cases with normal karyotype studied by immunostaining
in bone marrow clot biopsy cell blocks. Similarly Falini et al.

found NPMc+ in one third of the primary AML cases
globally. In accord with our findings they had all a normal
karyotype.18 In another study, the same author working on
AML-NK patients reported an incidence of NPM cytoplasmic

positivity in 50% of these cases, approaching our results.36

Moreover, Dohner et al.50 and Schnittger et al.51 reported an
incidence of 48% and 52.9% among the normal karyotype

AML cases in their study groups, respectively, which coincides
with our data.

Although in the current study the presence of cytoplasmic

NPM was not confined to a specific morphologic FAB sub-
type, interestingly, the highest frequency of NPMc+ was
found in AML-M5 (17/21, 80.9%) and the lowest cases were
in M1 (1/9, 11.1%) in accord with Falini et al.,30 Dohner

et al.50 and Schnittger et al.51 Falini et al.30 reported that the
NPMc+ pattern can be seen in AML specimens of all FAB
subtypes except M4eo, and M7. However, we found the

NPMc+ pattern in AML specimens of all FAB subtypes
except biphenotypic leukemia and M6. Though Falini et al.30

did not record the observation that cytoplasmic NPM1 is pre-

dominant in M2 specimens, we observed cytoplasmic NPM1 in
high percentage in M2 (4/6 cases, 66%).

The absence of NPMc+ in M6 category found in our study

goes with accordance with Zini and d’Onofrio52 and it was
attributed in their series to the common presence of complex
karyotypes and multiple structural abnormalities in these cases
reflecting their poor prognosis.52 However, in all our cases



Figure 3 NPM immunostaining in acute myeloid leukaemia: (a) M5 showing nuclear and cytoplasmic reactivity (arrows). ·1000. (b) M4

showing distinct but heterogeneous nuclear and cytoplasmic staining (arrows). ·1000. (c) BAL showing strong homogeneous nucleus

restricted immunostaining. ·400. (d) M6 showing focal nucleus restricted immunostaining (arrow) with absent cytoplasmic staining. ·400.

Table 2 Relation between FLT3 positivity and cytoplasmic NPM expression.

cNPM Total

Negative Positive

Count 8 15 23

% within FLT3 34.8% 65.2% 100.0%

% within CNPM 33.3% 57.7% 46.0%

Count 16 11 27

% within FLT3 59.3% 40.7% 100.0%

% within CNPM 66.7% 42.3% 54.0%

Count 24 26 50

% within FLT3 48.0% 52.0% 100.0%

% within CNPM 100.0% 100.0% 100.0%

Figure 4 Survival of the study groups according to cytoplasmic NPM expression.
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Figure 5 Hazard function of the study groups according to cytoplasmic NPM expression.

Table 3 Outcome of the first induction cycle.

Outcome_First_Cycle cNPM negative cNPM positive

Failure (IF)

Count 11 4

% within CNPM 50.0% 17.4%

Partial remission (PR)

Count 4 12

% within CNPM 18.2% 52.2%

Complete remission (CR)

Count 1 5

% within CNPM 4.5% 21.7%

Induction death (ID)

Count 6 2

% within CNPM 27.3% 8.7%

Total

Count 22 23

% within CNPM 100.0% 100.0%

Table 4 Outcome of the second induction cycle.

Outcome_Second_Cycle cNPM negative cNPM positive

Failure (IF)

Count 7 2

% within CNPM 43.8% 9.5%

Partial remission (PR)

Count 4 1

% within CNPM 25.0% 4.8%

Complete remission (CR)

Count 2 15

% within CNPM 12.5% 71.4%

Induction death (ID)

Count 2 0

% within CNPM 12.5% 0%

Relapse

Count 1 3

% within CNPM 6.3% 14.3%

Total

Count 16 21

% within CNPM 100.0% 100.0%
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normal karyotype was proven before the inclusion in the
study, so the explanation of the negativity to cytoplasmic

NPM still needs to be elucidated. Moreover, the relation of
M6 to cytoplasmic NPM expression cannot be evaluated in
our study due to the small sample study (one case) and its asso-

ciation with normal karyotype, thus this entity should be
examined in a more detailed study including both those with
normal karyotype and others with cytogenetic abnormalities

whether complex or straight forward.
Dohner et al.50 and Verhaak et al.53 in their studies corre-

lated a significant association between mutated NPM1 and
higher WBC count, blast percentage and platelet counts. In

our series, the WBC count and blast percentage were signifi-
cantly higher in NPMc+ group, however, the relation with a
higher platelet count was not proven.

We also confirmed that in AML-NK, the majority of
NPMc+ cases were associated with the absence of CD34
expression (22/26, 84.6%), this is in accordance with Falini
et al.18 who found that more than 95% of NPMc+ AMLs

are CD34 negative.
Consistent CD34 negativity in the great majority of studies

raises the question of whether a minimal pool of CD34+/

CD38� NPM1-mutated progenitors exists. In NPM1-mutated
AML, investigators54,55 found that the small fraction of
CD34+ hemopoietic progenitors, including CD34+/CD38�

cells, carried the NPM1 mutation. When transplanted into

immunocompromised mice, CD34+ cells generated a leukemia
that recapitulated the patient’s original disease, morphologi-
cally and immunohistochemically (aberrant cytoplasmic

NPM1 and CD34 negativity).



Figure 6 Survival function according to cNPM expression with FLT3 mutational status.

Figure 7 Survival function according to cNPM expression with FLT3 mutational status after exclusion NPMc�/FLT3 negative cases in

which no deaths have occurred during the study time.
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In our series CD14 positivity was significantly associated

with cNPM positivity, with the simple explanation that this
marker denotes monocytic differentiation, which coincides
with the high percentage of cNPM positivity with cases with

monocytic leukemia.
Understanding the mechanisms leading to leukemogenesis

in NPMc+ AML may lead to more specific antileukemia
therapies.56 NPM1 belongs to a new category of genes that

function both as oncogenes and tumor-suppressor genes,57

depending on gene dosage, expression levels, interacting part-
ners, and compartmentalization. Of the most extensively stud-

ied partners of NPM1 is the FLT3-ITD. In the present studied
cases, no statistically significant positive relation could be de-

tected between FLT3 ITD and cytoplasmic NPM positivity;
this can be attributed to our smaller sample size and choice
of the study group to normal karyotype AML only which

might led to the bias of the statistical interpretation.
The cases showing NPMc+ in the current study had a bet-

ter response to induction chemotherapy, an observation that
was reported by other researchers.18 Recently, Konoplev

et al.49 showed a lack of correlation between cytoplasmic
NPM1 expression and the likelihood of complete remission
and prolonged survival, suggesting that NPM1 mutations, at

least as detected using immunohistochemical analysis, may
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not be a useful prognostic indicator, though in our series the
immunostaining was also the methodology used, yet overall
survival was statistically significantly affected by NPMc

positivity.
Furthermore, analyzing our data showed that the presence

of FLT3 mutation as a single factor affected survival both

after the first and second cycle of chemotherapy, and also af-
fected the overall survival, thus prognostically the presence
of a FLT3 mutation lead to shortening of the overall survival

in the cohort of patients. Analyzing the combined effect of
cytoplasmic NPM expression with FLT3 mutational status
showed that the worst prognosis was within the NPMc�/
FLT3+ group, no death occurred within the NPMc�/FLT3�
group throughout the time of the study, while the NPMc+/
FLT3+ and NPMc+/FLT3� groups had an intermediate
survival between these 2 groups. Thus, it is apparent that the

FLT3 mutational status affects the survival within the NPMc�
groups more than its effect on the NPMc+ groups, its absence
confers a more pronounced better prognosis within this group,

than in the NPMc+ group. In accordance with our results,
Hollink et al.58 found similar results in their study of 297 pedi-
atric patients with AML patients with NPM1 mutations doing

significantly better than those with wild type (wt) NPM in
terms of 5 year OS and EFS. However, they found that
FLT3/ITD status had no significant impact on survival in pa-
tients with mutations and was only prognostically significant

in patients with wt NPM1.
Controversly, Boonthimat et al.59 could not observe a ma-

jor difference in the overall survival (OS) in the Thai patients

with and without NPM1 mutation (P = 0.376). Interestingly,
statistical analyses according to the combined NPM1/FLT3
mutational status revealed a better outcome (P = 0.036) for

the NPM1-mutated/FLT3 ITD-negative than NPM1+/
FLT3-ITD+ and NPM1�/FLT3-ITD+ subgroup, implicating
the negative impact of FLT3 mutations regardless of the

NPM1 mutational status.
Thus, the detection of cytoplasmic NPM in the present

work further supports the routine use of immunostaining on
bone marrow aspirate cell blocks as a simple, inexpensive,

and rapid method capable of first-line screening AML cases
for NPM gene mutations and to rule out recurrent chromo-
somal abnormalities. It is also suggested that immunostaining

for NPM may assist in the monitoring of minimal residual dis-
ease in a setting (normal karyotype and CD34 negativity) in
which no molecular or immunophenotypic markers are

available.
Furthermore these bone marrow aspirate cell blocks will be

available for any future immunostaining required for the pa-
tient. We recommend also routine screening for NPMc immu-

nostaining in all cases of primary AML in order to identify
those cases expected to have a favourable prognosis and better
response to induction chemotherapy.
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