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Abstract Both Schizophrenia and Parkinson’s disease are very much linked to the dopaminergic

system, yet a larger understanding that goes behind this ‘‘simplified explanation’’ of the linked phe-

nomena remains important to further novel advances. The description of factors related to both dis-

orders including implicated receptors, the involved neurotransmitters and enzymes, pharmakons’

properties and the related symptoms and dysfunctions might have diverse consequences, mainly,

the new therapeutic implications which lie on the pharmacological applications via the pathogenesis

explanations and the identification of new possible targets, in addition to the potential development

of new researches’ methods.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Alexandria University Faculty of Medicine.
1. Introduction

Considering each of Schizophrenia and Parkinson’s disease as

a simple dopaminergic system imbalance or dysfunction is far
from being a complete understanding of the two neural dis-
eases. Within the coming paragraphs we intend to explain

via illustrative selected examples how the in vivo interactions
between neuronal and chemical networks (including enzymes
and non-enzymatic molecules) contribute in generating some
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of the pathogenesis and explain a part of the related processes
observed in both schizophrenia and Parkinson’s disease.

Through the bibliographic research we felt a need for descrip-
tions with a non-dopaminergic approach to further identify
new targets to control the two diseases and this is the purpose
of the commentaries we have summarized herein.

2. Schizophrenia: network dysfunctions and new properties of the

antipsychotic agents

Schizophrenia (SZ) may be considered as progressive and neu-
rodegenerative.1 SZ has been linked to dopaminergic function,
in fact in addition to a reduced dopamine reuptake transporter

(DAT) expression in SZ brains.2 Hyperdopaminergic function
is also reported in SZ3 thus, drugs effective in treating SZ have
anti-dopaminergic properties.4–6 The antipsychotics (APs)

(used for the treatment of Schizophrenia) block dopamine
D2 receptor (DRD2) and thus produce AP-related neurotoxic
effects7,8 that are mainly resulting from extrapyramidal
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symptoms (EPS) and tardive dyskinesia (TD),1 moreover hal-
operidol, a reference first-generation antipsychotic (FGA), has
been shown to enhance caspase-3 activity in cortical neurons9

and this in addition to EPS risk contribution results from the
action of antipsychotics on 5-hydroxytryptamine (5-HT)
receptors, thus the use of ketanserin, a 5-HT2A antagonist

suppresses the neuronal apoptosis induced by haloperidol.9

In contrast, a paper published in 2008 pointed out the neuro-
protective effect that some second generation antipsychotics

(SGA) can potentially have.10 Furthermore, SGAs protect
SHSY5Y cells against serum withdrawal-induced apoptosis,11

indeed, haloperidol and the other first-generation antipsychot-
ics (FGA), produce more EPS than SGAs and the affinity of

FGA for DRD2 is higher than SGAs,12,13 furthermore FGA
affect neuronal cells by causing apoptosis, necrosis and oxida-
tive stress14,15 and therefore modify the bioavailability of the

neurons.16

To find out more lines of evidence for the neuroprotective
effects of SGAs a recent comparative study1 has shown differ-

ences between three APs: haloperidol, and two second genera-
tion antipsychotics, risperidone and paliperidone (9
hydroxyrisperidone). The study used the dopaminergic cell

model (neuroblastoma cells SK-N-SH), and did a neuro-
toxic/neuroprotective activity analysis. The results pointed
out that haloperidol is likely to produce apoptosis whereas ris-
peridone and paliperidone may have neuroprotective effects,1

furthermore, with risperidone we have less EPS than those ob-
served with haloperidol thus, at high doses risperidone can be
a conventional antipsychotic.17 To complete our data we need

to further carry out new researches to compare both neuro-
toxic and eventually neuroprotective effects with other SGAs
(clozapine or olanzapine) that have less potential to produce

EPS.1 On the other hand, in addition to altered glutamate,
serotonin and dopamine, glutamate functions, have been
linked with SZ pathophysiology.3,18–20 Moreover, for excit-

atory amino acid transporters (EAATs), a family of five sub-
types in humans termed EAAT1–EAAT521 are involved in
both the clearance of glutamate and reducing N-methyl D-
aspartate (NMDA) function,22–25 it has been shown that

suppressing the transcription of brain EAAT1–EAAT326,27 en-
hances glutamate contents and reduces hypoglutamatergic
symptoms that exist in SZ. Thus it has been pointed out that

details about EAATs that are involved in glutamatergic trans-
mission can make EAATs a potential therapeutic targets for
treating SZ.28 We mention also that toxicological aspects have

to be taken into account, in fact antipsychotic treatment has
been linked with increased superoxide dismutase (SOD)29,30

and enhancement of free radical synthesis.31 Furthermore
olanzapine, clozapine, quetiapine and risperidone have been

shown to modulate the expression of the potent antioxidant
SOD1.32 Therefore further data about the influence of antipsy-
chotic drugs on SOD and the resulting oxidative stress are

needed.30 The previous elements show a new viewpoint about
schizophrenia, we can consider it as a psychosis or as neurode-
generative, as we treat it by antipsychotics and some of them

show neuroprotective properties (risperidone and paliperi-
done), such discoveries in addition to the properties of sup-
pressing EAAT transcription and modulating SOD

expression may be considered either as inclusion or exclusion
factors to choose the most appropriate antipsychotic agent
that will treat SZ with less side effects and neurotoxic
consequences. Importantly the pathological profile, which is
mainly the existence or the non existence of other neurological
disorders for the SZ patients, must also be taken into account

while selecting the most appropriate antipsychotic for SZ
treatment.

3. Parkinson’s disease: neuro-viability-related drugs’ properties

Parkinson’s disease (PD), with a prevalence of 0.3% of the en-
tire population,33 is characterized by movement disorder

resulting essentially from neurolysis affecting dopaminergic
neurons in the substantia nigra pars compacta (SNpc).34 Fur-
thermore several neuro-structures, such as anterior olfactory

structures, amygdala, dorsal motor nucleus of vagus, caudal
raphe nuclei, locus coeruleus, autonomic nervous system, hip-
pocampus, and cerebral cortex have been linked to PD35 and

thus, supposing the role of several neurotransmitters in PD.
PD has, in addition to motor symptoms, non-motor symptoms
including olfactory and memory impairments, sleep abnormal-
ities, anxiety and depression, as well as gastrointestinal distur-

bance, likely because cholinergic, adrenergic and serotonergic
neurons are lost.36 Other papers emphasized more precisely
depression and anxiety as symptoms,37,38 on the other hand,

dopaminergic therapy (mainly used in PD) does not treat
non-motor symptoms.36 Moreover numerous publications
specified the existent links between PD and anxiety.39–46 Sup-

posing that anxiety and PD have common mechanisms, in
many cases anxiety is neglected when treating PD patients.42

To further illustrate the neuronal network involved in PD
we describe other neurotransmitters’ involvement in anxiety

in PD patients, in fact we have the suppression of both dopa-
minergic transmission and the activity at DA receptors that
were linked to social phobia,47–50 perturbation of dopaminer-

gic input to the amygdala51,52 and it has been shown that nor-
adrenergic and serotonergic systems are also implicated.53

In addition, serotonergic cell loss in the raphe nuclei was

also reported35,54 and dysfunctions in serotonin (5-HT) may
result in anxiety disorders.55 Furthermore noradrenaline
(NA) dysfunction was also shown in PD patients.35,56 Anxiety

disorder-related transmitters include gamma aminobutyric
acid (GABA) and glutamate55 while PD patients have shown
abnormalities of these two neurotransmitters57–59 showing
the importance of anxiety disorder in PD. In fact the severity

of anxiety lies in the fact that it deteriorates parkinsonian
symptoms,60 thus showing the importance of its treatment.
Many therapeutical tools are currently in use to deal with anx-

iety disorders in PD,61 thus, from a pharmacological viewpoint
several remarks must be considered, for example the anxiety
may be the result of antiparkinsonian medication, thus we

need to change the therapy or even to reduce the dose62 before
anxiolytic use, to adjust the anti-parkinsonian therapy.63 Fur-
thermore, recent studies pointed out the potential of the drugs
that modulate the activity of GABA and glutamate neuro-

transmitter systems to treat anxiety disorders in PD64–68 but
further data are still required to find out the best therapeutical
approach for anxiety in PD.69

PD researches focused mainly on neuroprotective agents
and, somehow, neglected non-motor symptoms. Some symp-
toms like anxiety are not, as it might be believed, necessarily

secondary to the psychosocial stress related to the disease61

but an independent pathology. PD’s both motor and
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non-motor symptoms have been linked to several neurotrans-
mitter systems (dopamine, noradrenalin, GABA, serotonin
and acetylcholine) thus we may think about the use of agonists

or antagonist of those neurotransmitters to develop a new
treatment via new targets by reconsidering the neuronal net-
work dysfunctions during PD which is far from being limited

to the dopaminergic systems.
On the other hand adenosine receptor with its four subtypes

– adenosine A1, A2A, A2B and A3 – that belongs to the G pro-

tein coupled receptors (GPCRs)70 has been shown to play a role
in numerous neurological diseases including Parkinson’s dis-
ease thus, has been considered as possible targets to treat those
diseases and also to treat pain, insomnia and drug addiction.71

Moreover, it has been suggested that there is a lower risk of
Parkinson’s disease for coffee and tea consumers72 and natu-
rally occurring methylxanthines, including caffeine and the-

ophylline, inhibit the activity of the adenosine A1, A2A, and
A2B receptor subtypes73 and thus influence locomotor behav-
ior and neurotransmitter release in the basal ganglia74,75 show-

ing the existent link between Parkinson’s disease and
adenosine receptor. In addition, it reflects also the importance
of the adenosine system in the basal ganglia. Importantly, it

has been reported that ZM241385, a nonxanthine triazolotri-
azine synthetic adenosine A2A receptor antagonist, increases
L-DOPA derived dopamine release.76,77 Thus, many adenosine
A2A receptor antagonists have been developed, they may

probably constitute pharmacological arsenal for the control
of impairment of motor skills observed in patients suffering
from Parkinson’s disease.70
4. Perspectives

Getting new data from a different field has allowed us to have

a larger understanding of both Schizophrenia and Parkinson’s
disease and to realize the complex network dysfunctions they
implicate rather than the limited description of simple imbal-

ances between limited neurotransmitters. Thus, the given new
aspects and concepts, if well investigated and completed with
new properties that can influence the systems’ functions such

as the receptors,78 can constitute starting points to develop
or modify therapies and these same data can be used to further
validate laboratory researches and clinical trials.
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