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Abstract Background: Cell death pathway can occur under physiological or pathological condi-

tions. In vitro and in vivo studies have shown that D-galactosamine (DGA) induces hepatocyte dam-

age. Objective: The present study aims to evaluate the protective effect of prostaglandin E1 (PGE1)

on DGA-induced apoptosis, necrosis and oxidative stress in primary culture of human hepatocytes.

Methods: Normal human hepatocytes were obtained from the safety margin of liver specimens,

removed during hepatectomy operation to liver cancer patients, and isolated using the classical col-

lagenase perfusion method. After culture stabilization, PGE1 (1 lM) was added 2 h before DGA

(5 mM). Cultures were maintained for 24 h before the parameters for apoptosis, necrosis and oxi-

dative stress were measured. Apoptosis was studied by DNA-fragmentation, neutral (nSMase) and

acid (aSMase) sphingomyelinase and caspase-3 activity. Necrosis was investigated by lactate dehy-

drogenase (LDH) and transaminases (ALT & AST) enzymes. The oxidative stress was assessed by

malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSH), glutathione S-transfer-

ase (GST), glutathione peroxidase (GSPx), catalase (CAT), superoxide dismutase (SOD) and nitric

oxide (NO). Results: The hepatotoxin DGA induced apoptosis and enhanced all parameters related

to necrosis and intracellular oxidative stress. On the other hand, PGE1 reduced the measured values

for the parameters indicative for the DAG induced apoptosis, necrosis and oxidative stress. In addi-

tion, PGE1 proved also to prevent GSH depletion. The obtained results provided evidences for the

biochemical hepatotoxic effects of DGA (5 mM) especially through the induction of apoptosis,
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necrosis and oxidative stress alterations in the cultured human hepatocytes. Conclusion: PGE1 could

be a useful protective treatment against DGA-induced hepatocyte cell death.

ª 2014 The Authors. Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/3.0/).
1. Introduction

The liver is the principle organ involved in the metabolism and
detoxification of biological toxins and medicinal agents. Such

metabolism is always associated with the disturbance of hepa-
tocyte biochemistry and generation of reactive oxygen species
(ROS).1 The oxidative stress is an important mechanism
responsible for dysfunction of liver.2 There is a wide range

of liver pathologies ranging from sub-clinical hepatitis up to
necro-inflammatory hepatitis, cirrhosis and carcinoma that
have been proved to be associated with the redox imbalance

and oxidative stress.3

Apoptosis and necrosis are two different types of cell death.
Necrosis is a non-controlled cellular disruption as a conse-

quence of extreme noxious irreversible conditions.4 In con-
trast, apoptosis is a genetically controlled cell death pathway
that can occur under physiological or pathological conditions.

It plays an important role in removing redundant, damaged or
infected cells and has a vital role in maintaining homeostasis of
liver tissue as well as during the pathogenesis of liver diseases.5

DGA is an amino-sugar with unique hepatotoxic properties

in mammals.6 The mechanism for DGA-induced liver injury,
although poorly understood, seems to be partly related to
the immune system.7 Its toxic effects are connected with insuf-

ficiency of UDP (uracil nucleotides)-sugar ‘‘UDP-glucose and
UDP-galactose’’, release of pro-inflammatory mediators (such
as TNF-a from Kupffer’s cells), loss of intracellular calcium

homeostasis and altering uridine-pool in hepatocytes.7,8 These
changes affect cell membranes, organelles and the synthesis of
proteins and nucleic acids. DGA, at higher dose, inhibits the
energy metabolism of hepatocytes, destroys the enzymes

involved in the transport of substrates to the mitochondria
and modifies the phospholipid composition of membranes.9

DGA is commonly used in experimental model for induc-

tion of hepatocellular injury. A 5 mM dose of DGA has been
established as the dose which potentially induces apoptosis,
necrosis and alters cultured human hepatocytes functions.10,11

Prostaglandins are biologically active polyunsaturated fatty
acids derived from arachidonic acid present in most mamma-
lian tissues. They have been suggested to be involved in mem-

brane stabilization. In the liver, prostaglandins were found to
be involved in hepatocyte proliferation and vital defence pro-
cesses such as inflammation, tissue repair and immune
responses.12,13 PGE1 was found to be effective as delivering

drug selectively to hepatocytes.14 Several studies have been
conducted to assess the ability of PGE1 to reduce in vivo and
in vitro DGA-induced cell death in cultured rat hepatocytes.15

There were growing evidences that changes in intracellular
redox state appear to regulate critical biological responses.
ROS influence signals transduction and transcription-factors,

and play a central role in the pathophysiology burden of liver
injury in this sense. Propagation of the oxidative stress induced
intracellular reactions further shifts cell death from apoptotic

to necrotic pathways in DAG-treated rats’ hepatocytes.16
The present study aimed at exploring the intracellular
biochemical alterations in cultured human hepatocytes that
are involved in the induction of apoptosis, necrosis and
oxidative stress by 5 mM of the hepatotoxin DAG. It also

aimed at assessing the possible protective effect of PGE1

against the progression of the DAG-induced damage in the
cultured human hepatocytes.

2. Materials and methods

This study was approved by the Ethics Committee of Medical

Research Institute, Alexandria University. All reagents used in
this study were supplied by Sigma–Aldrich Chemical (St.
Louis, MO, USA) unless otherwise stated.

Human hepatocytes were isolated from normal hepatic
parenchyma at the apparently free margin around lesions
obtained during hepatectomies done at the department of Sur-
gery, Medical Research Institute, Alexandria University. A

written informed consent was obtained from all participants
before surgery including consent to hepatectomies and to use
their resected specimen in this study. All patients were thor-

oughly investigated assessing the hepatic functions, abdominal
ultrasound and triphasic multidetector C.T. for abdomen and
pelvis were done. The included patients were six; three men

and three women with 40 ± 8 years old. Hepatectomies were
done in three cases of synchronous non-anatomical resection
of colorectal liver metastasis (one case with cancer sigmoid

and solitary lesion at segment IV b and the other two cases
with cancer rectum and having metastasis at segments V and
VIII) and the other cases; anatomical left lateral segmentec-
tomy was done for two patients who had hepatocellular carci-

noma (HCC) involving segments II and III and the last case
had an adenoma at segment IV b. We excluded patients with
Hepatitis-C virus, Hepatitis-B, patients with liver cirrhosis or

periportal fibrosis.
A crush clamp technique17 using Kelly clamp was used for

parenchymal transection to fracture the parenchyma and

expose the vessels. Sealing of the vessels was done using mono-
polar diathermy, bipolar diathermy or harmonic scalpel (Ethi-
con EndoSurgery, Cincinnati, OH, USA) and wide caliber

vessels were secured with ties or clipping. Bleeding from hepa-
tic parenchyma was secured using monopolar diathermy and
Argon Plasma Coagulation.18

2.1. Preparation of primary hepatocytes and cell culture

The human hepatocytes were isolated (in immunology lab.) by
in situ collagenase perfusion of liver samples according to the

method described by Ferrini et al.19 Liver samples were first
perfused with a non-recirculating washing solution I, pH 7.4
at a flow of 75 ml/min in order to remove blood cells. After-

ward, they were perfused with a non-recirculating chelating
solution II, pH 7.4 at a flow of 75 ml/min for 10 min then with
recirculating isolation solution III at a flow of 75 ml/min. for

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Does prostaglandin-E1 modulate D-galactosamine induced cell death in primary culture of human hepatocytes 327
10 min. Cell suspension was filtered through Nylon mesh
(250 lm) and washed three times at 50 g for 5 min at 4 �C in
culture medium (DEM:Ham-F12 and William’s E mediums

(1:1) supplemented with 26 mM NaHCO3, 15 mM HEPES,
0.2 g/l glutamine, 50 mg/l vitamin C, 0.04 mg/l dexa-metha-
sone, 2 mg/l insulin, 200 mg/l glucagon, 50 mg/l transferrin,

4 ng/l ethanolamine).
Cell viability was consistently more that 85% as determined

by trypan blue dye exclusion technique, based on impermeabil-

ity of viable cells to trypan blue. The number of viable lympho-
cytes/ml was calculated according to the following equation:
% of viable cells = (no of viable cells/total no counted) · 100.
Contamination of hepatocyte cultures with kupffer cells was

not detected morphologically, through latex bead ingestion
(3 lm). Hepatocytes (150,000 cells/cm2) were seeded in type I
collagen coated dishes (Iwaki, Gyouda, Japan) and cultured

in medium containing 5% fetal calf serum for 4 h. Afterward,
the medium was removed and replaced by fresh culture med-
ium without fetal bovine serum. The study was initiated 24 h

after seeding of the cells to allow stabilization of the culture.
After stabilization of cell culture, PGE1 (1 lM) was added
2 h before DGA (5 mM) and the cultures were maintained

for 24 h before the determined biochemical parameters were
measured. Apoptosis was studied by DNA-fragmentation,
neutral (nSMase) and acid (aSMase) sphingomyelinase and
caspase-3 activity. Necrosis was investigated by lactate

dehydrogenase (LDH) and transaminases (ALT & AST)
enzymes. The oxidative stress was assessed by malondialde-
hyde (MDA), glutathione (GSH), oxidized glutathione

(GSSH), glutathione S-transferase (GST), glutathione
peroxidase (GSPx), catalase (CAT), superoxide dismutase
(SOD) and nitric oxide (NO).

2.2. DNA fragmentation in hepatocytes

The fragmentation of DNA in hepatocytes was evaluated

using electrophoresis as described by Siendones et al.20 The
whole hepatocyte population was treated with 1 ml of lysis
buffer, pH 8.0, at 4 �C for 10 min. Samples were incubated
with RNAse (50 lg/ml) at 37 �C for 2 h and proteinase K

(100 lg/ml) at 48 �C for 45 min. DNA was obtained by phe-
nol:chloroform:isoamyl alcohol (25:24:1) (Sigma Chemical
Co.) extraction and precipitated with cold isopropanol (1:1)

at 20 �C for 12 h. DNA was recovered by centrifugation of
the sample at 10,000g at 4 �C for 10 min. Thereafter, the pre-
cipitate was washed with 70% ethanol, dried, and resuspended

in Tris–EDTA buffer (10 mM Tris, 1 mM EDTA) at pH 8.0.
Samples (100 lg DNA) were analyzed on 1% agarose gel with
ethidium bromide.
2.3. Caspase-3-associated activity

Hepatocytes were treated with 1 ml of lysis solution at 4 �C for
10 min, transferred to eppendorf tubes, and centrifuged at

10,000g at 4 �C for 5 min. Caspase-3 associated activity was
measured in samples (25 lg protein) by a fluorometric
assay using the peptide-based substrate ac-N-acetyl-Asp-

Glu-Val-Asp-AFC (Ac-DEVD-AFC) (Bachem, Bubendorf,
Switzerland).21
2.4. Assays for sphingomyelinase activities

The measurement of neutral (nSMase) and acid (aSMase)
sphingomyelinase activities was carried out following the pro-
cedure described by Martin et al.22

2.5. Measurement of LDH-release and transaminases (ALT &

AST) activities

Lactate dehydrogenase (LDH) was measured by a colorimetric

routine laboratory method.23 Volume of cell lysate ranging
from 50 to 200 ml was incubated with 0.2 mM b-NADH and
0.4 mM pyruvic acid diluted in PBS, pH 7.4. LDH concentra-

tion in the sample was proportional to the linear decrease in
the absorbance at 334 nm. LDH concentration was calculated
using commercial standard. Alanine transaminase (ALT) and

aspartate transaminase (AST) were estimated according to
Bergmeyer and Bernt.24

2.6. Evaluation of lipid peroxidation and quantification of
glutathione (GSH) and oxidized glutathione (GSSG) longer

The presence of malondialdehyde (MDA) in culture medium
was used as an index of lipid peroxidation in hepatocytes fol-

lowing TBARS ‘‘thio-barbituric acid reactive substances’’
assay.25 GSH, GSSH were quantified in hepatocytes following
the procedure described by Teare et al.26 Liver samples

(�100 lg) were homogenized in ice-cold 0.1 M phosphate buf-
fer (pH 7.4). For GSH content, the homogenate was immedi-
ately mixed with sulfosalicylic acid, shaked well, centrifuged,

and 100 ll of the supernatant was added to 9.9 ml water and
spectrophotometric absorbance was recorded at 412 nm. For
GSSG, 200 ll supernatant was added to 3.78 ml water to

which 40 ll of 2-vinylpyridine was mixed to mask the GSH
and left at room temperature for 3 h before estimation.

2.7. Glutathione S transferase (GST) and glutathione
peroxidase (GSPx) assays

GST and GSPx activities were measured as described by Habig
et al.27 and Awasthi et al.28, respectively. GST activity was

assayed, using 1-chloro-2, 4-dinitrobenzene (CDNB) and 3,
4-dichloronitrobenzene (DCNB), by spectrophotometer at
room temperature by monitoring the change in absorbance

at 344, 270, and 344 nm.27 The activity of GSPx was assayed
in a l-ml system containing 0.1 M potassium phosphate
buffer, 0.2 mM NADPH, 1 i.u. glutathione reductase, 4 mM
GSH, 4 mM EDTA, 4 mM sodium azide, and 0.02 ml

glutathione peroxidase. The mixture was incubated at 37 �C
for 10 min after which 10 ll of 10 mM t-butyl hydroperoxide
was added and the rate of reaction was measured using

spectrophotometer.28

2.8. Catalase (CAT) and superoxide dismutase (SOD)
activities

CAT was assayed colorimetrically at 620 nm as described by
Tawfik et al.29 SOD activities were determined according to

the methods of Pottathil et al.30



Figure 2 Effect of PGE1-treatment on caspase-3-associated

activity (absorbance/h/mg protein) due to DGA-induced injury

in cultured human hepatocytes (a significantly different among

control group, b significantly different among PGE1 group,
c significantly different among DGA group).
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2.9. Nitric oxide (NO) metabolite measurement

The release of NO was indirectly assessed by measuring the
accumulated nitrite using the Griess reaction as described by
Green et al.31 Nitrite was detected and analyzed by formation

of a red pink color upon treatment of a NO2
�-containing sam-

ple with the Griess reagent.

2.10. Protein assay

Total protein concentration was determined by the Bio-Rad32

assay, using bovine serum albumin as standard. Measurements
were done on UV Spectrophotometer at 595 nm.

3. Statistical analysis

The Data were collected and entered into the personal com-

puter. Statistical analysis was conducted using the Statistical
Package for the Social Sciences (SPSS) version 20. Statistical
significance was set at (P-value <0.05). Results are expressed

as means ± SD of duplicate experiments. Differences between
groups were assessed by one-way analysis of variance
(ANOVA) using the least significant differences (LSD) test

as multiple comparison analysis according to Berenbaum.33

4. Results

The pathological examination of the resected specimen
revealed the same pathology expected preoperatively with free
safety margin in all cases. The histopathological reports
revealed; metastatic adenocarcinoma from colorectal cancer

in three cases, Fibrolamellar variant of HCC in two cases
and an adenoma in the last case.
Figure 1 1.5% agarose gel showing the effect of PGE1-treatment

on DNA-fragmentation due to DGA-induced injury in cultured

human hepatocytes. ‘‘C’’ refers to control.
The effect of DGA-treatment (5 mM) revealed a general
increase in the biochemical quantitation of the parameters

for apoptosis, in the cultured hepatocytes. DGA increased
the measured arbitrary units from apoptosis expressing DNA
fragmentation by gel electrophoresis (Fig. 1: 1232 ± 114,
1241 ± 117, 2689 ± 141a,b, and 1312 ± 141c, for control,

PEG1 treatment, DGA treatment and PEG1 treatment before
DGA addition, respectively). Caspase-3-associated activity in
cultured hepatocytes was expressed with the highest values in

cultures treated with DGA. These values were reduced nearly
by 50% when PGE1 was added before treatment with DAG
(Fig. 2).

Sphingomyelinase (nSMase and aSMase) activities denote
cellular levels of ceramide at the indicated times. They
decreased significantly in DGA-group. PGE1-treatment

restored sphingomyelinase activities within normal range
(Fig. 3).

Levels of transaminases (ALT, AST) and LDH were used
as indicators to evaluate the attribution of PGE1 to the struc-

ture damage of the hepatocytes. In the present study, the
enzyme assays of transaminases showed that a toxic dose of
DGA significantly raised the both levels of ALT and AST.

PGE1 could inhibit the enzyme activities effectively. The
Figure 3 Effect of PGE1-treatment on nSMase and aSMase

(cpm/lg protein/min) activities due to DGA-induced injury in

cultured human hepatocytes (a significantly different among con-

trol group, b significantly different among PGE1 group, c signif-

icantly different among DGA group).



Figure 4 Effect of PGE1-treatment on LDH (mIU/L), ALT and

AST (IU/L) activities due to DGA-induced injury in cultured

human hepatocytes (a significantly different among control group,
b significantly different among PGE1 group, c significantly differ-

ent among DGA group).

Figure 5 Effect of PGE1-treatment on MDA, GSH and GSSH

(nmol/lg protein) contents due to DGA-induced injury in cultured

human hepatocytes (a significantly different among control group,
b significantly different among PGE1 group, c significantly differ-

ent among DGA group).

Figure 6 Effect of PGE1-treatment on total GST and GSPx (U/

mg protein) activities due to DGA-induced injury in cultured

human hepatocytes (a significantly different among control group,
b significantly different among PGE1 group, c significantly differ-

ent among DGA group).
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ALT and AST level decreased significantly compared to con-
trol group (Fig. 4).

Depletion of intracellular-GSH and the increase in lipid

peroxidation as MDA accumulation and GSSH in cells
(Fig. 5) were used to assess the onset of oxidative injury
induced by DGA. PGE1 abolished GSH depletion and exhib-

ited remarkable lessening of raised MDA and GSSH (Fig. 5).
As shown in Figs. 6 and 7, a single dose of DGA induced

severe oxidative damage and the GST, GSPx, CAT and
Figure 7 Effect of PGE1-treatment on CAT (a) and SOD (b) (U/

lg protein) activities due to DGA-induced injury in cultured

human hepatocytes (a significantly different among control group,
b significantly different among PGE1 group, c significantly differ-

ent among DGA group).

Figure 8 Effect of PGE1-treatment on NO concentration (lmol/

mg protein) due to DGA-induced injury in cultured human

hepatocytes (a significantly different among control group, b sig-

nificantly different among PGE1 group, c significantly different

among DGA group).
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SOD activities decreased markedly. PGE1 proved to normalize
the enzyme activities of the four indexes.

Similar results were obtained in case of the nitric oxide

(NO) concentration (Fig. 8), PGE1 restored nitric oxide deple-
tion caused by DGA hepatotoxin.

5. Discussion

ROS, products of normal metabolism, cause oxidant injury if
they accumulate in pathological amounts.34 Under normal

conditions, where the levels of ROS are tightly regulated and
play a role in normal metabolism, the body’s antioxidant
defences are able to successfully manage non-pathological

amounts of exogenous or endogenous oxidants from reactive
oxygen/nitrogen species.35 Among therapeutics for liver dis-
eases, protective drugs have attracted more and more atten-

tions, such as antioxidant prevention approaches. The
environment can be a source of excess oxidants, which can
cause both acute and chronic cellular injury.36 Moreover,
ROS were thought to be involved in several cellular mecha-

nisms including apoptosis.37

Hepatic injury induced by DGA is a suitable experimental
model of human liver failure.10 It induces an intense oxidative

stress in hepatocytes.16 The present work shows that DGA-
induces apoptosis followed by necrosis in cultured human
hepatocytes. The identification of DNA fragmentation and

caspase-3 activity modifications induced by DGA in human
hepatocytes can help in the insight of the causal molecular
mechanisms responsible for the induction of apoptosis and
necrosis.

Apoptosis, known as programmed cell death, is a cellular
self-destruction mechanism involved in a variety of biological
events such as developmental remodeling, tissue homeostasis

and the removal of unwanted cells in most living tissues,
including the mammalian liver. Similar to other organs, it
plays a role in the pathogenesis of hepatic failure and organ

dysfunction after liver ischemia/reperfusion injury.38 Sien-
dones et al.5 found that generation of ROS with perturbation
of pro- and anti-oxidant ratio caused alteration in mitochon-

dria structure and hepatocytes membrane potential.
Activation of caspases has been demonstrated to be

involved during in vivo and in vitro hepatocytes’ apoptosis.39

Induction of apoptosis by DGA was related to a significant

increase in caspase-3 processing and activity observed in hepa-
tocytes.5 Genetic and biochemical studies have uncovered a
functional network of cell death regulators.38 It has shown that

mammals have two distinct apoptosis signaling pathways. One
pathway is activated by ‘‘death receptors’’ (a subgroup of the
tissue nuclear factors family (TNF)). The other is initiated

by certain cytotoxic stress.4 Excessive generation of ROS and
caspase activation have been shown to be essential in cell
apoptosis.40

Mammalian sphingomyelinase (SMase) hydrolyzes the

phosphodiester bond in sphingomyelin (SM), yielding cera-
mide and phosphorylcholine. SMase is transiently activated
in response to a variety of extra cellular stimuli, which leads

to increased cellular levels of ceramide. Ceramide is a mem-
ber of a group of lipid signaling molecules and has a specific
role in the onset of different stress responses, including cell

growth arrest, inflammation, and apoptosis.41 In the present
study, sphingomyelinase decreased markedly in DGA group.
Garcia et al.42 have reported that GSH has a role in the reg-
ulation of nSMase so GSH depletion sensitizes hepatocytes
to the aSMase-induced apoptosis. Osawa et al.43 have con-

cluded that activation of aSMase contributed to hepatocyte
apoptosis.

MDA level is a main marker of endogenous lipid peroxi-

dation.25 Besides, successful protection of liver damage by
efficiently inhibiting MDA formation and decreasing ALT
and AST, PGE1 could enhance the activities of antioxidant

enzyme system of the hepatocyte cells, including LDH
(Fig. 4).

The replenishment of GSH may occur via reduction of
GSSG by glutathione reductase or by de novo synthesis of

GSH from its constituent amino acids.44 It plays a key protec-
tive role against oxidant-induced cell death.45 There was a sig-
nificant GSH-depletion and GSSG-formation after liver

reperfusion injury.2 GSH exhibits a large panel of actions in
controlling apoptosis mechanisms or membrane transport.46

Usually GSSG represents only 1–10% of the total liver

GSH.47 In the present study, liver GSSG in the DGA treated
hepatocytes culture plate accounted almost 50% of total
GSH, suggesting that there was a significant intracellular oxi-

dative stress during the DGA treatment.
SOD and GSPx are intracellular antioxidant enzymes that

protect against oxidative stress. Hepatocytes showed suscepti-
bility to oxidative injury with depletion of antioxidant

defences, exemplified by decreased GSH and CAT and raised
MDA.30,48 It has been suggested that induction of GST
enzyme was a major cell protective mechanism and accompa-

nied by elevation of intracellular GSH level.13

Our results indicate that PGE1 has a positive hepatoprotec-
tive impact on the DGA induced lesion. Since antioxidant

enzymes such as SOD and GSPx are considered to be a pri-
mary defence system for oxidative damage prevention. PGE1

exerts antioxidant effect not only through its own radical scav-

enging activity but also, by boosting the host antioxidant
enzyme system. On the other hand, we found that several
indexes showed a significant change. GST, GSPx, CAT and
SOD activities were raised significantly on addition of PGE1

to the cultured hepatocytes.
Massive intervention into the redox state by pharmaceuti-

cal doses of exogenous antioxidants should be considered with

caution due to the indefinite role of free radicals in regulation
of apoptosis and cytotoxicity of injured cells.49 Our results
showed that DGA could increase ROS generation, but PGE1

could reverse such effect by lowering the level of intracellular
ROS.

It has previously shown that NO mediates apoptosis by
DGA in primary culture of rat hepatocytes and has been rec-

ognized as a critical mediator in numerous biological pro-
cesses.50 Some chemical aspects of NO molecule determine
its free radical capacity to mediate cell signaling. In addition,

it has been shown to exert a noxious effect in the initiation
and progression of cell death.51

Similar studies have evidenced that PGE1 pre-administra-

tion protects against NO-dependent cell death through a rapid
increase of inducible-NO synthase (NOS-2) expression which
protected against DGA-induced cell death.50,52 The factors

that inhibit hepatic injury may be, those intensifying the hepa-
tic antioxidants or free radical scavengers and those inducing
hepatocyte regeneration.
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6. Conclusion

PGE1 can effectively protect the hepatocytes from oxidation
induced death through scavenging intracellular oxidative

damage induced by ROS.
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