EVALUATION OF THE INFLUENCE OF MATERNAL PARITY ON NEONATAL ANTHROPOMETRIC PARAMETERS AMONG HAUSAS IN KANO STATE

Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University P.O. Box 13793, Kano State, Nigeria
*Corresponding author: saaddatti@yahoo.com, +2347038234884

ABSTRACT
Maternal Parity has been shown to increase the risk of adverse neonatal outcomes, such as intrauterine growth restriction (IUGR), prematurity, and mortality. The study was designed to evaluate the influence of maternal parity on neonatal anthropometric parameters among Hausas in Kano. Five hundred and twenty one subjects (mothers and babies) participated in the study. Questionnaire was used to collect the biodata, parity and other anthropometric variables (birth weight, birth length, head circumference, chest circumference, thigh circumference, mid upper arm circumference, hand length, hand breadth, foot length, foot breadth). The anthropometric variables were measured using standard procedures. One way ANOVA was used to determine the differences in neonatal variables across different categories of parity. SPSS (Statistical Package for Social Science) version 20 statistical software was used for data analyses. The result shows that the mothers within the 1st category of parity give birth to babies with lower birth weight and smaller thigh circumference when compared with 2nd, 3rd and 4th. However, in birth length, head circumference and chest circumference of the neonate the differences (p < 0.001) were observed only between 1st and 2nd category of parity. Moreover, the mid upper arm circumference has similar pattern with addition to 3rd categories. In conclusion, the parity of the mother was found to influence the neonatal anthropometric variables.

INTRODUCTION
Maternal Parity has been shown to increase the risk of adverse neonatal outcomes, such as intrauterine growth restriction (IUGR), prematurity, and mortality (Ustaer et al., 2008; Shah, 2010; Gibbs et al., 2012). Nulliparity may confer risk through complications during childbirth such as obstructed labour (Lee et al., 2011), whereas high parity has been linked to increased risk of hypertension, placenta previa, and uterine rupture (Shah, 2010). Several studies have hypothesized that in young mothers, maternal-fetal competition for nutrients and/or the mother’s incomplete physical growth might contribute to adverse neonatal outcomes (Kramer and Lancaster, 2010). Older women experience an increase in the incidence of congenital abnormalities as well as maternal morbidities such as hypertension and gestational diabetes (Yogeet al., 2010; Carolan and Frankowska, 2011). However, some literature has suggested that controlling for socioeconomic status heavily attenuates or eliminates associations of adolescence and of high parity with adverse outcomes (Sharma et al., 2008). It has been reported that primipara has higher relative risk of delivering low birth weight (LBW) babies in developing countries (Bisai et al., 2006; Lawoyin, 2007). In another study Elshibly and Schmalisch (2008) shows that primiparity is associated with an increased relative risk for LBW and that was distinctly higher when compared to the relative risk for LBW of other maternal characteristics.

Several studies relating the effect of mother’s age and parity on birth weight indicate that parity is the most important factor of the two (Sanghvi and Patel, 2016). There is paucity of data concerning the influence of maternal parity on neonatal anthropometric variables. The study seek to investigate the influence of maternal parity on the neonatal anthropometric variables among Hausas in Kano.

MATERIALS AND METHODS
Location of the study
The study was conducted in Murtala Muhammad Specialist Hospital, Kano. The state is located between latitude 12.2º North and longitude 9.4º East with the Kano city as the capital of the State. The State at present is the most populous in Nigeria, with over 9,000,000 people (Barau, 2007).

The subjects of the study
The study population consisted of 521 healthy mothers and their newborns delivered by mothers of Hausa ethnic background. Full term neonates, singleton and delivered through spontaneous vaginal delivery (SVD), apparently healthy mothers were included. Caesarean section cases, twins, babies with major congenital malformations, infants born to diabetic mothers and mothers with pregnancy induced hypertension were excluded.

Ethical clearance was obtained from Hospital management board and informed consent was sought from the mother.
Instruments
Tools used for the study include: - Questionnaires, Digital weighing scale (Model: ACS – 20, Country: China), Sliding vernier caliper and plastic measuring tape.

METHODS
The study subjects were measured for the following variables over a period of three months (February to April 2013), using the left side of the body (Allbrook 1961; Martin and Sallar 1959):

Birth Weight (BW) in Kg: Way Master weighing scale was used to measure the birth weight with the capacity of 13kg × 50g.

Head circumference (HC) in cm: Head circumference was measured at the largest frontal occipital plane between glabella anteriorly and along the most prominent point posteriorly using a measurement tape to the nearest 0.1 cm.

Chest circumference (CC) in cm: was measured using an inelastic tape as horizontal circumference of the chest at the level of the nipples at the end phase of expiration.

Mid upper arm circumference (MUAC) in cm: Was measured at the midpoint between the tip of acromion process and olecranon process of the left upper arm using inelastic tape.

Birth length (BL) in cm: Measured as the projective distance between the highest point on the head (vertex), and the most posterior projecting point of the heel, using infant measuring mat in supine position.

Hand length (HL) in cm: Measured from the midpoint of the distal wrist crease, to the tip of the middle finger using a plastic measuring tape (palmer surface of the hand in supine position).

Hand breadth (HB) in cm: Measured from the head of the 5th to 2nd metacarpal using a sliding vernier caliper (palmer surface of the hand in supine position).

Foot length (FL) in cm: Measured as a straight distance between the most posterior projecting point of the heel and anterior projecting point (the end of 1st or 2nd toe) using a plastic measuring tape (Planter view of the sole of the foot in supine position).

Foot breadth (FB) in cm: Measured at the widest point of the sole, which is from the metatarsophalangeal joint of the 1st metatarsal and that of the 5th metatarsal of the foot using a sliding vernier caliper.

All the measurements were taken by one investigator, measurements were taken twice.

Data analysis
SPSS (Statistical Package for Social Science) version 20 statistical software was used for data analyses. The data were expressed as Mean ± Standard Deviation (S.D). P < 0.05 was considered statistically significant.

RESULTS
The result for differences of birth weight across different categories of parity is presented in Table 1. There is significant difference in birth weight between 1st category and 2nd parity category, in addition differences were also observed between 1st and 3rd parities categories.

<table>
<thead>
<tr>
<th>Parity</th>
<th>Variables</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Birth weight</td>
<td>3.25 ± 0.467<sup>a,b</sup></td>
<td>3.66±0.518<sup>a</sup></td>
<td>3.60±0.497<sup>b</sup></td>
<td>3.60±0.476</td>
<td>25.003</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Similar superscripts indicate significant difference between the groups at P < 0.05. 1<sup>st</sup>parity; delivered 1-3 times, 2<sup>nd</sup> parity; delivered 4-6 times, 3<sup>rd</sup> parity; delivered 7-9 times and 4<sup>th</sup>parity; delivered 10-above times.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The result for differences of neonatal variables across different categories of parity is presented in Figure 1 and 2. The mothers within the 1st category of parity show significant differences (p < 0.001) in the BW and TC of their neonates when compared with 2nd, 3rd and 4th. However, in BL, HC and CC of the neonates the differences (p < 0.001) were observed only between 1st and 2nd category of parity. Moreover, similar pattern was observed in MUAC with regards to mothers with parity of seven to nine.
DISCUSSION
The current study explores the differences in neonatal variables among different categories of parity. The result shows significant decreases in neonatal variables of 1st parity category compared with others. The findings complement several studies relating the effect of mother’s parity on birth weight indicating that parity is the more important factor affecting birth weight and higher the parity, the more likely the lower the birth weight (Warburton and Naylor, 1971; Sanghvi and Patel, 2016). Study from other developing country indicates that birth order was one of the major factors affecting birth weight; women who were pregnant for the second and third time gave birth to neonates with higher birth weights, while women with first gravidity gave birth to neonates with lower birth weights. A possible explanation of lower birth weight among first-born infants could be a consequence of biological immaturity of the mothers as compared to later-born infants (Bisai et al., 2006).
Furthermore, other variables like BL, HC, CC and MUAC indicate similar trend as observed in the BW. This can also be linked to consequence of biological immaturity which usually happens in the early born child compared to the later ones. Several studies have hypothesized that in young mothers, maternal-foetal competition for nutrients and/or the mother’s incomplete physical growth might contribute to adverse neonatal outcomes (Kramer and Lancaster, 2010).

CONCLUSION

The study determined the relationship between maternal parity and neonatal anthropometric parameters among Hausas in Kano State. The finding shows a sharp increase in anthropometric measurement from 1st parity to 2nd parity with slight decrease from 3rd to 4th parity. This is possibly as a result of maternal-foetal competition for nutrients and/or the mother’s incomplete physical growth within young mothers and might contribute to adverse neonatal outcomes (Kramer and Lancaster, 2010).

Acknowledgements

My sincere thanks go to the Management of Murtala Muhammad Specialist Hospital Kano for their understanding and support given to us during the data collection. I also acknowledge the cooperation given to me by the subjects.

Contributions of authors

<table>
<thead>
<tr>
<th>Authors</th>
<th>Lit. rev</th>
<th>Methodology</th>
<th>Result</th>
<th>Discussion</th>
<th>Conclusion</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datt S</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Taura MG</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modibbo MH</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Adamu LH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Tela IA</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gudaji A</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asuku AY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Area of conflicts

- None

Reference

PROVISIONAL ETHICAL CLEARANCE

Sequel to conduct research title “Study of relationship between maternal and neonatal anthropometric parameters among Hausas in Kano”. In the light of the above, I am mandated to convey provisional clearance to proceed on your study based on the following conditions:

i. That the consent of all participants must be obtained by filing inform consent form.
ii. That you should liaise with the Management of the Facility of you. Focus for appropriate guidance.
iii. That any publication related to the study should be brought to the knowledge of the Ethical Committee for approval.
iv. That a copy of your finding should be submitted for documentation, record and final approval, please.

Best regards,

MAIMUNA YAKUBU KIMATA
Ass. Sec. II
F3: EXECUTIVE SECRETARY