ANTIOXIDANT, HYPOLIPIDEMIC AND ANGIOTENSIN CONVERTING ENZYME INHIBITORY EFFECTS OF ALKALOID FRACTION OF Hyphaene thebaica (DOUM PALM) ON HIGH FAT-FED OBESE WISTAR RATS

Salihu, A.,^1 Umar, B.,^1 Hussain, K.G.,^1 Bala, R.K.,^2 Kurfi, B.G.^1 and Abdulazeez, M.A.^2

^1Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano
^2Centre for Biotechnology Research, Bayero University, Kano

Correspondence: rkabala.cbr@buk.edu.ng, +234 803-912-0564

INTRODUCTION
Obesity is a chronic disorder characterized by an abnormal or excessive accumulation of body fat. It is a medical problem that increases the risk of other diseases and health problems, such as heart disease, diabetes, high blood pressure and certain cancers (Leonhardt et al., 2014). Activation of the renin-angiotensin system (RAS) has been shown to represent a link between obesity and hypertension (Segura and Ruilope 2007). Inhibition of RAS has been an important strategy for the treatment of hypertension and as a result, angiotensin converting enzyme (ACE) inhibitors have found a role as one class of antihypertensive drug (Segura-Campos et al., 2010). Most obese individuals have elevated lipid levels, known as hyperlipidemia, a medical condition characterized by an increase in one or more of the plasma lipids, including triglycerides, cholesterol, cholesterol esters, phospholipids and/or plasma lipoproteins such as very low-density lipoprotein and low-density lipoprotein, and reduced high-density lipoprotein levels. This elevation of plasma lipids is among the leading risk factors associated with cardiovascular diseases (Shatat et al., 2009). Oxidative stress is defined as an imbalance between oxidants and antioxidants or disruption of redox signaling and control (Jones 2006). Plants extracts have been widely used for long as source of dietary antioxidants, and it is believed that two-thirds of the world plant species have medicinal uses (Krishnaiah et al., 2011).

Doum palm fruit (Hyphaene thebaica) is a desert palm tree with edible oval fruit, originally native to the Nile valley (Hossam et al., 2018). Various extracts of H. thebaica are used in the treatment of many diseases. Doum fruit drink brewed from hot water infusion of dried fruit pulp is widely consumed as a health tonic. Fruit and seed of H. thebaica have also been used in the treatment of hypertension, bilharzias and as hematinic suspension (Burkill 1997).
Aqueous extract of doum fruits can reduce hyperlipidemia in nephrotic syndrome and leads to decrease the risk of glomerulosclerosis and atherosclerosis and consequently the natural, safe and nontoxic *H. thebaica* fruit could be of great merit for use as hypolipidemic drugs (Aboshora et al., 2014).

Materials and Methods

Chemicals and Reagents
Ethyl acetate, N Hydrochloric acid and Methanol. (Sigma, U.S.A). All other chemicals/reagents used were of analytical grade.

Collection, Identification and Preparation of Plant Material
Doum palm fruit was collected from Rimi Market Kano municipal City, Kano State, Nigeria, in February, 2018. The fruit was identified and authenticated by a botanist at the herbarium in department of plant biology, faculty of Life Science, Bayero University, Kano. A voucher specimen was deposited in the Herbarium for future use. The doum fruit was cracked to separate epicarp from the seed and ground into powder. The obtained powder sieved using a mesh (2mm) and used for preparation of extract.

Experimental Animals
Twenty five (25) apparently healthy albino wistar rats (150-240g) were obtained from the National Veterinary Research Institute, Vom in Jos, Plateau State. The animals were kept in well ventilated cages under standard conditions with 12 h light/dark cycle. They were allowed access to normal rat chow (Vital Feed, UAC) and water *ad libitum* throughout the period of the study. The animals were allowed to acclimatize for 2 weeks before commencement of experiment. Animals were used in accordance with the guideline of Bayero University ethics committee on the use of animals for research.

Experimental Design
The rats were divided into 5 groups of 5 rats each:
- Group 1: Control group (Standard diet, not treated),
- Group 2: Fat-fed obese control (High fat fed, not treated),
- Group 3: Standard control (High fat feed, treated with standard drugs Atorvastatin70mg/kg),
- Group 4: 100mg/kg *H.thebaica* (High fat fed, treated with 100mg/kg alkaloid fraction of *H.thebaica*),
- Group 5: 250mg/kg *H. thebaica* (High fat fed, treated with 250mg/kg alkaloid fraction of *H. Thebaica*).

Preparation of High Fat Diet (HFD)
High fat diet was prepared as described by Mickelsen *et al.*, (1955). The diet consists of 60g Crisco, 25g casein, 7g sucrose, 1g starch, 4g mineral salt, 3g palm oil, 2g of vitamin A and D, 1g of vitamin E was added to every 100g of normal fed (vital feeds).

Induction of Obesity
Rats in all groups except group 1 (control) were given HFD, freshly prepared daily until they became obese. This lasted for three weeks. Obesity was defined as 0.35 kg/m^2_. The obese rats were treated orally with alkaloid fraction of doum palm and standard drug (atorvastatin) for a period of 2 weeks.

Preparation of Alkaloid Fraction of *H. thebaica*
Alkaloid extract was obtained as described by Osmium (2005). Briefly about 500g of the dried powdered doum fruits was measured and extracted with petroleum ether to remove the non-polar constituents. The residual extract was then subjected to extraction using methanol. The extract was evaporated to leave the crude alkaloid mixture.

Determination of Antioxidant Parameters
The antioxidant parameters measured include Malondialdehyde (MDA) as described by Vashney and Kale (1990), Catalase activity according to the method of Brannan *et al.* (1981), reduced glutathione according to Ellman (1959), Superoxide Dismutase (SOD) activity as described by Misra and Fridovich (1972).

Serum Lipid Analysis
Lipid profile was determined using enzymatic colorimetric methods. The serum levels of high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol (TC) and triglyceride (TG) were determined using commercially prepared kit. They were analyzed according to the manufacturer’s instruction (K labkit CHEMELEX, S.A. pole industry).

Determination of ACE Activity
The ACE activity was determined as described by Cushman and Cheung (1971).

Statistical Analysis
All experiments were conducted in triplicate and results were express as Mean ±SD. Data were analysed were analysed by one-way ANOVA using Graphical Instat3 software (2000) version 3.05 by Graphical Inc. Values of p < 0.05 were considered significant.
RESULTS AND DISCUSSION

Effects of fractions of H. thebaica on body weight

The body weight of all the animals in experimental groups were found to increase significantly after induction of obesity as shown in table 1. High fat intake has been associated with increase in body weight, and can subsequently lead to obesity and other related disorders. High fat-induced obesity in animal models is therefore considered to represent the most common route of obesity in humans (Buettner et al., 2007). Treatment with two different doses of alkaloid fraction of H. thebaica was found to reduce the body weight of animals under the present experimental condition. However, the decrease was not statistically significant (P>0.05).

Table 1: Effect of alkaloid fraction of H. thebaica (Doum palm) on body weight of fat fed obese wistar rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Before Induction</th>
<th>After Induction</th>
<th>After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>148.30±2.77</td>
<td>193.00±16.76</td>
<td>190.20±15.53</td>
</tr>
<tr>
<td>Obese control</td>
<td>214.20±3.56</td>
<td>348.80±21.68</td>
<td>349.00±22.87</td>
</tr>
<tr>
<td>Standard drug (Atorvastatin 70mg/kg)</td>
<td>203.80±4.49</td>
<td>242.00±4.76</td>
<td>200.00±12.24</td>
</tr>
<tr>
<td>H.thebaica (100mg/kg)</td>
<td>146.40±6.12</td>
<td>212.00±43.82</td>
<td>208.00±41.72</td>
</tr>
<tr>
<td>H.thebaica (250mg/kg)</td>
<td>199.60±2.30</td>
<td>306.00±27.02</td>
<td>297.40±28.51</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n = 5)
Values with different superscript across the groups are significantly different at P<0.05

Effect of extracts on antioxidant parameters

Results in Table 2 show concentration dependent antioxidant activity of alkaloid fraction of H. thebaica. Significant (p<0.05) increase was observed in the level of catalase, glutathione peroxidase and superoxide dismutase in all treated group compared to the obese group. MDA was found to be significantly (p<0.05) high in obese control group. Increased generation of free radicals is prominent in most diseases; the antioxidant system represents the main pathway to detoxify free radicals (Lobo et al., 2010). Induction of obesity has been reported to lessen the activity of antioxidant defense mechanism, due to the increased cellular accumulation of lipid peroxides and depletion of endogenous antioxidants due to the high-fat diet (Mashael et al., 2017). Alkaloid fraction of H. thebaica has shown effective antioxidant activity (table 2) in a concentration dependent manner. Lamiaa and Laith (2018) reported a similar finding of strong antioxidant activity of ethanol and ethyl acetate extracts of doum palm. Both extracts show an increase activity with increasing concentration.

Table 2: Effect of alkaloid fraction of H. thebaica on some serum oxidative stress and antioxidant enzyme markers in fat-feed obese Wistar rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Catalase (U/ml)</th>
<th>Glutathione Peroxidase (U/ml)</th>
<th>Superoxide Dismutase (U/ml)</th>
<th>Malondialdehyde (µmol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>268.68±5.77</td>
<td>81.54±1.21</td>
<td>3.64±0.69</td>
<td>1.03±0.01</td>
</tr>
<tr>
<td>Obese Control</td>
<td>53.23±1.70</td>
<td>69.11±4.59</td>
<td>0.64±0.69</td>
<td>3.11±0.17</td>
</tr>
<tr>
<td>Standard drug (Atorvastatin 70mg/kg)</td>
<td>206.62±20.85</td>
<td>78.29±1.29</td>
<td>2.63±0.66</td>
<td>2.16±0.09</td>
</tr>
<tr>
<td>H.thebaica (100mg/kg)</td>
<td>169.97±14.11</td>
<td>78.29±1.29</td>
<td>1.59±0.63</td>
<td>2.25±0.48</td>
</tr>
<tr>
<td>H. thebaica (250mg/kg)</td>
<td>198±12.20</td>
<td>79.56±0.61</td>
<td>2.59±0.54</td>
<td>2.29±0.25</td>
</tr>
</tbody>
</table>

Values are mean±SD
Values with different superscripts in the same column are significantly different at P<0.05

Effects of alkaloid fraction of H. thebaica on lipid profile

Table 3 shows the effect of alkaloid fractions of H. thebaica on the lipid profile of obese wistar rats. It was observed that high-fat induced obesity resulted in a remarkable increase in lipid parameters including total cholesterol, triglycerides and LDL cholesterol and reduced level of HDL cholesterol.
This is an indication of hyperlipidemia which is a major risk factor associated with obesity (Sourav et al. 2014). Treatment of high fat-induced obesity with alkaloid fraction of *H. thebaica* was found to significantly (p<0.05) reduced serum levels of total cholesterol, triglyceride and LDL cholesterol. A significant increase (p<0.05) was observed in the level of HDL cholesterol in all treated groups. Effects were observed in a dose-dependent manner. This is in consistent with the finding of Aida (2016) which reported the hypolipidemic effect of doum fruit. In a similar study, El Gendy et al. (2008) observed that oral supplement of doum fruit significantly reduced serum levels of total cholesterol, triglyceride and LDL in human. Whereas HDL level was found to increase significantly. High levels of cholesterol, triglycerides and LDL cholesterol is directly related to arteriosclerosis which is the major cause of cardiovascular diseases (Ntchapda et al., 2017). Thus, the result of this study proves the beneficial effect of doum palm in reducing the risk of cardiovascular diseases due to its hypolipidemic effect.

Table 3: Effect of alkaloid fraction of *H. thebaica* on serum lipid profile of fat-fed obese wistar rats.

<table>
<thead>
<tr>
<th>Lipid Profile (mg/dl)</th>
<th>Control</th>
<th>Obese Control</th>
<th>Standard Drug atorvastatin (70 mg/kg)</th>
<th>H. thebaica (100 mg/kg)</th>
<th>H. thebaica (250 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>85.44±1.11</td>
<td>113.12±2.23</td>
<td>74.04±1.77</td>
<td>70.62±4.33</td>
<td>51.32±6.66</td>
</tr>
<tr>
<td>HDL Cholesterol</td>
<td>42.12±0.90</td>
<td>10.48±1.51</td>
<td>40.06±1.19</td>
<td>14.73±3.19</td>
<td>33.23±3.39</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>95.76±4.85</td>
<td>113.8±1.60</td>
<td>80.34±3.51</td>
<td>70.22±5.23</td>
<td>50.14±2.65</td>
</tr>
<tr>
<td>LDL Cholesterol</td>
<td>24.14±1.20</td>
<td>79.66±1.20</td>
<td>17.92±1.03</td>
<td>41.65±2.08</td>
<td>10.76±0.74</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n=5).
Values with different superscript across the group are significantly different P<0.05

Effects of alkaloid fraction of *H. thebaica* on the activity of angiotensin converting enzyme (ACE)

Hypertension is a global health problem associated with increased cardiovascular diseases. Obesity is an important factor that increases the risk of hypertension by altering endothelin and Renin Angiotensin Aldosterone System (RAAS). Angiotensin-converting enzyme, a decapeptidyl peptidase, is widely distributed not only in the cardiovascular system, but also in various non-cardiovascular tissues, such as the vascular endothelial cells of the lung, distal tubular epithelial cells and human alveolar macrophage (Sharifi et al., 2003). Table 4 shows the effect the alkaloid fraction of *H. thebaica* on ACE activity in serum, kidney and lungs of fat-fed obese wistar rats. It could be observed that induction of obesity increase ACE activity significantly. However, treatment with alkaloid fraction of *H. thebaica* was found to decrease ACE activity. 250mg/kg of alkaloid fraction show the highest activity between the groups. This indicates the antihypertensive effect of doum extracts by inhibition of ACE activity (Noha et al. 2018).

Table 4: Effect of the alkaloid fraction of *H. thebaica* on the activity of angiotensin converting enzyme in serum, lung and kidneys of fat-fed obese wistar rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>ACE Activity (µmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serum</td>
</tr>
<tr>
<td>Control</td>
<td>0.452±0.77b</td>
</tr>
<tr>
<td>Obese control</td>
<td>0.718±0.0908**</td>
</tr>
<tr>
<td>Standard drug (Atorvastatin,70 mg/kg)</td>
<td>0.521±0.059b</td>
</tr>
<tr>
<td>H. thebaica (100 mg/kg)</td>
<td>0.477±0.054b</td>
</tr>
<tr>
<td>H. thebaica (250 mg/kg)</td>
<td>0.483±0.067b</td>
</tr>
</tbody>
</table>

Values are expressed as Mean±SD.
Values with different superscript down the column are significantly different at (p<0.05)
Conclusions

Based on the findings in this study, it can be concluded that doum fruit (H. thebaica) has potent antioxidant, hypolipidemic and antihypertensive effects, and can be used to protect the body against adverse effects of high fat diet-induced obesity, thereby reducing the risk of cardiovascular diseases.

References

