INTRODUCTION

Capra hircus L. (Domestic goat) is one of the earliest animals domesticated by man. They are distributed worldwide with higher concentrations in tropical areas and in dry zones (Di Cerbo et al., 2010). Goats are excellent meat producers for human consumption in view of its short generation intervals and rich sources of protein and can help bridge the gap of protein malnutrition among consumers (Ozung et al., 2011). Thus, goats are primarily reared for meat and manure and regarded as one of the important animal species for generating cash income by farmers (Gatenby et al., 1990). As such the diseases of these animals are of great economic importance to humans.

Gastrointestinal parasites are considered as the major diseases causing organisms of ruminant animals such as cattle, sheep and goats. Helminths parasite infections in such animals are of the major importance in many agro-ecological zones and are primary factor in the reduction of production and productivity of livestock (Hassan et al., 2013). Economic impact of gastrointestinal (GI) parasites in livestock industry encompasses mortality and morbidity losses, enhanced susceptibility to diseases and losses resulting from condemnation of carcasses and viscera as well as cost of drugs and veterinary aids (Rajakaruna and Warnakulasooriya, 2011). Therefore, the gastrointestinal parasitism is considered as one of the major constraints for profitable livestock industry in tropical and subtropical countries including Nigeria (Johannes et al., 2009). It was also revealed that, nematode (fluke) and cestode (tapeworm) parasites may also contribute to detrimental worm burdens in animals (Rahmann and Seip, 2006). Protozoan diseases like amoebiasis, giardiasis, coccidiosis has been reported from different countries like Thailand, Costa Rica and India (Jittapalapong et al., 2011). Important groups of the gastrointestinal parasites known to infect livestock such as goat include the coccidian parasites, nematodes, cestodes, and trematodes (Rahmann and Seip, 2006; Onaga et al., 2009). The gastrointestinal nematodes are regarded as one of the most important groups causing recurring economic losses to livestock production systems throughout the world due to morbidity and mortality.
Further, it causes emaciation, anemia, hypoproteinemia, oedema, weakness, diarrhea and death. Sanyal et al. (1996) reported that, the parasitic gastritis dominated by haemonchosis, was a major constraint to the profitable sheep and goat production in India as the climate is favorable for the development and survival of free living stages of these parasites throughout the year. Environmental factors and vector abundance have been some of the major factors in the distribution of most parasitic diseases. Gastrointestinal parasites are common in both temperate and tropical countries, but more prevalent in warm countries where sanitation is poor and standard of living is low (Schmidt et al., 2000). Livestock such as goat get exposed to these pathogenic parasitic organisms very early under natural grazing conditions and the effects of infections are influenced by the environment, nutrition, climate and management practices (Lüscher et al., 2005; Blackburn et al., 2011). Several studies indicated high prevalence of gastrointestinal parasite in goats 75.75% in Ibadan, Nigeria (Olanike et al., 2015), 82% in Bangladesh (Shahiduzzaman et al., 2003). Considering the economic importance of gastrointestinal parasite in goats and their implication for public health, the study was conducted to determine the prevalence of gastrointestinal parasites of goats in Kano, Northern Nigeria.

MATERIALS AND METHODS

Study Area

The fecal samples were collected from Bachirawa Abattoir, Fagge LGA Kano State. Kano State is located in the North-west Nigeria located at latitude 11° 30N and longitude 8° 30 E. It share borders with Kaduna state to the south-west, Bauchi state to the South-East, Jigawa state to the East, Katsina state to the North. It has a total area of 20,131km² (7,777sqm) and estimated population of 13.4 million (NPC, 2014).

Sample Size Determination

The sample size for the study was determined from a standard formula for the calculation of minimum sample size (Nasir et al., 2018). Sample size was given by the formula; N = (Z_1-\alpha)^2 (p) (1-p) / d^2. Where N = minimum sample size, Z_1,\alpha = value of standard normal deviate which at 95% confidence interval has found to be 1.96, P = the best estimate of prevalence obtained from literature review (82%) and d = difference between the true population rate and sample that can be tolerated, this is the absolute precision (in percentage) on either side of the population. N = (1.96)^2 x (0.82) x (1-0.82)/ (0.05)^2 = 226.7 which was rounded up to 230 as the minimum number of samples for the study. Therefore, a total of 230 samples were used in the study.

Study population and Sample Collection

A total of 230 fecal samples were collected using hand gloves from male and female goat brought to the Bachirawa Abattoir, Kano for slaughter from March through September, 2017. A simple structured questionnaire was administered to the goat owners for obtaining goat’s details such as age and sex. The fecal samples collected after dropping were placed in a sterile sample bottles and transported to the laboratory in the Department of Biological Science, Kano University of Science and Technology Wudil for further examination.

Parasitological Examination

Fecal samples were examined by flotation techniques for the presence of gastrointestinal parasites ova as described by Cheesbrough, (2005). The fecal samples were crushed and dissolved in normal saline solution (0.9%) in a beaker. The obtained fecal suspensions were filtered using sieve of 50µm size mesh. This was done so as to trap the large particles or debris. The filtrate was placed into a glass slide covered with cover slip for 15mins. It was then mounted and examined under the microscope using X10 objective to determine the presence of eggs (ova) and X40 objective to determine the morphological features of the ova of the helminthes examined.

Data analysis

The data generated were subjected to descriptive statistical analysis using percentages and Chi – square analysis was used in determining the prevalence rates in the gender and age. \(p<0.05\) was considered indicative of a statistically significant difference.

RESULTS

Prevalence of Gastrointestinal parasites among the goats sampled

The data for the prevalence of gastrointestinal parasite of goat is presented in Table 1 below. The result indicated that the parasites are distributed into six different genera. They include Strongylidies sp, Haemonchus sp, Trichuris sp, Eimeria sp, Moniezia sp and Entamoeba sp. Haemonchus sp. was the most prevalent parasite encountered, about 34 times which accounted for 26.8 %, followed by Strongylidies sp 23 (18.1%), Eimeria sp 22 (17.3%), Trichuris sp 21 (16.1%) while Entamoeba sp 16 (12.6%) and Moniezia sp was the least prevalent 11 (8.7%).

482
Table 1: Prevalence of Gastrointestinal parasites

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parasite egg</th>
<th>Number positive</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strongyloides sp</td>
<td>23</td>
<td>18.1</td>
</tr>
<tr>
<td>2</td>
<td>Haemonchus sp</td>
<td>34</td>
<td>26.8</td>
</tr>
<tr>
<td>3</td>
<td>Trichuris sp</td>
<td>21</td>
<td>16.5</td>
</tr>
<tr>
<td>4</td>
<td>Eimeria sp</td>
<td>22</td>
<td>17.3</td>
</tr>
<tr>
<td>5</td>
<td>Monieza sp</td>
<td>11</td>
<td>8.7</td>
</tr>
<tr>
<td>6</td>
<td>Entamoeba sp</td>
<td>16</td>
<td>12.6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>127</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: Distribution of Gastrointestinal Parasites in Relation to Sex of the goats

<table>
<thead>
<tr>
<th>Sex</th>
<th>No. examined</th>
<th>No. positive</th>
<th>Prevalence (%)</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>103 (45.24%)</td>
<td>54</td>
<td>23.5</td>
<td>0.1701*</td>
</tr>
<tr>
<td>Female</td>
<td>127 (54.76%)</td>
<td>73</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>127</td>
<td>55.2</td>
<td></td>
</tr>
</tbody>
</table>

Key: *The p-value is .680056, hence there is no significant different on the distribution of gastrointestinal parasites among the sexes.

Table 3: Prevalence of Gastrointestinal Parasites in Relation to Age of the goats

<table>
<thead>
<tr>
<th>Age</th>
<th>No. examined</th>
<th>No. positive</th>
<th>Prevalence (%)</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young (< 1 year)</td>
<td>91 (39.6%)</td>
<td>38</td>
<td>16.5</td>
<td>3.2975*</td>
</tr>
<tr>
<td>Adult (> 1 year)</td>
<td>139 (60.4%)</td>
<td>89</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>230</td>
<td>127</td>
<td>55.2</td>
<td></td>
</tr>
</tbody>
</table>

Key: *The p-value is .069385, hence there is no significant different on the distribution of gastrointestinal parasites among age groups.

DISCUSSION

In the present study, 55.2% of the samples examined were infected with one or more gastrointestinal parasites. From the findings of this research, *Strongyloides* sp, *Haemonchus* sp, *Trichuris* sp, *Eimeria* sp, *Monieza* sp and *Entamoeba* sp were the gastro intestinal parasite of goats observed in this study. The presence of these parasites in this study was in conformity with the findings of Gadahi *et al.* (2009) and Nwigwe *et al.* (2013) who noted that the most pathogenic helminths and protozoan parasites in the intestinal tract of small ruminants such as goat include; *Strongyloides* sp, *Trichuris* sp and *Eimeria* species. High prevalence of gastrointestinal parasite of goats in this study is similar to the findings of Mollah *et al.* (1996) who examined 250 abomasi of goats and recorded *Haemonchus* and *Strongyloides* species and 127 (54.76%) from female goats. A total of 127 samples which accounted for 55.2 % of samples were positive for one or more gastrointestinal parasites. Higher incidence was found among female (41%) than male (33%).

The distribution of gastrointestinal parasites in relation to the age of the goats examined is presented in Table 3. Out total of 230 goats examined, 91 (39.6%) are below the age of 1 year and are considered as young while 139 (60.4%) are above 1 year. From the result obtained, more parasites were found among adult goats (38.7%) than younger ones (16.5%).

As the dominant helminth parasites in goats and are among the successful parasites of animals because of their efficient life cycle ranging from the very simple to the extremely complicated stage. The prevalence in the present study (55.2%), might be due to the system of management that these goats were subjected to as they were always left to wander about scavenging and feeding indiscriminately on anything they come in contact with and then return to their poorly kept sheds. The goats also exposed to gastrointestinal parasites when they are maintained in an unhygienic and poorly kept ranches and also when fed with contaminated food and water. The presence of protozoan parasites such as *Eimeria* sp and *Entamoeba* may be due to overcrowding, poor management and hygiene.
The presence of helminth parasites in this study support the finding of Adejinmi and Osayomi (2010) who attributed the presence of protozoan parasites in dogs as a result of overcrowding and poor hygienic condition. Poor hygienic condition and overcrowding encourage the spread of gastrointestinal parasites, as the animals become carriers of the intestinal parasites and continually contaminate the environment with eggs of the parasites.

Based on the finding of this study in relation to the sex, female goats are more susceptible to gastrointestinal parasite (31.7%) than male goats (23.5%). This result was in conformity with the finding of Shakya et al. (2017) who found higher incidence of gastrointestinal parasites in female goats (46.04%) than male goats (39.5%). Higher incidence among female might be due to genetic predisposition and differential susceptibility owing to hormonal differences (Shakya et al., 2017). Other factors associated with higher incidence of gastrointestinal parasite among female goats include pregnancy and lactational stress (Shakya et al., 2017). In the present study, more parasites were found among adult goats (38.7%) than younger ones (16.5%). However, there is no significant difference on the prevalence of gastrointestinal parasites in relation to the age of the goats at r<0.05 (0.694). This agrees with the finding of Chedge et al. (2013) who found 57% and 22% prevalence of gastrointestinal parasites for adult and young goats respectively. Higher prevalence of the parasites among adult goats was due to continues grazing on pasture land by the adult in most time and the pasture happens to be infected with infective larvae, as infected adult animals continually shed the eggs gastrointestinal parasites while the young ones which are generally kept at home.

CONCLUSION
The findings of the present study established a prevalence of gastrointestinal parasites of goats to be 55.2%. A total of six parasites belonging to six different genera were recorded. They include Strongyloides sp, Haemonchus sp, Trichuris sp, Eimeria sp, Monieza sp and Entamoeba sp with Haemonchus sp. being the most prevalent parasite encountered. It is found that female goats are more susceptible (31.7%) to gastrointestinal parasite than males one and (23.5%) more parasites are found among adult goats (38.7%) than younger ones (16.5%). However, these variations were not statistically significant. It is recommended that educating goat owners on method of transmission and effect of these parasites should be encouraged.

ACKNOWLEDGEMENT
The authors wish to acknowledge the technical staff of Biological Science Department of Kano University of Science and Technology Wudil for use of Laboratory facilities. Similarly, the management of Bachirawa Abattoir was duly acknowledged for their support in the sampling of the feacal matter.

REFERENCES
Special Conference Edition, November, 2019
in Thailand. Journal of Natural Science
45: 40 – 45.