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ABSTRACT 
The ground state energy of the hydrogen molecule was numerically analysed using the quantum 
Monte Carlo (QMC) method. The type of QMC method used in this work is the Variational Quantum 
Monte Carlo [VQMC]. This analysis was done under the context of the accuracy of Born-
Oppenheimer approximation [fixed nuclei restriction]. The ground state energies of Hydrogen 

molecule for different interproton separation ⎟
⎠
⎞

⎜
⎝
⎛ −

0
0.14.0 A  are computed and compared with 

previous numerical and empirical results that are essentially exact. It has been found that the 
ground state energy of the hydrogen molecule obtained in this work approaches the precise value 
of – 31.94eV.  
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INTRODUCTION  
The determinations of ground state energies for a 
molecular system constitute a reliable problem of 
interest in theoretical condensed matter physics. The 
method is based on solving the corresponding time-
independent Schrödinger equation (TISE) and the 

time-dependant Schrödinger equation (TDSE), where 
the fixed nuclear restrictions or the non fixed nuclear 
restrictions can be considered. In this work the fixed 
nuclear restrictions is considered. (Born-Oppenheimer 
Approximation) 
The non relativistic TISE has the general form 

{ }( ) { }( )rErH ψψ =
∧

,                                                                                                                   1 

where ψ  represents wavefunction for the nth electron, {r} = {r1---------rn} represents the coordinates of the nth 

electron, E is the eigen-energy and  is the Hamiltonian. 
The Hamiltonian which is simply represented as the total energy, summing the kinetic and potential energy can 
be written as 
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It is not possible to obtain solutions to the 
Schrödinger equations analytically in many quantum 
systems even when the system contains only a few 
electrons. Instead numerical solutions to the 
Schrödinger equations are employed. 

The numerical evaluation of the energies for 
H2 molecule started in 1933 with the work of James 
and Coolidge, (1933). Their work represented one of 
the first successes in solving the Schrödinger equation 
for molecules. After three decades more accurate 
results for the hydrogen molecule were obtained, for 
example by Kolos and Roothaan (1960) and also by 
Kolos and Wolniewicz (1968), this establishes the 
basis for further research. They implemented a 
variational approach in which the wave function is 
expressed in elliptic coordinates and using a method 
of Born.  

Before the advent of quantum mechanics all 
numerical solutions so far obtained made use of 

classical approach to arrive at their conclusions which 
were based mainly on the application of mean field 
approximations. Calculations based on Hatree-Fock 
(HF) theory are examples. The fundamental ideology 
behind the mean field approximations is to consider 
each electron in isolation and to assume that the 
effects of its interaction with other electrons can be 
well approximated by the mean field produced by 
these other electrons. In a nutshell the electrons in 
the system are assumed to be uncorrelated. Therefore 
calculations of total energy that employ mean field 
approximations necessarily exhibit systemic errors, 
due to none inclusion of exchange and correlation 
effects, Ceperley and Mitas (1995). The quantum 
Monte Carlo techniques are a way of solving high 
dimensional effects in physics and chemistry without 
making mean-field approximations.  
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A quantum Monte Carlo technique calculates the 
energies of a molecular system by considering the 
wavefunction as probabilistic distribution and by 
random sampling them. A comparative analysis 
between quantum Monte Carlo methods and other 
mean-field methods can be found in Kent (1999). 

The interest in refining the Schrödinger 
equation using Monte Carlo procedures was initiated 
with the work of Fermi (1928). In an attempt to 
describe that work, Metropolis and Ulam (1949) noted 
that the Schrödinger equation could be expressed as a 
diffusion equation and simulated by a system of 
particles undergoing a random walk in which there is 
a probability of multiplication of particles. With the 
subsequent advances in computer technology, Monte 
Carlo methods have more practical applications in 
calculating properties of atomic and molecular 
systems. The random walk methods have been 
applied to polyatomic ions, Traynor et al (1991) and 
molecules, Chen and Anderson (1995) using the 
importance sampling technique of Grimm and Storer 
(1971). Importance sampling has also been applied to 
the Green’s function quantum Monte Carlo (GFQMC) 
method used by Kolos and Wolniewicz (1968). 

In this work, the ground state energy of 
hydrogen molecule is numerically investigated using 
the variational quantum Monte Carlo (VQMC) . We 
have chosen this case because there is an extensive 
data of accurate theoretical predictions and high 
quality empirical measurements of the ground state 
energies that could be compared with our results. 
Some of the results include the work of Traynor, et al 
(1991), Chen and Anderson (1995) and Ko, Wing Ho 
(2004) e.t.c. 

The Variational Monte Carlo simulates the time-
independent Schrödinger equation.The QMC methods 

have been used in different ways for treating several 
excitonic systems, Ceperley and Mitas (1995) involving 
coupled nuclear and electronic motion with or without 
the use of Born-Oppenheimer approximation. There 
also have been successful applications of QMC 
technique to the ground state energies in the 
following areas of research, Foulkes and Mitas (2001). 

a) the relativistic electron gas 
b) cohesive energies of solids 
c) phase of the electron gas 
d) Compton scattering in Si  and Li 

 

The Variational Quantum Monte Carlo 
The Variational Quantum Monte Carlo (VQMC) is 
based on the combination of the Variational principles 
and Monte Carlo evaluation of integrals. This method 
relies on the availability of an appropriate trial 

wavefunction Tψ   that is a reasonably good 

approximation of the true ground state wave function, 
Koonin and Meredith, (1990). The way to produce 
good trial wavefunction is described further in this 
review. The trial wavefunction must satisfy some 

fundamental conditions. Both Tψ and Tψ∇  must be 

continuous wherever the potential is finite, and the 

integrals TTTT Hand ψψψψ
∧

∫∫ **   must exist. To 

keep the variance of the energy finite we also require 

TT H ψψ
∧

∫ 2*  existing. The expectation value of 
∧

H  

computed with the trial wavefunction Tψ  provides an 

upper bound on the exact-ground state energy E0, Ho 
(2004) 
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In a VQMC simulation this bound is calculated using the metropolis Monte Carlo method.  Equation (3) can be 
written as; 
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and the metropolis is used to sample a set of points {Rm : m  = 1, M} from the configuration-space probability 
density  
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At each of these points the “local energy” is evaluated and the average energy accumulated is given by Traynor 
et al as 
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Optimization of Trial Wavefunction 

                    e = electron, p = proton 
Fig.1 Coordinates used in describing the Hydrogen Molecule 
 
The positions of the electrons and protons in fig 1 can be used to define the Hamiltonian and the trial 

wavefunction for the hydrogen molecule. Now considering equation (2) and setting 1=== emeh , where me 

and e are the mass and charge of electron respectively. The non-relativistic Hamiltonian based on Born-
Oppenheimer approximation of the hydrogen molecule can be represented as: 
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Where 2
1∇ and   2

2∇  are the laplacian with respect to the first and second electron and S is the interproton 

separation. 
An appropriate trial wavefunction should respect all the symmetries in equation (7), therefore the trial 
wavefunction used in the non fixed nuclei restriction is the product of the four terms Chen and Anderson (1995) 

43210 ψψψψψ =                                                                                                                        8 

Each of the first two terms is simply the linear combination of atomic orbital of electron 
I = 1, 2 and for two nuclei YX ,=α  

( ) ( )YX arar 111 expexp −+−=ψ                                                                                                  9 

( ) ( )YX arar 222 expexp −+=ψ                                                                                                  10 

The term 3ψ  is the Jastrow factor which accounts for both electron-electron and electron-proton correlation 

such that the cusp condition are satisfied as 0,21 →αirr  for I =1 or 2 and YorX=α    and has the form 
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where i j and k l include the interaction, 12, 1X. 1Y, 2X, and 2Y. Equation 11 can be reduced to 
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The last term 4ψ  in Equation (8) is the harmonic oscillator term intended to include in part the effect of nuclear 

interaction and it is given by  

( )[ ]2
4 exp crd YX −−=ψ                                                                                                            13 

The parameters a, b, c, and d made use of the 
following atomic unit respectively;- 1.1750, 0.500, 
1.401 and 10.0 Traynor et al (1991). Equations (11, 
12, and 13) are only valid when considering the non 
fixed nuclei restrictions i.e. a situation where the 
principle of Born-Oppenheimer approximation is not 
taking in to consideration, therefore taking the 12-D 
model. In this work the fixed nuclei restriction is 

considered therefore the coulomb potential in its 
singular state at short distances constitutes an 
additional constraints on the trial wavefunction, if one 
of the electron (say 1)  approaches one of the nuclei 
say X while the other electron remain fixed, the 
potential term in e1  becomes large and negative, 
since 0→Xir .  

  e1 

R1 X 

  e 2 

R2 X R1 Y 

   S/2 

P X 
P Y 

R2 Y 

R1 2 

Px – py  = 
S 
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This must be cancelled by a corresponding positive 
divergence in the kinetic energy term if there is need 
to keep the wavefunction smooth and have a small 
variance in the Monte Carlo quadrature. Thus the trial 

wavefunction should have a “cusp” at 0→iXr . This 

implies that the molecular orbital should satisfy; 
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Similar conditions must also be satisfied whenever 
anyone of the distances r1Y, r2Y,,X or r1 2  vanishes. 
Using the correlated product of the molecular orbit 
and employing the Born-Oppenheimerr approximation 

coupling with the factor that expresses the correlation 
between 2 electrons due to their coulomb repulsion 
as: 
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Hence forth setting the value of α  to satisfy the transcendental equation 

aSe /1
1
−+

=α , and that 2

2

002
me

awherea h
==α  is the Bohr radius. Thusβ  is the only variational 

parameter at our disposal. 
Conclusively the ideal way of making a plausible 
choice of the trial function is the correlated product of 

molecular orbitals and considering the case of fixed 
nuclei restriction: 

( ) ( )., 212121 rfrr ψψ=Φ                                                                                                                16 

The first two factors are an independent-particle 
wavefunction placing each electron in a molecular 
orbital in which it is shared equally between the two 

protons. A simple choice for the molecular orbital is 
the symmetric linear combination of atomic orbitals 
centered about each proton, 
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Putting (9), (10) and (15) in (16) a collection of a justifiable trial wavefunction is attained: 

( ) ( )( ) ( )⎟⎟⎠
⎞

⎜
⎜
⎝

⎛

+
++= −−−−

21

21////
21 12

exp, 2211

r
r

eeeerr YXiYXi rrrr

β
ψ αααα                                                    18 

(18) is the collection of the trial wavefunction in which the electron-electron cusp condition is satisfied 

automatically by the factor ( )⎟⎟⎠
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,while the electron- proton cusp condition is satisfied by the 

factor α/ire−  and also by setting α to satisfy the transcendental equation: 
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Algorithm of Metropolis  
One of the most effective and prominent way of 
producing random variables with a given probability 
distribution of arbitrary form is the algorithm of 
metropolis. Metropolis and Ulam, (1949) 
Therefore Monte Carlo Methods described in the 
previous section utilizes the metropolis algorithm to 
evaluate multidimensional integrals. In high-
dimensional spaces it is necessary to sample 

complicated probability distribution. The normalization 
of these distributions is unknown and they cannot be 
sampled directly. The metropolis algorithm has the 
great advantage that it allows an arbitrary complex 
distribution to be sampled in a straight forward way 
without knowledge of its normalization. The 
metropolis algorithm works this way by moving a 
single walker according to the following steps: 

a) Start the walker at random position R. 
b) Make a trial move to a new position  R′ chosen from some probability density     function  

( ).RRT ←′ after the trial move the probability that the walker initially at R is now in the volume 

element ( ).RRTXRdisRd ←′′′  

c) Accept the trial move to R′  with probability 
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If the trial move is accepted the point R′  becomes 
the next point on the walk; if the trial move is 
rejected, the point R becomes the next point on the 

walk. If probability distribution ( )Rρ  is high, most 

trial moves away from R will be rejected and the point 
R may occur many times in the set of points making 
up the random walks. 

d) Return to step b and repeat. 
 

The VQMC Code Procedure 
The program in the above named code (Koonin and 
Meredith, 1990) is written in Fortran 77 and 
implements VMC to solve the two-center, two electron 
problem of the hydrogen molecule using the trial 
wavefunction specified by equation (18). The program 
calculates either the electronic eigenvalue (energy of 
the electrons) or the correlations in the energy of the 
electrons. As soon as the compilation and the 
execution are successful, equation (15) is solved for 
α   (subroutine PARAM) and the initial configuration 
(for VMC, subroutine INTCFG) is generated. The 
program commences by thermalizing the “walker” 
generated by the metropolis algorithm. The metropolis 
step for the Variational calculations are taken in the 
subroutine METROP, the method use functions 
ELOCAL to find the local energy and Real Function 
PHI to calculate the wavefunction for a given 
configurations. The users are required to input the 
variable factor of the interproton separation thereby 
setting the Variational parameters in the trial 
wavefunction. It also requires the user to input the 
metropolis step size. When thermalization is 
completed, it returns the percentage of accepted 
steps, which is useful in determining if the step size 
has to be modified. The next step after thermalization 
(initialization) is to generate an initial ensemble; 
therefore the metropolis algorithm already evaluated 
in the initialization is applied. After the generation of 
the ensemble the energy and the standard error in 
energy of that ensemble is calculated. This ensemble 
can also be written in to a separate file as requested 
in the program. 

 
RESULTS AND DISCUSSION 
The lowest eigenvalue of the hydrogen molecule (E0) 
for different interproton separations were computed 
using the variational quantum Monte Carlo [VQMC] 
with respect to Born-Oppenhiemer approximations. 
The results were presented graphically in Fig 1. These 
results were further compared with the exact values 
obtained by Kolos and Wolniewicz, (1968) which were 

considered as the values obtained from the first 
principle analytical calculations. The results from fig 
1were obtained with the correlated sample of the trial 
wavefunction in equation (18). The numerical 
calculations from VQMC show some significant 
improvement towards the exact numerical results but 
a more improved method may be applied, this could 
involve the Path integral method that uses the 
stochastic gradient approximation approach which 
may yield a more accurate result.  
Furthermore the results obtained in this work were 
already programmed to have the following units; the 
interproton separation is measured in Angstroms 

⎟
⎠
⎞

⎜
⎝
⎛ 0

A  and the ground state energy is measured in 

electron volt (eV). Therefore during the course of 
comparison between other theoretical and empirical 
methods the following standard conversion rates were 
applied; 

1 Bohr radius = 0.529177249
0
A   

1 Hatree = -27.2eV   
For every interproton separation input depending on 
the group of ensembles provided the group average 
ground state energy was calculated. The results 
obtained in this work are in agreement with the 
results obtained from the work of Ko, Wing Ho (2004) 
where a comparison of the ground state energy of 
hydrogen molecule between Variational Quantum 
Monte Carlo and Diffusion Monte Carlo (DMC) under 
the context of Born-Oppenhiemer approximation was 
analysed. The DMC calculation almost gives the exact 
ground state energy of about -1.16 Hatree at about 
1.4 Bohr radius of interproton separation. The result 
also approaches the accuracy of the work of Traynor, 
Anderson and Boghosian (1991) where they compare 
results obtained from Green’s Function Monte Carlo 
and Diffusion Monte Carlo in calculating the ground 
state energy of the Hydrogen molecule without 
considering the fixed nuclei restriction.  
    
Another observation from the graphs is that the 
ground state energy was obtained at an interproton 

separation of about 
0

8.0 A  which also falls in the 
range of the theoretically obtained values; this 
indicates a greater intensity of the lowest energies 
levels at very small interproton separations. 
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Fig 2: Ground state energy Vs Interproton Separation (VQMC) for H2 molecule   
 

CONCLUSION 
The ground state energy of hydrogen molecule at 
different interproton separation was numerically 
calculated under the principles of Born-Oppenheimer 
approximation using Monte Carlo technique i.e. the 
Variational Quantum Monte Carlo [VQMC] technique. 
The results in this work demonstrated that VQMC is 
capable of approaching the precise ground state 

energy of the hydrogen molecule as it falls inside the 
error bars of previous empirical and numerical 
calculations obtained by Kolos and Wolniewicz (1968) 
which were considered as the values obtained from 
the first analytical principle calculations. The trial 
wavefunction have been optimized to suite the cusp 
condition of the electron-electron and electron-proton 
conditions.  
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