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ABSTRACT  
A computational study of the total  electrons charge density in the diamond-structure semiconductor 
crystals has been performed. In a typical modern electronic structure calculation, the charge density is 
obtained  from a certain density functional, however, the charge density in this work was obtained from 
first principles. It is assumed that  the one-electron Bloch functions for the crystals will not very seriously 
differ from the wave functions in the atomic systems, therefore, they are represented by the well known 
normalized Slater atomic orbital for multi-electron atoms and ions. Since the spherical  harmonics are 
expressed in the spherical coordinate system, all the calculations are done in this system. The wave 
functions and the total electron charge densities are calculated along the [l00], [010],  and [00l] directions  
for the state k=0. The atomic system of units is used throughout the calculations. i.e. distances are 
expresPsed in unit of the Bohr radius, and  charges in unit of the electronic charge. It has been found that in 
each crystal, the total electrons charge density along the [100] and [010] directions are equal, however, the 
charge densities at a given distance from the center of the cell along [001] and  [100] directions are not exactly 
equal; the density along [100] been always higher. This shows that the potentials arising from the electrons are 
not spherically symmetric. The results are presented and discussed. 
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INTRODUCTION 
Semiconductors have played a major role in the 
current technological revolution. The enormous 
advances in electronics and computer science were 
made possible by a better understanding of the 
properties of semiconductors. For roughly the past 
ninety years, a major aspiration of condensed matter 
physics has been to explain and predict the properties 
of solids knowing only the  identities of the constituent 
atoms (Balkanski and Wallis, 2000). Recently, this goal 
has been realized for many semiconductor properties. 
The successes are best illustrated by the progress 
made in understanding the electronic and optical 
properties of semiconductors (Seeger, 2004).  

In a crystal, there are of the order of 1024 
particles per cm3, and these interact with each other.  
It is very obvious that the Hamiltonian describing a 
typical crystal is highly complicated and an accurate 
solution of the energy eigenvalue  problem for a solid 
is very difficult if not impossible. Several 
simplifications and approximations are necessary 
before a useful scheme can be obtained for calculating 
or predicting the properties of solids  (Dornald, 2003). 

Since the pioneering work in electronic 
structure calculation by Wigner and Seitz (1933, 1934) 
and Slater (1934) there has been a proliferation of 
interest and techniques in the field. At present there 
are many methods of energy structure calculation 
some of which are: Free-Electron Approximation, 
Nearly-Free-Electron Approximation, Cellular Method, 
Augmented Plane Wave Method, Scattering Matrix and 
Green’s Function Method, Orthorgonolized Plane Wave 
Method, Pseudopotential Method, Green’s Function 
Cellular Method, and Density Functional Theory 

Method  (Patrick and Emily, 2008 and James et al, 
2008). 

Density Functional Theory (DFT) is a 
powerful tool use to investigate the  electronic 
structure of many-body systems, in particular 
molecules and condensed phases. DFT is among the 
most popular and versatile methods available in 
condensed matter physics. Traditional methods in 
electronic structure theory, in particular Hartree-Fock 
theory and its descendants are based on a 
complicated wave function. The main objective of DFT 
is to replace the many-body electronic wave function 
with the electronic density as the basic quantity 
(Kieron, 2007). This work is primarily concerned with 
the calculations of the electronic charge density in the 
diamond-structure semiconductor. However, before 
such a calculation can be done the electronic wave 
functions must be known, therefore, these wave 
functions are also calculated. Knowledge of the 
electronic charge distribution in insulators is essential 
for a complete description of the nature of the 
chemical bond in such materials. The most significant 
progress in this direction was made by Walter and 
Cohen (1971) using the pseudopotential method. In 
particular they have calculated the charge densities 
for several diamond and zinc-blende type 
semiconductors using wave functions derived from 
pseudo-potential band-structure calculations. 
However, in this work the charge density is obtained 
directly from the electronic wave function, calculated 
from first-principles. Fundamentally, the input to the 
charge density calculations in this work are the lattice 
constant of the crystal and the atomic number of the 
constituent atom.  
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A brief description of the diamond-structure lattice, a 
comprehensive account of the calculation of the 
electronic wave functions and the calculated functions 
are presented in section 2. The procedure of obtaining 
the charge density, and the variation of the charge 
density within the Wigner-Sietz cell are treated in 
section 3.  
 

The Normalized Slater Orbitals  
The diamond lattice may be considered as being made 

up of two face-centered cubic (FCC) lattices displaced 
from one another by one-quarter of a body diagonal. 
Each atom has four nearest neighbors at a distance  
alat(3/4)1/2,  where alat is the lattice constant, arranged 
at the comers of a regular tetrahedron (Jan and 
Andreas, 2002). Geometrically, the diamond structure 
is described as a simple cubic with basis vectors 
(Marvin, 1975). 

                      ( ) ( ) ( )1 2 3
1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,     ,         
2 2 2x y x z y z= + = + = +b a a b a a b a a [2.1] 

which describe  points on the faces of the unit cube and  
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4 4
1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 3 ,    3 3 ,     
4 4

x y z x y z

x y z x y z
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= + + = + +

b a a a b a a a

b a a a b a a a
[2.2] 

which designate the internal points. In Equations 
[2.1] and [2.2]  the aj’s are the primitive vectors of 
the direct lattice. Table 1, below lists some elements 
which exhibit the diamond structure.  The nearest 

neighbor distance, d is calculated from the 
appropriate lattice constant at 20ºC and is expressed 
in the Bohr radius, a0 ( Babaji,  1999). 

 

Table 1: Some Parameters of Semiconductors with the Diamond structure.  
Element Nearest Neighbor 

Distance,  d (a0) 
Radius of Inscribed 
Sphere, rin (a0) 

Radius of 
Circumscribed Sphere, 
R (a0) 

Carbon 2.903032661 1.451516331 3.652902660 
Silicon 4.434022000 2.217011000 5.579374000 
Germanium 4.613878530 2.306939265 5.805669834 
α − Tin 5.293751049 2.646875525 6.661157328 
 

The charge density at the point r, ρ(r) is given by  

                                      ( ) 2
,j

j
ρ = Ψ∑r   [2.3]  

where jΨ is the wave function of the jth electron. 

The one-electron function for an electron in an atomic  
system can be obtained numerically with the Hartree-Fock 
method (Hartree, 1957a) or analytically with Roothan's 
Self-eonsistent-Field (SCF) method (Breene, 1958). The 
usefulness of functions simpler than the Hartree-Fock 

functions was recognized long ago, (Lowdin, 1953 and 
Slater, 1951). They both made use of a single exponential 
function to describe an atomic orbital. In this work, the 
atomic orbitals employed are the Slater atomic orbitals for 
multi-electron atoms and ions  given by Mcweeny (1979) 
as: 

( ) ( )1
,, , exp , ,effn

n l m

Z r
r Ar Y

n
θ ϕ θ ϕ

∗−
∗

−⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠

r
r

[2.4] 

Where ( ), ,l mY θ ϕ is the real spherical harmonics, n is the principal quantum number, n* is the effective 

principal quantum number, A is a normalization constant, and Zeff is the effective nuclear charge and is given by  
,effZ Z σ= −
  [2.5] 

where σ is the screening constant. 

 It is a fact (Huag and Koch, 1992) that the one-electron wave functions in crystals, jΨ  are given by the Bloch theorem    

( ) ( ) ( ), ,exp ,k ki uλ λΨ = •r k r r ,             [2.6]    

where λ is the energy eigenvalue, k is the wave vector, and u is the Bloch function and is required to have the 
full translational symmetry of the lattice, i.e. 

( ) ( ), , ,k ku uλ λ= +r r R       [2.7] 

for any direct lattice point vector R. It is assumed here 
that the Bloch functions in the crystal will not very 
seriously differ from the atomic orbitals in the atomic 

system, in fact even in practically and accurate calculations 
in solids the atomic orbitals are used as a first 
approximation (John and Stefan, 2003).  
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Therefore, the normalized Slater orbitals, Eq. [2.4] were used for the various uj.  
The radial component of the Slater orbital is given by  

( ) ( )exp  ,b
nR A t= −r r r     [2.8] 

where 

1,   and  .effZ
b n t

n
∗

∗= − =            [2.9] 

To calculate R(r), n* and σ must be known. There are several rules proposed for the calculation of these 
quantities and can be found in the  work of Slater (1955). These rules were used to calculate  n* and σ and then 
the various radial factors R(r) in α – tin. However,  in the case of  C,  Si  and Ge the various R(r) were 
calculated  using the values of Zeff reported by Clementi and Raimondi (1963). 

The real spherical harmonics, ( ), ,l mY θ ϕ  are the angular component of the Slater orbitals. In this work,   the 

expressions for the real spherical harmonics given in appendix A of Mcglynn et.al (1972) were used. 
Since the spherical harmonics are expressed in the spherical coordinate system all calculations are done in this 
system. It should be noted that by virtue of the real spherical harmonics, the Slater atomic orbitals are directional. In 
view of this fact, and also in line with the general practice in electronic structure calculations, the charge density is 
computed along a well defined direction. To simplify the calculations the directions considered are:  

0θ ϕ= = o
i.e. [001]; 90 ,  =0θ ϕ= o o

 i.e. [100]; and 0 ,  90θ ϕ= =o o
 i.e. [010].  

The values of the real spherical harmonics calculated 
along the three directions are given in Table 2. It is 
obvious that the Slater orbitals must vanish if their 
associated real spherical harmonics is zero. As can be 
seen from Table 2, there are equal number of non-

zero orbitals along the [100] and [010] directions. 
Also the number of orbitals along the [001] is lower 
than along the [100] and [010] directions. The 
calculated normalized Slater orbitals along these 
directions for the various atoms are given in Table 3.  

 

Table 2: Values of the Real Spherical Harmonics.  
l m [100] direction [001] direction [010] direction 
0 0 (1/4π)1/2 (1/4 π)1/2 (1/4 π)1/2 
1 0 0 (3/4 π)1/2 0 
1 1 (3/4 π)1/2 0 0 
1 -1 0 0 (3/4 π)1/2 
2 0 -(5/16 π)1/2 2(5/16 π)1/2 -(5/16 π)1/2 
2 1 0 0 0 
2 -1 0 0 0 
2 2 0 0 0 
2 -2 (15/8 π)1/2 0 -(15/8 π)1/2 
3 0 0 2(7/16 π)1/2 0 
3 1 -(21/16 π)1/2 0 0 
3 -1 0 0 -(21/16 π)1/2 
3 2 0 0 0 
3 -2 0 0 0 
3 3 (35/16 π)1/2 0 0 
3 -3 0 0 -(35/16 π)1/2 
4 0 3(9/256 π)1/2 8(9/256 π)1/2 3(9/256 π)1/2 
4 1 0 0 0 
4 -1 0 0 0 
4 2 -60/8(18/1440π)1/2 0 0 
4 -2 0 0 -60/8(18/1440π)1/2 
4 3 0 0 0 
4 -3 0 0 0 
4 4 105(9/80640 π)1/2 0 0 
4 -4 0 0 105(9/80640 π)1/2 
5 0 0 (11/4 π)1/2 0 
5 1 15/18(264/1440 π)1/2 0  
5 -1 0 0 15/18(264/1440 π)1/2 
5 2 0 0 0 
5 -2 0 0 0 
5 3 -420/8(22/80640 π)1/2 0 0 
5 -3 0 0 -420/8(22/80640 π)1/2 
5 4 0 0 0 
5 -4 0 0 0 
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Table 2 continue  
l m [100] direction [001] direction [010] direction 
5 5 945(11/2 π×10!)1/2 0 0 
5 -5 0 0 945(11/2 π×10!)1/2 
6 0 -15/48(13/4 π)1/2 (13/4 π)1/2 -15/48(13/4 π)1/2 
6 1 0 0 0 
6 -1 0 0 0 
6 2 630/48(312/80640 π)1/2 0 0 
6 -2 0 0 630/48(312/80640 π)1/2 
6 3 0 0 0 
6 -3 0 0 0 
6 4 -22680/48(26/7257600π)1/2 0 0 
6 -4 0 0 -22680/48(26/7257600π)1/2 
6 5 0 0 0 
6 -5 0 0 0 
6 6 498960/48(13/2 π×12!)1/2 0 0 
6 -6 0 0 498960/48(13/2 π×12!)1/2 

 

Table 3.1a: The Normalized Slater Orbitals of Carbon Along the [100]  Direction.  

Orbital Type  Normalized Slater Function  

1s  [(5.6727)3/π ]1/2  exp(-5.6727 x)  (1/4π)1/2 

2s  [(3.2166) )5/96π]1/2 x  exp(-1.6083 x ) (1/4π)1/2  

2px  [(3.1358)5 /32π ]1/2  x  exp(-1.5679 x ) (3/4π)1/2  
 

Table 3.1b: The Normalized Slater Orbitals of Carbon along the [001) Direction.  

Orbital Type  Normalized Slater Function  

1s  [(5.6727)3/π ]1/2  exp(-5.6727 z)  (1/4π)1/2 

2s  [(3.2166) )5/96π]1/2 z  exp(-1.6083 z ) (1/4π)1/2  

2pz  [(3.1358)5 /32π ]1/2  z  exp(-1.5679 z ) (3/4π)1/2  

 

Table 3.2a: The Normalized Slater Orbitals of Silicon along the [100] Direction.  
Orbital Type  Normalized Slater Function  

Is  [(13.5745)3/π ]1/2  exp(-13.5745  x ) (1/4π)1/2 

2s  [(9.020)5 /96 π]1/2 x exp(-4.5100 x ) (1/4π)1/2  

2Px  [(9.9450)5 /32 π]1/2   x  exp(-4.9725 x) (3/4π)1/2  

3s  [2(4.9032)7 /5 π ×  39]1/2 x2 exp(-1.6344 x ) (1/4 π)1/2  

3px  [2(4.2852)7 /5 π ×  38]1/2 x2 exp(-1.4284 x ) (3/4 π)1/2 

 
Table 3.2b: The Normalized Slater Orbitals of Silicon along the [001] Direction.  
Orbital Type  Normalized Slater Function  

Is  [(13.5745)3/π ]1/2  exp(-13.5745 z ) (1/4π)1/2 

2s  [(9.020)5 /96 π]1/2 z exp(-4.5100 z ) (1/4π)1/2  

2Pz  [(9.9450)5 /32 π]1/2   z  exp(-4.9725 z) (3/4π)1/2  

3s  [2(4.9032)7 /5 π ×  39]1/2 z2 exp(-1.6344 z ) (1/4 π)1/2  
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Table 3.3a: The Normalized Slater Orbitals of Germanium Along the [100] Direction.  
Orbital Type  Normalized Slater Function  

Is   [(31.2937)3/ π  ]1/2 exp( - 31.2937 x ) (1/4 π)1/2 

2s  [(23.3648)5 / 96 π]1/2  x  exp(-1l.6824 x ) (l/4 π)1/2 

2px   [(28.0822)5 / 32 π]1/2  x  exp(-14.041l x ) (3/4 π)1/2 

 3s [2(17.7897)7 / 5 π ×  39]1/2   x2 exp(-5.9299 x )  (l/4 π)1/2 

3px  [2(l7.0136)7  / 5π ×  38)1/2  x2 exp(-5.6712 x ) (3/4 π)1/2 

3
2dz  [(16.2513)7 / 2π ×  38]1/2 1/31/2  x2  exp(-5.4171 x)  (5/16 π)1/2 

3
 2    2
 x yd −   [(16.2513)7 / 2π ×  38]1/2   x2  exp(-5.4171 x)  (15/16 π)1/2 

4s [26.4(7.4403)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 x2.7 exp(-2.0109 x )  (1/4 π)1/2           

4px  [3× 26.4(6.2719)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 x2.7 exp(-1.6951 x )  (1/4 π)1/2 
 

Table 3.3b: The Normalized Slater Orbitals of Germanium along the [001] Direction.  
Orbital Type  Normalized Slater Function 

Is   [(31.2937)3/ π  ]1/2 exp( - 31.2937 z ) (1/4 π)1/2 

2s  [(23.3648)5 / 96 π]1/2  z  exp(-1l.6824 z ) (l/4 π)1/2 

2pz   [(28.0822)5 / 32 π]1/2  z  exp(-14.041l z) (3/4 π)1/2 

 3s [2(17.7897)7 / 5 π ×  39]1/2   z2 exp(-5.9299 z )  (l/4 π)1/2 

3pz  [2(l7.0136)7  / 5π ×  38)1/2  z2 exp(-5.6712 z ) (3/4 π)1/2 

3
2dz  [2(16.2513)7 / 2π ×  38]1/2 1/31/2  z2  exp(-5.4171 z)  (5/16 π)1/2 

4s [26.4(7.4403)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 z2.7 exp(-2.0109 z )  (1/4 π)1/2           
 

Table 3.4a: The Normalized Slater Orbitals of α-Tin along the [100] Direction. 

Orbital Type  Normalized Slater Function  

Is   [(49.7)3/ π  ]1/2 exp( -49.7 x ) (1/4 π)1/2 

2s  [(45.85)5 / 96 π]1/2  x  exp(-22.9250 x ) (l/4 π)1/2 

2px   [(45.85)5 / 32 π]1/2  x  exp(-22.9250 x ) (3/4 π)1/2 

 3s [2(38.75)7 / 5 π ×  39]1/2   x2 exp(-12.9166 x )  (l/4 π)1/2 

3px  [2(38.75)7  / 5π ×  38)1/2  x2 exp(-12.9166 x ) (3/4 π)1/2 

3
2dz  [(28.85)7 / 2π ×  38]1/2 1/31/2  x2  exp(-9.6166 x)  (5/16 π)1/2 

3dx
z    [(28.85)7 / 2π ×  38]1/2   x2  exp(-9.6166 x)  (15/16 π)1/2 

4s [26.4(22.25)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 x2.7 exp(-6.0135 x )  (1/4 π)1/2           

4px   [3× 26.4(22.25)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 x2.7 exp(-6.0135 x )  (3/4 π)1/2 

4
2dz   [15(2)4.4(10.85)8.4  / 3.78.4 π ( )8.4Γ ]1/2 x2.7/31/2  exp(-2.9324 x) (5/16 π)1/2 

4
2   2
x  -yd  [15(2)4.4(10.85)8.4  / 3.78.4 π ( )8.4Γ ]1/2  x2.7  exp(-2.9324 x) (15/8 π)1/2 

5s [(5.65)9 / 35 π ]1/2   (1/1356)]  x3  exp(-1.4125 x ) (l/4 π)1/2 

5px 
 [3(5.65)9 / 35 π]1/2  (1/1356)  x3  exp(-1.4125 x ) (3/4 π)1/2 
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Table 3.4b: The Normalized Slater Orbitals of α-Tin Along the [001] Direction. 

Orbital Type  Normalized Slater Function  

Is   [(49.7)3/ π  ]1/2 exp( -49.7 z ) (1/4 π)1/2 

2s  [(45.85)5 / 96 π]1/2  z  exp(-22.9250 z ) (l/4 π)1/2 

2px   [(45.85)5 / 32 π]1/2  z  exp(-22.9250 z ) (3/4 π)1/2 

 3s [2(38.75)7 / 5 π ×  39]1/2   z2 exp(-12.9166 z )  (l/4 π)1/2 

3px  [2(38.75)7  / 5π ×  38)1/2  z2 exp(-12.9166 z ) (3/4 π)1/2 

3
2dz  [(28.85)7 / 2π ×  38]1/2 1/31/2  z2  exp(-9.6166 z)  (5/16 π)1/2 

3dx
z    [(28.85)7 / 2π ×  38]1/2   z2  exp(-9.6166 x)  (15/16 π)1/2 

4s [26.4(22.25)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 z2.7 exp(-6.0135 z )  (1/4 π)1/2           

4px   [3× 26.4(22.25)8.4 / 3.78.4 ( )8.4π×Γ ]1/2 z2.7 exp(-6.0135 z )  (3/4 π)1/2 

4
2dz   [15(2)4.4(10.85)8.4  / 3.78.4 π ( )8.4Γ ]1/2 z2.7/31/2  exp(-2.9324 z) (5/16 π)1/2 

4
2   2
x  -yd  [15(2)4.4(10.85)8.4  / 3.78.4 π ( )8.4Γ ]1/2  z2.7  exp(-2.9324 z) (15/8 π)1/2 

5s [(5.65)9 / 35 π ]1/2   (1/1356)]  z3  exp(-1.4125 z ) (l/4 π)1/2 

5px  [3(5.65)9 / 35 π]1/2  (1/1356)  z3  exp(-1.4125 z ) (3/4 π)1/2 
 

Total Electrons Charge Density  
From what has been stated in section 2 above, the Bloch functions for the electrons are given by  

exp( . )j iΨ = ×Χkr                   [3.1] 

for the jth electron, where Χ  is the normalized Slater orbital function given by ( ) ( ). ,l mR Y θ ϕΧ= r  and is 

tabulated in Table 3. The charge density for the kth state of  the jth electron in the units employed in this work is 
given by  

( ) ( ) 2
, .jρ = Ψ∑ kr k r                    [3.2] 

In the calculation of the charge density reported in 
this paper all the electrons (both core and valence) 
are taken into consideration in order to enable the 
result to be used  in a DTF calculation and in  
integrating the Poisson equation for the electron-
electron Coulomb interaction in the Diamond-structure 
semiconductors.  
For simplicity, and also for the reason stated above, 
the sp3 hybridization of the outermost shell electrons 
was not considered in calculating the total electron 
charge density,  therefore, it has become necessary to 
assume a configuration for the two electrons in the p 
orbitals of the partially occupied outward shell of the 
atoms. This approximation is quite reasonable in all 
the crystals considered except may be carbon which in 
reality has only two core state electrons and four 
involved in the sp3 hybridization. The choice of this 
configuration even though arbitrary must be consistent and 

has been taken as 
1 1 0, , ,x y zp p p  in all the atoms. The 

computed charge densities are shown in graphs 1, 2, 3 and 
4. 
The  calculation of the total electron charge density was 
carried out along the [100], [010], and [00l] directions. It 
has been found that the total electron charge density along 
the [100] and [010 directions in each crystal are equal, 
therefore, only the density along the [100] and [001] 
directions are given in Figures 1, 2, 3, and 4 which show the 
variation of the total electrons charge density with the 
distance from the origin of a Wigner-Seitz cell. It should be 
noted that in these figures, the distance from the center of 
the Wigner-Seitz cell is expressed in units of the nearest 
neighbor distance, d. The charge density has its maximum 
value at the center of a cell. Also, at the center of the cell, 
(i.e the origin of the coordinate system employed in the 
calculations) the density increases with the atomic number Z. 
As one moves away from the origin, there is a drastic fall in 
the density.  

128 



Bajopas Volume 3 Number 1 June 2010 

 
Figure 1. Graph of Charge Density Against Distance From the Center of the Wigner-Seitz  

Cell of Carbon Crystal 

 
Figure 2. Graph of Charge Density Against Distance From the Center of the Wigner-Seitz  

Cell of Silicon Crystal 
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Figure 3. Graph of Charge Density Against Distance From the Center of the Wigner-Seitz  

Cell of Germanium Crystal 

   
Figure 4. Graph of Charge Density Against Distance From the Center of the Wigner-Seitz  

Cell of α-Tin Crystal 
Table 4: Ratio of the Charge Density at r = 0.5 d to r = 0.0 d in Percentage .  

Crystal  [100]  [001]   
Carbon  0.21  0.038  
Silicon  0.005  0.00095  
Germanium  0.00041  0.000074  
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The closest points on the surface of the cell to its center are at a 
distance r =  0.5d,  while the remotest points are at a distance, 
R = 1.258d ( Babaji, 1999).  The ratio of the density at r = 0.5d 
to that at the origin is given in Table 4. The orbitals of the 
electrons are highly localized, thus the charge density due to the 
electrons  in a Wigner-Seitz cell is practically zero outside the cell 
as can be seen from Table 4.  
The charge densities,  at a given distance from the center of the 
cell along [001] and  [100] directions are not exactly equal, the 
density along [100] been always higher. This directionality of the 
charge density is partly due to the assumed electronic 
configuration of the outermost filled p-orbitals, namely 

1 1 0, ,x y zp p p . Most importantly, it clearly demonstrates that 

even with this simple model the Wigner-Seitz potential cells in 
the diamond-structure semiconductor crystals are not of the 
muffin-tin form.  
 

CONCLUSION 
A first-principle calculation of the electronic wave function and 
total electrons charge density in the diamond-structure 
semiconductor crystals has been done. The basic input to all 
calculations are the lattice constant of the crystal and the 
atomic number of the constituent atom. 

The total electrons charge density was calculated along the 
[100], [010], and [00l] directions. It has been found that the 
total electrons charge density along the [100] and [010] 
directions in each crystal are equal. The charge density has its 
maximum value at the center of a cell. Also, at the center of the 
cell, (i.e the origin of the coordinate system employed in the 
calculations)  the density increases with the atomic number Z. As 
one moves away from the origin, there is a drastic fall in the 
density.  

The charge densities at a given distance from the 
center of the cell along [001] and  [100] directions are not 
exactly equal, the density along [100] been always higher. This 
directionality of the charge density is partly due to the assumed 
electronic configuration of the outermost filled p-orbitals, namely 

1 1 0, ,x y zp p p . Most importantly, it clearly demonstrates that 

even with this simple model the Wigner-Seitz potential cells in 
the diamond-structure semiconductor crystals are not of the 
muffin-tin form.  The angular and radial variation of the charge 
density obtained in this work agrees with that of Eberhard, 
(2003) and Abdallah et al (2006) and it is hoped that the results 
obtained will be used in a DFT calculation. 
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