ABSTRACT
An investigation was carried out to screen the leaf extracts of Combratum mole and Gossypium arboreum for the presence of phytochemical components and antibacterial activity against Staphylococcus aureus strain OE5, Pseudomonas aeruginosa strain OE9, Klebsiella pneumoniae strain OE8 and Escherichia coli strain OE7 isolated from cases of otitis externa, using the agar diffusion procedure. The results indicated that the two medicinal plants contained alkaloids, tannins, saponins, anthracene, phenols and sesquiterpenes. Volatile oil was detected only in G. arboreum. The aqueous, ethanol and methanol extracts of the plants inhibited the growth of all the test organisms to varying degrees with the exception of E. coli, which was resistant to aqueous extract of C. mole. However, overall, the extracts of G.arboreum showed a higher degree of inhibition of the test bacteria than C.mole. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of G. arboreum and C.mole varied and ranged from 0.31mg/ml to 2.5mg/ml and 2.5mg/ml to 5.0mg/ml respectively. Synergistic effect of the ethanol and methanol extracts of the two plants resulted in enhanced antibacterial activity (large zones of inhibition, lower MIC, 0.31 – 1.25mg/ml, MBC, 0.63-2.5mg/ml).

Keywords: Extracts, inhibition, plants, pathogens, screening.

INTRODUCTION
The development of antibiotics for treatment of diseases is being intensified which results in the development of new ones but bacteria are busy evolving resistance to the antibiotics and proliferate in the environment to cause harm. Antimicrobial activity of medicinal plants have been reported by other researchers (Martinez et al., 1996; Manna and Abalaka, 2000; Fyhrquister et al., 2002; Onyeagba et al., 2004; Babayi., 2004, Manna et al., 1997) reported strong activity of leaf extracts of Calotropis procera against Clostridium perfringens, Streptococcus faecalis, Klebsiella ozaenae, Pseudomonas aeruginosa and Salmonella typhi. On the activity of specific phytochemical components, Takeda and Fatope (1998) isolated lawsoniaside and laliside from the ethanol extracts of the leaves of Lawsonia inermis, which has medicinal value in Northern Nigeria, the Middle East and Asia. Saxena (1990) reported an isolate of the neem plant, azadiractin, with pharmaceutical properties, confirming that the plant has medicinal value. Saxena (1990) reported the effects of alkaloids and cardiac glycosides obtained from Garcinia kola, Borreria ocyoides, Kola nitida and Citrus aurantiifolia on pathogenic bacteria. Similarly, Ijah and Oyebanji (2003) reported that tannins and polyphenols obtained from Enantia chloranthra, Kigelia africana, Bridelia ferrugina, Trema nitens and Drypetes gossweileri inhibited the growth Staphylococcus aureus, Klebsiella ssp, Proteus ssp, and E. coli but had no inhibitory effect on Pseudomonas aeruginosa. The present study was undertaken to screen Combratum mole and Gossypium arboreum for phytochemical components and to test the leaf extracts of the plants for activity on some bacterial pathogens of otitis externa.

MATERIALS AND METHODS
Sources, identification, and processing of plant materials
The leaves of two medicinal plants used locally for the treatment of otitis externa were collected from Gurusu village near Minna, Niger State, Nigeria. The plants were identified as Gossypium arboreum and Combratum mole (Irobi and Daramola, 1993). The leaves of the plants were air dried to keep photocells intact for three days, pounded in a mortar with pestle and stored in sterile bottles for further study.

Test bacteria used
Bacteria used in this study were Staphylococcus aureus strain OE5, Escherichia coli strain OE7, Klebsiella pneumonia strain OE8 and Pseudomonas aeruginosa strain OE9. These microorganisms were isolated from cases of otitis externa in patients who attended the General Hospital, Minna, Nigeria (Ijah et al.; 2003)

Extraction Procedures
Twenty five grammes (25g) of the leaf powder of each plant was soaked in 100 ml of distilled water, 95% ethanol and methanol (BDH chemical, Poole, UK) in Erlenmeyer flasks and allowed to soak for 72hours (Irobi and Daramola, 1993). The percolate obtained was passed through a Whatman filter paper No.1 (Whatman, UK) and concentrated in vacuo using a rotary evaporator (Buchii laboratory Technique, Switzerland) at 40 degree centigrade.

ABSTRACT

An investigation was carried out to screen the leaf extracts of Combratum mole and Gossypium arboreum, for the presence of phytochemical components and antibacterial activity against Staphylococcus aureus strain OE5, Pseudomonas aeruginosa strain OE9, Klebsiella pneumoniae strain OE8 and Escherichia coli strain OE7 isolated from cases of otitis externa, using the agar diffusion procedure. The results indicated that the two medicinal plants contained alkaloids, tannins, saponins, anthracene, phenols and sesquiterpenes. Volatile oil was detected only in G. arboreum. The aqueous, ethanol and methanol extracts of the plants inhibited the growth of all the test organisms to varying degrees with the exception of E. coli, which was resistant to aqueous extract of C. mole. However, overall, the extracts of G.arboreum showed a higher degree of inhibition of the test bacteria than C.mole. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of G. arboreum and C.mole varied and ranged from 0.31mg/ml to 2.5mg/ml and 2.5mg/ml to 5.0mg/ml respectively. Synergistic effect of the ethanol and methanol extracts of the two plants resulted in enhanced antibacterial activity (large zones of inhibition, lower MIC, 0.31 – 1.25mg/ml, MBC, 0.63-2.5mg/ml).

Keywords: Extracts, inhibition, plants, pathogens, screening.

INTRODUCTION
The development of antibiotics for treatment of diseases is being intensified which results in the development of new ones but bacteria are busy evolving resistance to the antibiotics and proliferate in the environment to cause harm. Antimicrobial activity of medicinal plants have been reported by other researchers (Martinez et al., 1996; Manna and Abalaka, 2000; Fyhrquister et al., 2002; Onyeagba et al., 2004; Babayi., 2004, Manna et al., 1997) reported strong activity of leaf extracts of Calotropis procera against Clostridium perfringens, Streptococcus faecalis, Klebsiella ozaenae, Pseudomonas aeruginosa and Salmonella typhi. On the activity of specific phytochemical components, Takeda and Fatope (1998) isolated lawsoniaside and laliside from the ethanol extracts of the leaves of Lawsonia inermis, which has medicinal value in Northern Nigeria, the Middle East and Asia. Saxena (1990) reported an isolate of the neem plant, azadiractin, with pharmaceutical properties, confirming that the plant has medicinal value. Saxena (1990) reported the effects of alkaloids and cardiac glycosides obtained from Garcinia kola, Borreria ocyoides, Kola nitida and Citrus aurantiifolia on pathogenic bacteria. Similarly, Ijah and Oyebanji (2003) reported that tannins and polyphenols obtained from Enantia chloranthra, Kigelia africana, Bridelia ferrugina, Trema nitens and Drypetes gossweileri inhibited the growth Staphylococcus aureus, Klebsiella ssp, Proteus ssp, and E. coli but had no inhibitory effect on Pseudomonas aeruginosa. The present study was undertaken to screen Combratum mole and Gossypium arboreum for phytochemical components and to test the leaf extracts of the plants for activity on some bacterial pathogens of otitis externa.

MATERIALS AND METHODS
Sources, identification, and processing of plant materials
The leaves of two medicinal plants used locally for the treatment of otitis externa were collected from Gurusu village near Minna, Niger State, Nigeria. The plants were identified as Gossypium arboreum and Combratum mole (Irobi and Daramola, 1993). The leaves of the plants were air dried to keep photocells intact for three days, pounded in a mortar with pestle and stored in sterile bottles for further study.

Test bacteria used
Bacteria used in this study were Staphylococcus aureus strain OE5, Escherichia coli strain OE7, Klebsiella pneumonia strain OE8 and Pseudomonas aeruginosa strain OE9. These microorganisms were isolated from cases of otitis externa in patients who attended the General Hospital, Minna, Nigeria (Ijah et al.; 2003)

Extraction Procedures
Twenty five grammes (25g) of the leaf powder of each plant was soaked in 100 ml of distilled water, 95% ethanol and methanol (BDH chemical, Poole, UK) in Erlenmeyer flasks and allowed to soak for 72hours (Irobi and Daramola, 1993). The percolate obtained was passed through a Whatman filter paper No.1 (Whatman, UK) and concentrated in vacuo using a rotary evaporator (Buchii laboratory Technique, Switzerland) at 40 degree centigrade.
The extracts were stored in sterile screw capped bottles and kept in the refrigerator (Thermocool Engineering Company Limited, Ikeja, Nigeria) at 4°C for further study.

Phytochemical screening of crude extracts of Combratum mole and Gossypium arboreum

The phytochemical components of the medicinal plants were tested using the method of Harbone (1984) and Trease and Evans (1989). The various tests are described below:

i) Test for anthracenes
 One milliliter (1.0ml) of the plant extract was shaken with equal volume of chloroform and 10% ammonia solution was added to the chloroform layer. Formation of red precipitate indicated the presence of anthracene.

ii) Test for tannis
 Four milliliter (4.0 ml) of water was added to 0.5ml of the plant extract; drops of ferric acid chloride were then added. The immediate development of green precipitate indicated the presence of tannis. The presence of tannis was further confirmed by the development of red colouration on addition of lead acetate to the extract.

iii) Test for volatile oils
 One milliliter (1.0ml) of the plant extract and 0.1ml of dilute sodium hydroxide [NaOH] solution and dilute hydrochloric acid [HCl] were mixed. The formation of a white precipitate indicated the presence of volatile oils.

iv) Test for saponins
 Five gramme (5g) of the crude extract was added to 10ml of water and shaken for 2 minutes. Frothing which persisted on warming was an evidence of the presence of saponins.

v) Test for alkaloids
 Five drops of 100% tannic acid was added to 0.5ml of the extract. Formation of cream colour indicated the presence of alkaloids. Confirmatory test for alkaloids was done by adding drops of Dragendroffs reagent to the extract and the development of deep brown precipitate confirmed the presence of alkaloids.

vi) Test for sesquiterpenes
 Aqueous extract (0.5 ml) of the plant was mixed with 0.1ml of methanol and shaken vigorously. To this mixture, 0.4ml of 5% sulphuric acid (H₂SO₄) plus 0.5% ferric chloride was added. The content was stirred using a small glass rod. The mixture was boiled in a water bath for one minute. A change in colour from colorless to pink indicated the presence of sesquiterpenes.

vii) Test for phenols
 Equal volumes (0.2ml) of the plant extracts and ferric chloride (FeCl₃) were mixed. The development of deep bluish green colour indicated the presence of phenols.

Determination of Antibacterial activity of plants extracts

Well diffusion method of Collins et al. (1995) was used in this test. About 0.2g of each plant extract was dissolved in 5ml of distilled water, ethanol and methanol respectively. Three hour peptone water grown culture of the test organism was inoculated on nutrient agar plates. Holes of 6mm diameter were created in nutrient plates using a cork borer and 0.2ml of the extracts was added to each hole. The plates were incubated at 30°C for 24hours.

The development of zones of inhibition around the holes containing the extracts indicated the antimicrobial activity of the plant extracts against the test microorganisms.

Determination of Minimum Inhibitory Concentration (MIC) and Minimum bactericidal concentration (MBC) of plant extracts

About (0.5mls) of the reconstituted extracts (20mg/ml) of C. mole and G. arboreum was placed in test tubes (number 1- 8) containing peptone water. The first tube contained 1.5ml of peptone water while tubes 2-8 contained 1.0ml of peptone water each. Tube 8 served as the control experiment. After serial dilution, the final concentration of each tube was 10mg/ml, 5mg/ml, 2.5mg/ml, 1.25mg/ml, 0.63mg/ml, 0.31mg/ml and 0.155mg/ml respectively. The tubes were inoculated with a loopful of the test microorganisms and incubated at 37°C for 24h. At the end of the incubation, the lowest concentration which showed no visible turbity (growth of microorganism) was regarded as the minimum inhibitory concentration (Prescott et al. ,1990). The same procedure (as described above) was used for determination of MIC of the combined extracts of C. mole and G. arboreum and for alkaloids and tannins. The test solutions for the MIC were plated out to determine the MBC of the extracts (Babayi et al., 2004).

RESULTS

Phytochemical analysis of the extracts of C. mole and G. arboreum showed that anthraquinone and cardiac glycosides were not present in both plants extract (Table 1). Volatile oils were detected in G. arboreum only while alkaloids, tannins, phenols, sesquiterpenes, anthracene and saponins were present in both plants. The results (Table 2) showed that the extracts of the two medicinal plants exhibit varying antimicrobial effects on S. aureus strain OE5, K. pneumoniae strain OE8, E. coli strain OE7, and P. aeruginosa strain OE9. Combratum mole showed a higher activity on the bacteria than G. arboreum (Table 2). A combination of the extracts of the two plants produced larger zones of inhibition than a single plant extract used (Table 2).

The MIC of the extract ranged from 1.25mg/ml to 2.5mg/ml for C. mole and 0.63mg/ml to 1.25mg/ml for G. arboreum extracts (Table 3). Similarly the MIC of the combined plant extracts was 0.31mg/ml – 1.25mg/ml. The MBC for extracts of C. mole ranged from 2.5mg/ml to 5.0mg/ml while that of G. arboreum was 1.25mg/ml to 5.0mg/ml. The combined extracts of the medicinal plants had a MBC of 0.63mg/ml to 2.5mg/ml, which is much lower than the MBC for individual plant extracts (Table 4).
Table 1: Phytochemical components of leaf extracts of *Combratum mole* and *Gossypium arboretum*

<table>
<thead>
<tr>
<th>Phytochemical Components</th>
<th>Combratum mole</th>
<th>Gossypium arboretum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EE</td>
<td>ME</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anthracene</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenol</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sesquiterpenes</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Volatile oils</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: + present, - absent. EE: Ethanol extract, ME: Methanol extract, AE: Aqueous extract.

Table 2: Sensitivity (mm) of Bacteria to leaf extracts of *Combratum mole* and *Gossypium arboretum* using agar diffusion method

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Combratum mole</th>
<th>Gossypium arboretum</th>
<th>C. mole Plus G. arboreum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EE</td>
<td>ME</td>
<td>AE</td>
</tr>
<tr>
<td>S. aureus strain OE5</td>
<td>20.0±0.5</td>
<td>18.2±0.8</td>
<td>10.0±0.2</td>
</tr>
<tr>
<td>E. coli strain OE7</td>
<td>10.0±0.0</td>
<td>10.0±0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>K. pneumoniae Strain OE8</td>
<td>20.0±1.2</td>
<td>15.0±0.6</td>
<td>15.0±0.6</td>
</tr>
<tr>
<td>Ps. aeruginosa Strain OE9</td>
<td>20.0±0.4</td>
<td>10.0±0.0</td>
<td>10.0±0.4</td>
</tr>
</tbody>
</table>

EE: Ethanol extract, ME: Methanol extract, AE: Aqueous extract; a: standard deviation is based on two determinations.

Table 3: Minimum inhibitory concentration (MIC) of extracts of *C. mole* and *G. arboreum* extracts

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>C. mole</th>
<th>G. arboreum</th>
<th>C. mole Plus G. arboreum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EE</td>
<td>ME</td>
<td>AE</td>
</tr>
<tr>
<td>S. aureus strain OE5</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>E. coli strain OE7</td>
<td>2.5</td>
<td>2.5</td>
<td>0.63</td>
</tr>
<tr>
<td>K. pneumoniae Strain OE8</td>
<td>2.5</td>
<td>2.5</td>
<td>0.63</td>
</tr>
<tr>
<td>Ps. aeruginosa Strain OE9</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Key: EE: Ethanol extract, ME: Methanol extract, AE: Aqueous extract.

Table 4: Minimum bactericidal concentration (MBC) of extracts of *C. mole* and *G. arboreum* extracts

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>C. mole</th>
<th>G. arboreum</th>
<th>C. mole Plus G. arboreum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EE</td>
<td>ME</td>
<td>AE</td>
</tr>
<tr>
<td>S. aureus strain OE5</td>
<td>2.5</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>E. coli strain OE7</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>K. pneumoniae Strain OE8</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ps. aeruginosa Strain OE9</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Key: EE: Ethanol extract, ME: Methanol extract, AE: Aqueous extract.

DISCUSSION

The ethanol, methanol and aqueous extracts of *C. mole* and *G. arboreum* analysed contained one or more of the following phytochemical components: alkaloids, volatile oil, tannins, phenols, saponins, sesquiterpenes and anthracene. Similar active compounds have been reported in other medicinal plants including members of the family Combrataceae (Brantner and Grein, 1994; Ijah and Sar, 1998; Ijah and Oyebanji, 2003; Babayi *et al*., 2001).
The inhibitory effects of the medicinal plants on the test bacteria may therefore, be due to the presence of these phytochemical components, which have been reported to be responsible for the antibacterial activities of certain medicinal plants (Martinez et al., 1996; Ijah and Oyebanji, 2003; Omojasola and Awe, 2004). The results of the Bioassay study showed that the combined extracts of the two plants caused greater antibacterial activity (yielded much larger zones of inhibition). This imply that extracts of the plants can be more effective when used in combined form to treat diseases (Gill, 1992; Bone, 1994; Babayi et al., 2004) reported an enhanced effectiveness of the combined fractions of the extracts of Eucalyptus camaldulensis and Terminalia catappa on the growth of C. albicans, S. aureus, E.coli and B.subtilis.

The MIC of the extracts of C.mole ranged from 1.25mg/ml to 2.5mg/ml while that G. arboreum ranged from 0.31mg/ml to 1.2mg/ml. This means that higher concentrations of the extracts from C.mole is required to inhibit the growth of the test organisms whereas low concentration of extracts of G. arboreum is required to inhibit the growth of the organisms particularly E.coli strain OE7 and K. pneumoniae strain OE8. Thus extracts from G. arboreum proved very effective on the test organisms, even at lower concentrations. The minimum bactericidal concentration (MBC) was found to be higher for individual plant extracts than the combined extracts of the two plants, meaning that a higher concentration of the individual extracts is required to exert cidal effects on the bacteria. The considerably low MIC and MBC of the combined extracts may be attributed to the synergistic activities between the phytochemical components. This further stresses the importance of using the plant extracts in a combined form to achieve a more effective treatment of diseases.

REFERENCES

