

Bayero Journal of Pure and Applied Sciences, 10(1): 468 - 476 ISSN 2006 - 6996

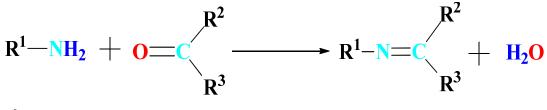
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDIES OF Ru(II) COMPLEXES WITH SCHIFF BASE CO-LIGAND DERIVED FROM 5,6-DIAMINO-1,10-PHENANTHROLINE AND BENZENE-1,4-DICARBALDEHYDE

Sadi, A. H.*, Idris, M. I² and Bashir, S. S.³

^{*}Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria. ²Department of Chemistry, Nigeria Police Academy-Wudil, Kano, Nigeria. ³Department of Chemistry, Rabiu Musa Kwankwaso College of Advance and Remedial Studies, T/wadaDankadai, Kano, Nigeria. Email: sahassan197@gmail.com Phone number: +2348038556812

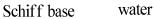
ABSTRACT

Two novel biologically active Ru(II) complexes with coordinating Schiff base were synthesized and characterized by elemental analysis, FT-IR, UV-visible and mass spectral analyses. On the basis of analytical and spectral data, octahedral geometry was assigned to both complexes and structural formulae have been tentatively proposed. The complexes were found to be coloured and readily dissolved in DMSO, DMF, MeOH, EtOH andCH₃CN. Molar conductivity measurement in dimethyl sulphoxide (DMSO) solutions shows the electrolytic nature of both complexes in 1:2 ratios suggesting the presence of chloride ions in the outer sphere of the complexes. The Schiff base and metal complexes were screened for their antibacterial and antifungal activities.


Keywords: Metal Complexes, Schiff base, Outer sphere, antibacterial and antifungal activities

INTRODUCTION Schiff bases

Schiff base compounds are condensation products of primary amines and carbonyl compounds (aldehydes and ketones) and were discovered by a German chemist (Nobel Prize winner) Hugo Schiff in 1864 (Ashraf *et al.*, 2011, Brodowska *et al.*, 2014).


Schiff base possess functional group containing carbon-nitrogen double bond with the nitrogen atom linked to an aryl or alkyl group, with the exception of hydrogen (Kostova and Sasa, 2013).

Schiff bases in a broad sense are compounds containing azomethine group (>C=N) and have the general structure $R^1R^2C=NR^3$, where R^1 , R^2 and R^3 are aryl, alkyl, cycloalkyl or heterocyclic groups that are of different substitutes. Present day chemists still prepare diverse Schiff base ligands referred to as "fortunate ligands" Cozzi, 2004). Schiff base ligands and their metal complexes have been established as biochemically active chemotherapeutic agents with antibacterial, antifungal, anticancer, antioxidant, anti-inflammatory, antimalarial, antiviral activities and also as catalyst in several reactions such as polymerization reaction, reduction of thionyl chloride, oxidation of organic compounds, etc (Lashanizadegan and Jamshidbeigi, 2011). Presence of aryl substituents usually eases the synthesis and stability of Schiff bases while those containing alkyl are relatively unstable. The reactivity of aldehydes are generally faster than those of ketones in condensation reaction, thereby resulting in the formation of Schiff bases with a centre that are less steric, relatively unstable and freely polymerizable. Schiff bases of aliphatic aldehvdes are relatively unstable and are readily aromatic polymerizable while those of aldehydes, having an effective conjugation system, are more stable (Hine and Yeh, 1967). Considerable attention is given to the study of Schiff bases with functionalization and modification in the chemical structure of the compound to improve its chemotherapeutic properties.

Aldehyde or Ketone

Metal complexes of Schiff bases as model of bioactive compounds

Transition metals have initiated the development of metal based drugs with promising pharmacological application and may offer unique therapeutic opportunities. Research has shown significant progress in utilization of transition metal complexes as drugs to treat several human diseases like carcinomas, lymphomas, infection control, anti-inflammatory and neurological disorders (Chohan and Sheazi, 1999).

The recognition of Schiff base complexes as models for biologically active compounds has brought rapid advancement within the field of coordination and bio-inorganic chemistry and spawned extensive research on their synthesis and applications (Chohan and Sheazi, 1999). Schiff's bases and their complexes continue to attract many researchers because of their wide applications in food industry, dye industry, analvtical chemistry. catalvsis and pharmacological application like antitumor, antifungal, antibacterial (Ashraf et al,. 2011, Brodowska et al., 2014). It has been confirmed that some Schiff bases show increased bioactivity when given out as metal complexes (El-Sherifet al., 2012) and a number of metal

chelates with anticancer activity have also been reported (Dwyer *et al*,. 1965).

Aims and objectives

This research is aimed at the synthesis and characterization of ruthenium (II)complexes derived from $[Ru(phen)_2Cl_2].2H_2O$ and $[Ru(bpy)_2Cl_2].2H_2O$ and to evaluate their antibacterial and antifungal activities. The proposed targets may result in the development of a drug with increased cytotoxicity compared to commercially available drugs.

Experimental

Materials and Methods

All chemicals were obtained from Sigma-Aldrich and used without purification. Tetrabutyl ammonium chloride (TBACl) and palladium on activated charcoal 10%Pd/C were purchased from E. Merck (India).All the reactions were monitored by checking TLC of the reaction mixture. The complexes were purified by column chromatography. The ligand and the complexes were characterized by standard analytical techniques (FT-IR, Mass, UV-visible spectroscopy and Elemental analysis).

Preparation of the starting materials

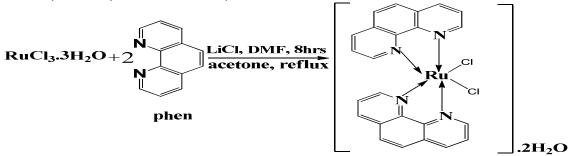
The following precursor molecules that are necessary for the synthesis of new ligand investigated in this study have been prepared by adopting the published procedures.

Scheme 1: Synthesis of 5,6-diamino-1,10-phenanthroline. Yamada *et al*,.(1992), Bodige and MacDonnell (1997)

Synthesis of 4,4-((1E,1E)-((1,10phenanthroline-5,6diyl)azanyllyllidene))bis(methanyl lylidene))dibenzaldehyde Schiff base ligand (PDB)

The Schiff base (PDB) was synthesized by adding Benzene-1,4-dicarbaldenhyde (0.89g, 2mmol) in 20 ml of ethanol to ethanolic solution of 5,6-diamino-1,10-phenanthroline

(0.21g, 1mmol). The mixture was refluxed for 3hours. Then solution of the ligand was kept for slow evaporation and coloured precipitate was collected and dried over CaCl₂ for 2days in a desiccator. Yield: (78%). Anal. Calc. for C₂₈H₁₈N₄O₂ : C, 76.02; H, 4.07; N, 12.67. Found: C, 76.10; H, 4.04; N, 12.46; FAB-MS (m/z): 443 (M)⁺; UV-Vis., (nm); (CH₃CN + MeOH (9:1): 246, 276, 390.



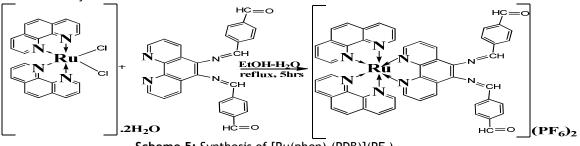
Scheme 2: Synthesis of Schiff base

Special Conference Edition, November, 2017 Synthesis of Precursor Complexes

The following precursor complexes that are necessary for the synthesis of new complexes in

this study have been prepared by adopting the published procedures.

Scheme 3: Synthesis of [Ru(phen)₂Cl₂].2H₂O Sullivan and Salmon (1978)

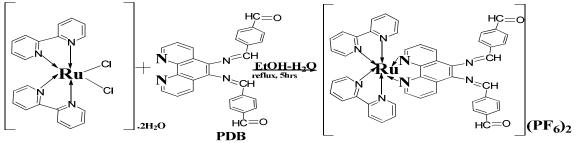


Scheme 4: Synthesis of [Ru(bpy)₂Cl₂] Sullivan and Salmon (1978)

Synthesis of bis(1,10phenanthroline)(PDB)ruthenium(II) hexaflurophosphate, [Ru(Phen)₂(PDB)](PF₆)₂

The complex was synthesized by refluxing PDB (0.44g, 1mmol) with $[Ru(phen)_2Cl_2].2H_2O$ (0.97g, 1mmol) in $C_2H_5OH-H_2O$ (2:1, v/v; 225mL) mixture for 5hrs. The reddish-brown coloured crude complex was obtained on adding saturated solution of NH₄PF₆. It was purified by column chromatography (alumina, CH₃CN - Toluene (3:2, v/v) mixture) and was further recrystallized from acetone-ether

mixture (1:5, v/v). Yield = 0.67g (75%). The chloride salt of $[Ru(phen)_2(ptz)]^{2+}$ was obtained by dissolving the above hexafluorophosphate complex in minimum amount of acetone and by precipitating upon addition of a saturated solution of TBACl in acetone. Analytical data: Yield: (75%). Anal. Calc. for $C_{52}H_{34}N_8O_2RuCl_2$: C, 64.06; H, 3.49; N, 11.50. Found: C, 64.01; H, 3.42; N, 11.00. MS (FAB) m/z Calc. $[M]^+$, 974.07; Found: $[M]^+$, 974.75.UV-Vis: (CH₃CN, nm): 225, 265, 449.



Scheme 5: Synthesis of [Ru(phen)₂(PDB)](PF₆)₂

Synthesis of bis(2,2bipyridine)(PDB)ruthenium(II) hexaflurophosphate, [Ru(bpy)₂(PDB)](PF₆)₂

This complex was synthesized by refluxing PDB (0.44g, 1mmol) with $[Ru(bpy)_2Cl_2]$. (0.93g, 1mmol) in $C_2H_5OH - H_2O$ (2:1, v/v; 225mL) mixture for 5hrs. The orange-brown crude complex was obtained on adding saturated solution of NH_4PF_6 . It was purified by column chromatography (alumina, CH_3CN - Toluene (3:2, v/v) mixture) and was further recrystallized from acetone-ether mixture (1:5,

v/v). Yield = 0.58g (76%). The chloride salt of $[Ru(phen)_2(pdb)]^{2+}$ was obtained by dissolving the above hexafluorophosphate complex in minimum amount of acetone and by precipitating upon addition of a saturated solution of TBACl in acetone. Analytical data: Yield: (76%). Anal. Calc. for C₄₈H₂₄N₈O₂RuCl₂: C, 62.20; H, 2.59; N, 12.09. Found: C, 61.81; H, 5.42; N, 12.07. MS (FAB) m/z Calc. $[M]^+$, 926; Found: $[M]^+$, 925.70.UV-Vis: (CH₃CN, nm): 219, 288, 352, and 449. Special Conference Edition, November, 2017

Scheme 6: Synthesis of [Ru(bpy)₂(PDB)](PF₆)₂

Molar Conductivity Measurements

The molar conductance values of the complexes measured at room temperature in DMF solution with 0.001M concentration fall in the range 82-89ohm⁻¹.cm²mol⁻¹ indicating the electrolytic nature of the complexes, due to presence of chloride ions as a counter ions thus supports the [Ru(phen)₂PDB]Cl₂ and [Ru(bpy)₂PDB]Cl₂ formulae. The nature of complexes solutions is electrolytic in 1:2 ratios due to presence of chloride ions in the outer sphere of complexes **Antimicrobial activity**

The Schiff base and its Ru(II) complexes were evaluated for antimicrobial activity by agar well diffusion method against the bacteria Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and antifungal activities against the fungi Aspergillus niger, Aspergillus flavus nd Rhizoctoni abataicola cultured on potato dextrose agar as medium. The stock solution was prepared by dissolving the compounds in DMSO. The antimicrobial activities were performed in triplicate using 30µgml ¹concentration of the Schiff base and the complexes. The average was taken as the final reading. The well was made on the agar medium inoculated with microorganisms and filled with the test solution. The plate was incubated for 24hrs for bacteria and 72hrs for fungi at 35°C. During this period, the test solution was diffused and the growths of the inoculated microorganisms were affected. The inhibition zone was developed and it was measured in mm. Zone of inhibition of the investigated compounds against the bacteria and fungi are summarized in Table 4 and 5. Streptomycin and Nystatin were used as standard reference compounds for antibacterial and antifungal activities respectively.

RESULTS AND DISCUSSION

 Table 1: Percentage yield and some physical properties of PDB and Ru(II) complexes

Properties	Schiff Base	[Ru(phen) ₂ PDB]Cl ₂	[Ru(bpy) ₂ PDB]Cl ₂
% yield Colour	78% greenish-yellow	75% Reddish-brown	76% Orange-brown
Appearance	Powder	Crystalline powder	Crystalline powder
Melting point	>350°C	-	-
Decomposition temperature	-	240°C	265°C
Molar conductivity Measurement	-	89Ω ⁻¹ cm ² mol ⁻¹	82Ω ⁻¹ cm ² mol ⁻¹

Molar Conductivity Measurements

The molar conductance values of the complexes measured at room temperature in DMF solution with 0.001M concentration fall in the range 82-

 $89\Omega^{-1}$ cm²mol⁻¹. The nature of the complexes is electrolytic in 1:2 ratios due to the presence of chloride ions in their outer spheres. [Ru(phen)₂PDB]Cl₂ and [Ru(bpy)₂PDB]Cl₂

Special Conference Edition, November, 2017 Table 2: IR data for Schiff base and Ru(II) complexes

υ(C=N)	v(C=0)	$v(C=C)_{aro}$	v(C-H _{st}) _{aro}	v(M-N)
1561	1642	1500	3080	-
1550	1629	1535	3050	721
1549	1631	1553	3046	754
	1561 1550	1561 1642 1550 1629	1561 1642 1500 1550 1629 1535	1561 1642 1500 3080 1550 1629 1535 3050

The absorption bands at 1561cm⁻¹, 1550cm⁻¹ and 1549cm⁻¹ on the spectra of PDB ligand [Ru(phen)₂PDB](PF6)₂ and [Ru(bpy)₂PDB](PF6)₂ respectively are attributed to C=N stretching frequencies. Similarly the absorption bands at 1642cm⁻¹, 1629cm⁻¹ and 1631cm⁻¹ are assigned to C=O. The absorption bands at 3080cm⁻

¹3050cm⁻¹and 3046cm⁻¹ in al the spectra are given to (C-H) (aromatic) stretching frequency. Whereas the new absorption bands at 721cm and 754cm⁻¹ in the spectra of both complexes are assigned to M-N coordinate bonds. Arounaguiriaet al,. (2000)

 $IR\bar{v}(cm^{-1})$

Table 3:UV-Visibleand Mass spectral data for Schiff base and Ru(II) Complexes

CompoundsUV-visible λ_{max} (nm) (log ϵ)	Mass
PDB (Schiff base)390 (3.0),246 (3.1), 276 (3.3)	444 (M ⁺), base peak 222
[Ru(phen) ₂ PDB](PF6) ₂ 499 (2.7), 288 (3.3)974.75	(M) ⁺ , base-peak 341.50
[Ru(bpy) ₂ PDB](PF6) ₂ 499 (2.6), 265 (3.3)925.70 (A	M)⁺, base-peak 299.65
*Spectra were measured in CH ₃ CN	

As seen, the spectrum of PDB is characterized by low intensity, low energy absorption band due to $\pi \rightarrow \pi^*$ transitions at 390nm. This band is assigned to the azomethine chromophore attached to the phenanthroline moiety. The high-energy bands (PDB: 246nm and 276nm) are attributed to the $\pi \rightarrow \pi^*$ transitions corresponding to the phenanthroline moiety of the ligand. The low energy band at 449nm for both complexes is due to MLCT $Ru(d\pi)$ \rightarrow PDB(π^*) transition. The band centered at 265nm and 288nm for [Ru(bpy)₂(PDB)](PF₆)₂and

 $[Ru(Phen)_2(PDB)](PF_6)_2$ respectively are attributed to intra-ligand $\pi \rightarrow \pi^*$ transitions.Johnet al,.(1984). PDB ligand mass spectrum showed base-peak at 222 (M- $C_{15}H_{11}O_2$). In the case of corresponding

mixed-ligand Ru(II) complexes the molecular ion peak for the complex $[Ru(phen)_2(PDB)]Cl_2$ peaks were seen at 974.75 (M)⁺, The base-peak at 341.50 is for $(M - C_7H_4O)^+$. Similarly we also got the molecular ion peak for the complex [Ru(bpy)₂(PDB)](Cl)₂ at 925.70 (M)⁺.Suma *et al*,. (2012)

Antibacterial Activity

Table 4: Antibacterial activity of the Schiff base and its Ru(II) complexes

Compounds	Zone of Inhibition (mm)			
	S. typhi	S. aureus	E. coli	P. aeruginosa
Schiff Base	5	6	6	7
$[Ru(phen)_2PDB]Cl_2$	9	9	8	10
[Ru(bpy)2PDB]Cl2	8	9	8	11
Streptomycin	13	16	15	15
(Control)				

Antifungal Activity

Table 5: Antifungal activity of the Schiff base and its Ru(II) complexes

Compounds	Zone of Inhibition (mm)			
	Aspergillus niger	Aspergillus flavus	Rhizoctonia bataicola	
Schiff Base	4	4	5	
[Ru(phen) ₂ PDB]Cl ₂	7	7	8	
[Ru(bpy) ₂ PDB]Cl ₂	7	7	9	
Nystatin	11	10	13	
(Control)				

Special Conference Edition, November, 2017

The Schiff base and the complexes show more activity against *Pseudomonas aeruginosa* and *Rhizoctonia bataicola*. Generally, the results indicate that the complexes are more potent when compared to the ligand.

CONCLUSION

We have successfully synthesized novel Ru(II) complexes with coordinating Schiff base which was characterized by elemental analysis, FT-IR,¹HNMR, UV-visible and mass spectral analysis. The data of molar conductivity in dimethylsulphoxide (DMSO) solutions shows the electrolytic behavior of both complexes in 1:2 ratios suggesting the presence of chloride ions in the outer sphere of complex structures.

Octahedral geometry for [Ru(phen)₂PDB]Cl₂and [Ru(bpy)₂PDB]Cl₂were proposed according to the data obtained from molar conductivity, elemental and spectral analyses. The antimicrobial activity of the ligand and the complexes were screened against four bacteria and three fungal species and the obtained inhibition zones data indicate the possibility of their applications in the treatment of diseases. **ACKNOWLEDGEMENT**

We sincerely acknowledged SRM Research Institute and Faculty of Bioengineering, SRM University, Kattankulathur Campus, India for providing all the necessary facilities required for this work.

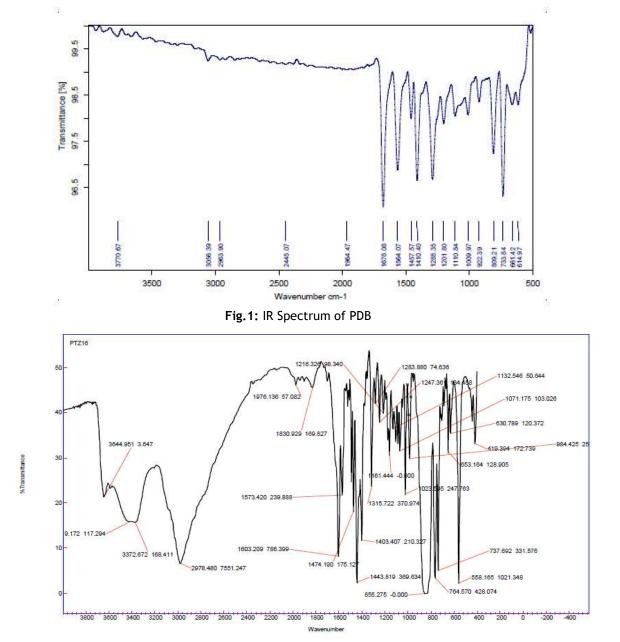


Fig. 2: IR Spectrum of [Ru(phen)₂PDB](PF₆)₂

Special Conference Edition, November, 2017

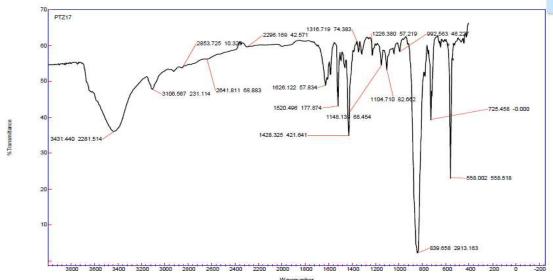


Fig. 3: IR Spectrum of [Ru(bpy)₂PDB](PF6)₂

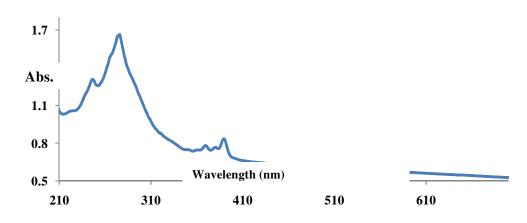


Fig.4:UV-Vis absorption spectrum of Schiff base(PDB)

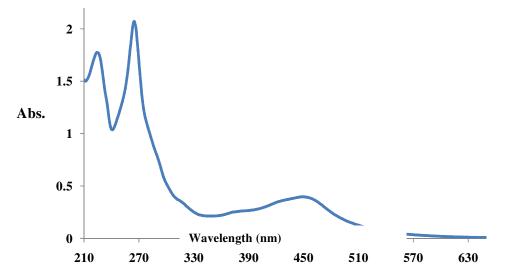


Fig. 5: UV-Vis absorption spectrum of [Ru(phen)₂(PDB)](PF₆)₂

Special Conference Edition, November, 2017

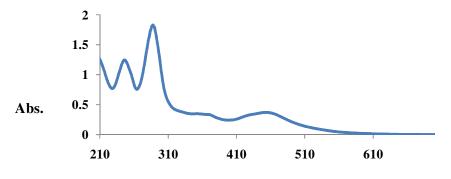
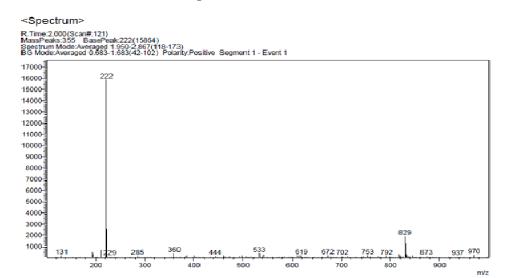
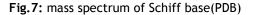
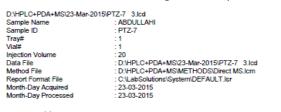





Fig.6:U'Wavelength (nm)'DB)](PF_6)2

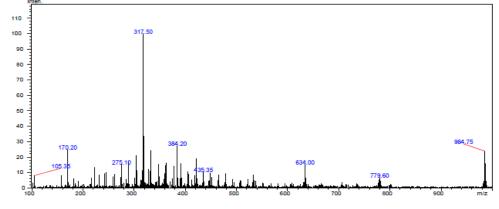


Fig.8: Mass spectrum of [Ru(phen)₂PDB]Cl₂

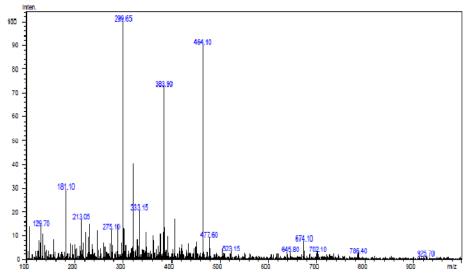


Fig.9: Mass spectrum of [Ru(bpy)₂PDB]Cl₂

REFERENCES

- Arounaguiria, S.; Easwaramoorthya D.:Ashokkumara.
 - A.;AparnaDattaguptab.; and Bhaskar, G. (2000).Cobalt(III), nickel(II) and ruthenium(II) complexes of1,10phenanthroline family of ligands,DNA binding and photocleavage studies.*Indian Acad. Sci.* (*Chem. Sci.*), 112(1), 1-17.
- Ashraf, M.A.; Mahmood, K.; Wajid, A. (2011). Synthesis, characterization and biological activity of Schiff bases. *IPCBEE*, (185)10, 1-7.
- Bodige, S.; MacDonnell, F. M. (1997)*Tett.Lett*, 38, 8159.
- Brodowska, K.; Lodyga-Chruscinska, E.(2014).Schiff bases-interesting range of applications in various fields of science.CHEMIK 68, 129-134.
- Chohan, Z.H.; Sheazi, S.A. (1999). Synthesis and characterization of some Co(II), Cu(II) and Ni(II) complexes with nicolinylhydrazine derivatives and their biological role of metals and anions $(SO_4^{2^\circ}, NO_3^\circ, C_2O_4^{2^\circ} \text{ and } CH_3CO_2^\circ)$ on the antibacterial properties. Synth. React. Inorg. Met.-Org. Chem, 29, 105-118.
- Cozzi, P.G. (2004). Metal-Salen Schiff base complexes in catalysis: Practical aspects. *Chem. Soc. Rev*, 33, 410-421.
- Dwyer, F.P.; Mayhew, E.; Roe, E.M.F.; Shulman, A. (1965). Inhibition of landschutz ascites tumour growth by metal chelates derived from 3,4,7,8-Tetramethyl-1,10-phenanthroline. Br. J. Cancer,19, 195-199.
- El-Sherif, A.A.; Shehata, M.R.; Shoukry, M.M.; Barakat, M.H.(2012).Synthesis,

characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand. *Spectrochim. Acta Part A*, 96, 889-897.

- Hine, J.; Yeh, C.Y. (1967).Equilibrium in formation and conformational isomerization of imines derived from isobutyraldehyde and saturated aliphatic primary amines. J. Am. Chem. Soc.89,2669-2675.
- John, G.G.; Paul, G.B.; Kenneth, A.N.; William H.W.; and Allen, J.B.(1984).Oxidation of bipyridine and phenanthroline complexes of osmium, ruthenium and iron.*Inorg. Chem*,23(1), 3-10.
- Kostova, I.; Sasa, L.(2013). Advances in research of Schiff-base metal complexes as potent antioxidants. *Curr. Med. Chem*,20, 4609-4632.
- Lashanizadegan, M.; Jamshidbeigi, M.(2011). Template synthesis of un-symmetrical tetradentate Schiff base complexes of Ni(II), Co(II), Zn(II) and X-ray structure of Ni(II) complex. J. Sci. I. R. Iran, 22, 121-124.
- Sullivan, B. P.; Salmon, D. J.; Meyer, T. J.(1978).*Inorg.Chem*, 17, 3334.
- Suma, B.V.; Natesh,N.N.; Venkataramana C.H.S.; Judy, J.;Madhavan, V.(2012). Synthesis and antibacterial studies of some new 1,2,3-benzotriazoles derivatives containing pyrazolidinedione moieties. International Journal of Pharmacy and Pharmaceutical Sciences,4(1). 115-117
- Yamada, M.; Tanaka, Y.; Yoshimoto, Y.; Kuroda, S.; Shimao, I.(1992).Bull. Chem Soc. Jpn, 65, 1006.