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ABSTRACT 
This paper presents a Globally Convergent Hyper plane
system of equations. The attractive attributes of our method are due to singularity free 
requirements and global convergence properties. Numerical performance on some b
problems that demonstrates there liability 
shown that the proposed method is very rigorous and efficiently competitive.
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INTRODUCTION 
In this paper, we consider the problem of 
finding the solution of the nonlinear 
equation 
F(X) =0                                         
Where  

F: R
n
−→R

n                                         

is continuously differentiable function.  
denote F = (f1, f2, f3, ...,fn)

T, and the vec
X = (x1, x2, x3, ..., xn). Quasi
methods are among the numerous efficient 
algorithms for solving (1). Due to 
nonlinearity of F,(1) may have no solution. In 
this work, we assume that the 
of(1) denoted by X∗, is non-empty.
One special future so far observed is that, 
all practical algorithms for solving (1) are 
iterative (Ortega, 1970; Denis 
1973;Dennis, 1987; Kelly, 1995; Solodov, 
1998; Dai, 2002).Moreover, much effort 
has been made to establish global 
convergence of quasi-Newton methods for 
unconstrained optimization problems, for 
example (Denis et al., 1973;Dennis, 1983; 
Dai, 2002;Nocedal et al., 2002).
However, the study of globally convergent 
quasi-Newton methods for solving 
nonlinear equations is relatively fewer. 
The major difficulty is the lack of practical 
line search strategy (Dennis, 1983;
and Luzanin, 2001; Zhang, 2013; Urroz, 
2014). 
The BFGS method for solving (1) is to 
generate a sequence of iterates 
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The BFGS method for solving (1) is to 
generate a sequence of iterates xk by 

letting xk+1= xk+ αkdk, where 
length, and dk is a solution of the system 
of linear equations. 
Bkdk+Fk=0                                           
Where Fk=F(xk), Bk is generated by the 
following BFGS update formula
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Where sk= xk+1− xk, yk= Fk+1− Fk. 
This paper is organized as follows. In 
section two, the BFGS preliminaries are 
stated. Section 3 consists of BFGS
Algorithm. Preliminary numerical results
are proposed in Section 4, where the 
summary and conclusion occupy the last 
section.  
 
Preliminary Results 
The scheme of the Globally 
BFGS method for non linear
equations developed by Wei
(2008) requires a lot of assumptions
which include invertibility (non
singularity) of the BFGS update at 
thesolution.In this section, 
our scheme via regularization technique 
so as to remove the expected singularity 
of the update matrix. We also modified 
the parameters r and h in the default 
algorithm such that they come from 
abounded interval so that update 
divergence is prevented. (Refer to the 
scheme below) The BFGS scheme in (Zhou 
and Li, 2008) is given by 
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zk= xk+αkdk 

xk + 1= xk-
⟨F(zk),xk−zk⟩F(zk) 

||F (zk)||2 
 
Where Bk is an  BFGS -update matrix such that 

sk=zk−xk=αkdk,yk=F(zk)−F(xk)+h||F(xk)||rsk,h>0, r≥ 0  
We propose a new scheme where the update Bk≈(Bk+λkI). 

λk= ||Fk||δ , δ ∈ (0, 2], r ∈ [0,1) and h = 
�

�
so 

we have,  
dk= −(Bk+ λkI)

−1FK 
�� � ��+����  

������	-
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||�(�	)||#
F(��), (6) 

,sk= zk− xk, yk= F (zk) − F (xk) + h||F (xk)||rsk 
Hence, by adding λkI to the update Bk, the update is now symmetric and regularized and 
thereforeinvertible. 
ALGORITHM 
We denote the method as Globally Convergent Hyperplane BFGS- Method for solving 
nonlinear system of equations (GH-BFGS). But firstly, we define a Hyperplane as 

Hk={x∈R
n
|⟨F(zk),xk−zk⟩=0}                                                                                       .(7) 

 
We present the stages of implementation for our algorithm as follows 
Algorithm (GH-BFGS Method) 

Step 0.Given an initial point x0∈ Rn and constants β,σ∈ (0, 1), h =
�

�
, r ∈ [0, 1) and 

δ∈(0, 2]. Choose B0= I.  
Let k := 0 

Step 1.Computed k by(Bk+λkI)dk=−Fk,λk=||Fk||
δ
.                                                        (8) 

If dk= 0 stop. 

Step2. Determine step length αk= βmk such that mk is the smallest nonnegative integer m 
satisfying 
−⟨F(xk+β dk),dk⟩≥σβ ||F(xk+β dk||||dk||                                     (9) 
.Let zk=xk+αkdk 

If ||F(zk)||=0  stop 
Step 3.Compute 
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Step 4. Compute Bk+1 by the following BFGS update process 
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                                                                                                   (11) 

sk=zk−xk, yk=F(zk)−F(xk)+h||F(xk)||
r
sk(12)  

set k=k+1 .  
Go to Step1. 
Remarks (i) If we suppose that F is Lipschitz continuous, i.e., there exists a 
constantL >0 suchthat 

||F(x)−F(y)≤L||x−y||,∀x,y∈R
n
(13) 

hence, from the monotonocity and Lipschitz continuity of the function F, 
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yk= F (zk) − F (xk) + h||F (xk)||rsk, this implies 

yT= (F (zk)− F (xk)+ h||F (xk)||rsk)
T and 

yTsk= (F (zk)− F (xk)+ h||F (xk)||rsTsk 
since sk= zk− xk, then zk= sk+ xk, 
we have, 

yTsk= F (z)+ h||F (xk)||rsTsk, clearly 
k k 

h||F(xk)||
r
sTsk≤yTsk≤(L+h||F(xk)||

r
)sTsk                                                                                             (14) 

 
The T denotes transpose of the vectors sk and yk. 

(ii) The update formular in(11) is different from the one used in (Li et al, 1999) 

(iii) We used the same line search as used by Wei and li in(Zhou et al, 2008) 

(iv) The BFGS update in (11) is both positive definite and symmetric and hence non- 
singular at thesolution. 

(v) The algorithm has the same convergence properties as that in (Zhou et al, 2008) 
 
Numerical results1 
In this section, we report some numerical 
results of our proposed method and that    
of Globally Hyper plane BFGS method(GH-
BFGS), the regularized (RBFGS) and the 
BFGS in (Zhou et al, 2008).We have tested 
our algorithms extensively on exactly 9 
number of non- linear systems. Here, we 
report the results for the 9 problems, 
whose statements are given in Appendix 
A. We run the algorithm on the 9 test 
problems with dimensions     n = 10, 
n=20, n=50,...,n=1000 as shown in our 
table. Different starting points havebeen 
used. Since these initial points are 
independent of the optimal solution x, we 
can view them as arbitrary initial points. 
The results are summarized in Table 1 and 
2. For each test we report, the 
dimension(n), the number of iterations 
(NI) and the cpu-time (CPUTime). The 

numerical computations were carried out 
using MATLAB 2010a on a PC with intel 
COREi5 processor with 4 GB of RAM and 
CPU 1.70 GHZ. As stated, We used 9 test 
problems with dimension between 10 to 
1000 in order to test the advantages of 
the proposed method in terms of less 
number of iterations (NI) and the CPU 
time (in seconds) . The iteration stops for 
||JkFk|| ≤ 10−6(Yuan G, et al, 2008) 
However, we declare that the algorithm 
fails if the followings occur during 
iteration. 

1. Insufficient memory to execute 
thecode. 

2. Attainmentofsingularitybythematrixun
derconsideration.Weusethesymbol 
**—-** if the algorithm fails to find a 
solution. 

 
Appendix A 
Problem F1 Spare function of Beyong (Beyong et. al,2010) 

Fi(x) = (x2+ xi− 3)logxi+3 − 9,i= 1, 2, 3, ..., n 
and 
x0= (2, 2, 2..., 2) 
Problem F2 (System of nonlinear equations) 
Fi(x) = (x2− 1)2− 2,i= 1, 2, 3, ..., n 
 
and 
x0= (−1.2, −1.2, −1.2..., −1.2) 
Problem F3 (System of nonlinear equations) 
xi 
fi(x) = (0.5 − xi)

2+x2−1,i=1,2,3,...,n 

x0= (0.5, 0.5, 0.5, ..., 0.5)T 
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i

Problem F4 (Trigonometric/Exponential System of nonlinear equations) 

fi(x) = sinxi− 4e2−xi+ 2xi,i = 1, 2, 3, ..., n 
and 
x0= (0.05, 0.05, 0.05, ..., 0.05)T 
Problem F5 (Extended System of Byoeng, 2010) 
fi(x) = cos(x2− 1) − 1,i = 1, 2, 3, ..., n 
and 
x0= (0.5, 0.5, 0.5, ..., 0.5)T 

Problem F6 (System of nonlinear equations) 

fi(x)=( xi+i)(xi−1)+exi−1,i=1,2,3,...,n 
i=1 
and 
x0= (3, 3, 3..., 3)T 
Problem F7 (Roose et.al, 1990) 
n n 

fi(x)=xi−1/n2(
∑

xi)
2)+(

∑
xi)−n,i=1,2,3,...,n 

and 
x0=(4,4,4...,4)T 
 
Problem F8 (System of nonlinear equations) 

fi(x) = sin(1 − xi)
∑

x2+2xn−1− 3xn−2− 0.5xn−4+0.5xn−5− xilog(9+xi)− 4.5e1−xn + 
i=1 
2,i= 1, 2, 3, ..., n 
and 
x0= (7, 7, 7..., 7)T 
Problem F9 (System of nonlinear equations) 
fi(x) = 5x2− 2xi− 3, i= 1, 2, 3, ..., n 
and 
x0= (0.5, 0.5, 0.5, ..., 0.5)T 
 
Computational Experiments 
The Tables below, present comparison of the three methods, (RBFGS),GC- BFGS) and GH-BFGS. 
The meanings of the columns in Tables 4.1 and 4.2 are stated as follows: n:the dimension of the 
problem; NI: the total number of iterations; CPUtime: the CPUtime in seconds; 
i=i=(1,2,3,…,n) 
 
2.1 Performance Profile 

Below are the figures indicating the performances of the new methods in comparison to 
the existing methods. The comparison was conducted in terms of number of iterations 
and CPU- time. 
In this section, we report the performance of sour proposed method i.e GH- BFGS and that of the 
RBFGS and GC-BFGS. In Table 1 and 2, we can observe that the algorithm for GC-BFGS failed in 
Problems 2,5,6,8 and 9 due to singularity attained by the BFGS- update. Moreover, the numerical 
results show that the GH-BFGS method solve some nonlinear problems where other methods 
failed, e. ginproblems6, 8 and 9.Similarly, from the table, our proposed method is a fully 
derivative free approach which makes it capable of handling large-scale nonlinear systems of algebraic 
equations without failing and it can also solve some problems which encountered singularity e.g. in 
problems 6, 8 and 9. Hence, these show the reliability of our proposed method, in term of solving 
singular problems, minimum number of iterations and cputime. 
The Figures (1-4) show the performance of these methods relative to CPU time and number of 
iteration, which were evaluated using the profile of Dolan and More. That is, for each method, we 
plot the fraction p(τ )of the problems for which the method is within a factor of the best time. 
Clearly, the proposed method is more efficient in all aspects i.e. less CPUtime and number of 
iterations. 
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Table1:Problem F1—F4 

problem Dimension RBFGS GC-BFGS GH-BFGS 

 N NI CPU time NI CPU Time NI CPU Time 

 10 10 0.078391 18 0.11457 6 0.012106 

 20 6 0.007214 21 0.347894 6 0.011766 

 50 8 0.019124 25 0.4422557 6 0.019091 

F1 100 10 0.069882 63 0.892091 12 0.186724 

 200 12 0.51919 8 0.45673 5 0.302722 

 500 15 3.312338 4 1.12126 7 52.249362 
 1000 17 22.622404 5 6.774975 7 293.594706 

 10 8 0.007231 13 0.323835 5 0.010492 

 20 8 0.013302 94 0.336452 4 0.009595 
 50 8 0.016868 6 0.01434 4 0.014416 

F2 100 8 0.0435224 15 0.221797 9 143.08678 
 200 9 0.3606033 14 0.388576 7 606.414219 
 500 15 3.285598 – – 5 0.15231 
 1000 14 18.577114 – – 9 0.3.4352 
 10 8 0.008356 4 0.010457 3 0.008102 
 20 8 0.008274 4 0.011311 3 0.005993 
 50 9 0.01886 4 0.01639 4 0.012843 

F3 100 10 0.06556 4 0.034664 6 .041764 
 200 8 0.422803 4 0.160336 3 0.339954 
 500 13 2.949401 15 3.285598 6 0.01234 
 1000   – – – – 
 10 39 0.029919 11 0.207654 11 0.010292 
 20 38 0.034947 11 0.240135 12 0.026409 
 50 39 0.077549 12 0.110443 12 0.039135 

F4 100 40 0.376645 12 0.171902 13 0.090552 
 200 42 1.190021 12 0.550433 14 0.592209 
 500 38 3.3327 16 3.502367 8 32.115323 
 1000 43 18.69678 – – 9 196.847685 
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Table2:problem F5—F9 

Problem Dimension BFGS GC-BFGS GH-BFGS 
 N NI CPU time NI CPU Time NI CPU Time 

 10 10 0.192894 9 0.016364 4 0.025726 
 20 10 0.136975 12 0.199982 10 0.053257 
 50 17 0.035768 12 0.045732 14 0.054418 

F5 100 20 0.25247 10 7.11197 26 0.255919 
 200 20 0.770961 27 0.939748 21 0.892675 
 500 20 4.347882 26 5.539537 23 6.074027 
 1000 20 27.169179 – —- 32 44.269853 
 20 8 0.014474 – – 15 0.030286 
 50 9 0.019419 – – 408 1.652439 

F6 100 15 0.147855 – – 143 1.558488 
 200 20 0.745675 – – 201 23.983052 
 500 20 4.301953 – – 407 34.9898 
 1000 20 26.631707 – – 569 54.99999 
 10 8 0.007098 5 0.012349 4 0.008726 
 20 7 0.008573 5 0.013236 3 0.006239 
 50 9 0.018707 5 0.019739 5 0.012424 

F7 100 10 0.065893 5 0.042617 7 0.062937 
 200 10 0.488916 5 0.042617 8 0.319449 
 500 13 3.160063 5 1.183624 10 2.275631 
 1000 13 22.690442 5 6.910771 13 17.200156 
 10 30 0.04161 – – 31 0.260028 
 20 284 0.705477 – — 156 0.586409 
 50 49 0.425362 – — 36 0.241306 

F8 100 43 0.656513 – — 708 7.484649 
 200 124 3.35449 – – 34 2.977987 
 500 441 98.700629 – — 4 17.204617 
 1000 4 84.497552 – — 5 107.233772 
 10 7 0.006112 10 0.013199 8 0.02583 
 20 8 0.012902 10 0.2903 5 0.27221 
 50 9 0.021539 63 0.378012 32 0.224946 

F9 100 10 0.07193 – – 173 1.800175 
 200 12 0.581812 – — 230 26.641631 
 500 14 3.162133 — — 4638 127.57515 
 1000 19 25.57476 – – 5 107.233772 
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