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ABSTRACT 
Gaussian beam intensity follows a normal distribution curve in free space. As it propagates, 
the divergence and the width increase with distance. Using paraxial approximation, the 
effect of the distance on the intensity, width, radius of curvature and divergence was 
investigated. Matlab software was used for characteristics parameters calculation. The 
divergence angle range  (26.67
4mm, and compared with the divergence angle range  (43
for the distance between 3mm and 4.5mm. The result obtained in this work indicates smaller 
angles of divergence that can produce a better beam quality and intensity. Finally, this will 
serve as a great importance for application such as pointing, free space optical 
communication etc.  
Keyword: Gaussian beam, Paraxial approximation, Beam divergence, Normal distributio
curve. 

INTRODUCTION 
Interests in high-data-rate free
(FSO) laser communication systems have grown 
significantly in recent years because of some 
advantages offered by FSO systems over radio 
frequency (RF) systems.  FSO systems include 
three basic subsystems: transmitter, channel 
and receiver (Andrews and Phillips, 1998)
Transmitter and receiver include s
elements to reduce signal-to-noise ratio (SNR) 
by optimizing divergence and focusing 
parameters in transmitter and receiver, 
respectively.   
Therefore, the propagation of laser beams 
through complicated optical systems is a 
subject of theoretical and practical interests
(Zhao et al., 2003) and some exact solutions of 
the wave equations were obtained for some 
certain initial conditions and symmetries
et al., 2002). Within the frame work of the 
paraxial approximation, it is well known that 
the beam propagation through a paraxial ABCD 
system is characterized by the Collins formula. 
In studying the laser beam propagation a great 
effort has been devoted to find approximate 
analytical propagation equations, which provide 
advantages not only of saving the computing 
time, but also of giving the intuitive physical 
insight into the beam propagation properties. 
Recently, free-space optical (FSO) systems are 
competitively being installed as broad band 
access communication links. Depending on the 
application, a laser beam with a different 
shape may have favorable characteristics over a 
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Gaussian beam intensity follows a normal distribution curve in free space. As it propagates, 
the divergence and the width increase with distance. Using paraxial approximation, the 

distance on the intensity, width, radius of curvature and divergence was 
investigated. Matlab software was used for characteristics parameters calculation. The 
divergence angle range  (26.670� � �35.850) was obtained at a distance between 3mm and 
4mm, and compared with the divergence angle range  (430� � �530) obtained experimentally 
for the distance between 3mm and 4.5mm. The result obtained in this work indicates smaller 

hat can produce a better beam quality and intensity. Finally, this will 
serve as a great importance for application such as pointing, free space optical 
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Therefore, the propagation of laser beams 
through complicated optical systems is a 
subject of theoretical and practical interests 

and some exact solutions of 
the wave equations were obtained for some 

tions and symmetries (Yu  
. Within the frame work of the 

paraxial approximation, it is well known that 
the beam propagation through a paraxial ABCD 
system is characterized by the Collins formula. 
In studying the laser beam propagation a great 
effort has been devoted to find approximate 
analytical propagation equations, which provide 
advantages not only of saving the computing 
time, but also of giving the intuitive physical 
insight into the beam propagation properties.  

cal (FSO) systems are 
competitively being installed as broad band 
access communication links. Depending on the 
application, a laser beam with a different 
shape may have favorable characteristics over a 

fundamental mode Gaussian beam. In 
particular, there is current interest in finding 
out whether beam shaping can be used as an 
effective counter measure to extend the 
propagating range beyond several hundred 
meters. In this sense, FSO system performance 
as related to different types of laser incidence 
has been analyzed.  
Before introducing the details of atmospheric 
characteristics in FSO links, it is of interest to 
understand the free-space propagation 
characteristics of the special higher order 
annular Gaussian (HOAG) laser beams obtained 
by subtracting a smaller size (secondary) 
Hermite-Gaussian beam from a larger size 
(primary) Hermite-Gaussian beam, with 
different size. Hermite-sinusoidal
(Baykal, 2004) and a special case of HSG laser 
beams in turbulent FSO links 
were also introduced. Since the ordinary 
Hermite-Gaussian beam solutions are already 
known to form a complete set of solutions of 
the paraxial wave equation and since HOAG 
beams are expressible as a linear c
of two Hermite-Gaussian beams, these beams 
also forms a complete set. It is also useful to 
check variation of the beam shape in different 
beam shaping media. For example, a report by 
(Hedayati et al., 2010) explains characterizing 
the divergence properties of the laser diode 
beams propagation through collima
aperture optical system. 
media (NNM) have attracted a lot of attention 
in the past decade.  
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 Nonlocal nonlinear 
media (NNM) have attracted a lot of attention 
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Many novel solutions in NNM have been 
presented which have no counterparts in 
traditional local nonlinear media, and exhibit 
many novel phenomena (Horikis and 
Frantzeskakis, 2016). In recent years, the 
shape-variant optical beams in NNM have also 
received intensive attention (Zhang, 2016).  
Also, some unique characteristics are revealed, 
such as self-induced mode transformation 
(Izdebskaya et al., 2013) power variation-
induced three-dimensional non-uniform scaling 
(Lu et al., 2013). It is well known that Gaussian 
beams represent a realistic model for the 

description of the field of laser modes of many 
laser systems. However, Gaussian beam 
solutions can easily be obtained only in the 
paraxial approximation of the wave equation or 
of the Maxwell equations. 
This work is founded on the Maxwell equations, 
from which the Helmholtz equation is obtained. 
The Helmholtz equation was now solved 
analytically using the paraxial approximation to 
obtain the paraxial wave equation (PWE).  From 
the solution of (PWE), Gaussian beam width, 
radius of curvature, divergence and intensity 
equations were obtained and simulated. 

 
Background Theory 
The starting points of this work are the Maxwell’s Equations below (Guenther, 1990):   

∇��� × E��� = −∂B���∂t 																																																																																					(1) 
                                                                                           

∇��� × B��� = µ� �J� + ε� ∂E���∂t�																																																																			(2) 
                                                                         

∇��� ∙ E��� = ρ

ε� 																																																																																												(3) ∇��� ∙ B��� = 0																																																																																														(4) 
 where	J = Current	Density,σ = Electrical	Conductivity, E = Electric	-ield,	 B = Magnetic	-ield,ρ = Charge	Density, µ� = permeability	in	free	space, 		ε� = permitivity	in	free	space  
HELMHOLTZ EQUATION 
For free space, the differential equation that must be satisfied to determine the spatial behavior of 
a wave is the Helmholtz equation. This equation is given as follows (Guenther, 1990): 

∇4E��� + ω4
c4 E��� = 0																																																																															(5)				 

k = ωc 																																																																																																	(6) ∇4E��� + k�4E��� = 0																																																																																	(7)		 
                                                             where	k� = wave	number, c = speed	of	light	in	vacuum,ω =angular	frequency 
 
Paraxial Approximation 
Gaussian beams are usually considered in 
situations where the beam divergence is 
relatively small, so that the so called paraxial 
approximation can be applied. This 
approximation assumes that the propagation 
direction of light is very close to the z axis and 
that the propagation distance along this axis is 
much greater than the transverse spreading of 
the wave. 
Considering a wave equation in the Helmholtz 
expression (Guenther, 1990): ∂4E∂x4 + ∂4E∂y4 + ∂4E∂z4 + k4E = 0																																				(8) 
 
Where E(x, y, z) represents the complex 
amplitude of a scalar and monochromatic 
optical field that is propagated in free space.   
Assuming a scalar wave of the form which 
propagates nearly parallel to the z axis is 
expressed as: 

                    E(r) = Ψ(x, y, z)e=>?@																																											(9) 
Substituting equation (9) into the Helmholtz 
equation, produce the scalar paraxial wave 
equation below, which must be solved 
(Guenther, 1990).   	

�∂4Ψ∂x4 + ∂4Ψ∂y4 + ∂4Ψ∂z4 � e=>?@ + k4Ψe=>?@
− 2ik ∂Ψ∂z e=>?@ − k4Ψe=>?@= 0			(10)	 

 Using the paraxial approximation from 
equation (10), we have:  ∂4Ψ∂x4 + ∂4Ψ∂y4 − 2ik ∂Ψ∂z= 0																																																									(11)	 
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The solution of (11) gives:   
 

Ψ = e=>B(@)CDEFGEHe=>I(@)																																																											(12) 
 Q(z)	is	a	complex	variable	associated	with	the	reciprocal	of	the	gaussian	width,		 P(z)contain	information	on	the	phase	of	the	wave 
Finding the derivatives of (12) and substituting into (11), we obtain  
    

                Ψ = e=>L=> MNOPF QRSTF UE(RSVQ)CDEFGEHW																																															(13) 
                From equation (13) we have     

               Ψ = P
XPFO QYSTE

eZ	e[																																																																										(14) 
If  \ = ]− ?YSCDEFGEH4C@EFYSEH ^ 	and	b = ]i	 tan=P O @YST − >?@CDEFGEH4C@EFYSEH ^,	 then  

At z = 0, equation (14) reduces to           
                

									Ψ� = e_=?CDEFGEH4YS `																																																																															(15) 
Equation (15) is a Gaussian function which can be compared with a Gaussian spatial amplitude 
distribution given by:                        

              E = E�e]=abEVcEdE e^																																																																														(16) where, f�	is	the	beam	waist,Ψ	is	a	wave	whose	amplitude	distribution	is	a	Gaussian, and q0 is called 
confocal parameter which is given by: 

Y� = πwh4
λ

 

                q� = i	Y�                
Using the definition of i� given in above, we can write (14) as: 

Ψ = 1
X1 + a λz

πw�4e
4 ej	ek																																																													(17)				 

 Where l = CDEFGEH
mSEnPF� λQ

πdSE�
Eo 	and	d = i tan=P O λ@

πmSET − >πCDEFGEH
λ@nPF�πdSE

λQ �Eo         
From the real part of equation (17), the following equations are obtained: 

 f4(p) = w�4 ]1 + O λ@
πmSET4^ 																																																								(18) 

E = E�e]=aDEFGEmE e^																																																																												(19) 
While from the imaginary part the following equations are obtained: 

q(p) = z n1 + �πw�4
λz �4o																																																																(20) 

rs ≅ tan rs = fp = uvf� 																																																															(21) 
Equation (18) and (19) are Gaussian beam width and intensity respectively. While equation (20) and 
(21) are radius of curvature and divergence respectively.  
 
MATERIALS AND METHODS 
Paraxial approximation was used to obtain 
equation (18), (19), (20) and (21), after which 
they were computationally simulated in the 
Matlab environment. The procedures for the 
simulation consist of the following steps: 
opening the MATLAB environment, new script, 
save and command window. 

• Firstly, we opened the MATLAB.  
• In the MATLAB environment, we clicked on new 

script to open the editor, after which a script 

was written to simulate equation (18), (19), 
(20) and (21).  

• In the script of equation (18) and (20), we set λ 
> 760nm which has to be within the infrared 
region, z = 0 to 12mm, f�= 4.15mm. 

• In the script of equation (21), we also set z = 0 
to 12mm and obtained the divergence since the 
beam width at different propagation distance is 
known. 
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• In the script of equation (19), we set E�as	a	unit	amplitude,w	= 4.15mm, 6.9811mm 

and 11.09701mm. Thereafter y is fixed as 0 and 
x varied from -12mm to +12mm to obtain the 
intensity. 

• The following are some of the commands used 
in the script: function name e.g. function [p1, 
p2, p3] = Gauss [y], grid on, hold on, plot, x 
label and y label, title, legend, end etc.   

• To save the script, the save was clicked. 
• On the command window, the function names 

were entered to run the script.           

Thereafter, Different values of the beam width, 
divergence, radius of curvature and intensity 
were obtained as a function of propagation 
distance.  

• Finally, we obtained the graph of the beam 
width, divergence, radius of curvature and 
intensity against propagation distance. 
 
RESULTS AND DISCUSSION 
From computational analysis through 
simulation, the following results were obtained 
as given in the figures (1, 2, 3 and 4) below: 

 

 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 1: Gaussian beam size as a   Figure 2: Gaussian beam divergence as a 
function of propagation distance.  function of propagation distance. 
 

 

 
 
 

Figure 3: Gaussian beam radius of curvature as a function of propagation distance. 

 
Figure 4:  Intensity Profile of the Gaussian Beam as a function of propagation Distances 
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z=11mm,FWHM=11.09701mm
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In Figure 1, the beam dimension as a function 
of propagation is presented. By using the fitting 
options and the governing equation to the 
points in the MATLAB program, the FWHM size 
of the beam were obtained. The result of this 
calculation shows some important points.  
First point shows that the calculated beam size 
values were increasing by increasing the 
propagation distance. As it can also be seen in 
Figure 1, variation of the beam size shows a 
linear dependence on the distance.  
Figure 2 presents the divergence of the 
Gaussian beam as a function of the propagation 
distance. The governing equation indicates 
divergence angle range of 	(27.670� r � 

35.850), at a distance between 3mm and 
4.5mm. It can be noted that as the propagation 
distance increases, the divergence also 
increases, due to increase in the beam size.  
Figure 3 represents the Gaussian beam radius of 
curvature as a function of the propagation 
distance. From 0mm to 12mm propagation 
distance, the Gaussian beam radius of 
curvature increased from 0mm to2.99 ×10xyy. Therefore, it was noted that as the 
propagation distance tends to infinity, the 
radius of curvature shows a linear variation 
with the distance, because in the far field, the 
wave front radius of curvature is planar. 
Figure 4 represents the beam intensity as a 
function of distance values. By using the fitting 

options in the MATLAB program and the 
governing equation to the points, the beam 
intensities and the intensity profiles at 
different propagation distances were obtained. 
Also, Figure 4 shows the intensity profiles for 
the z values of 0, 6 and 11mm. the intensity of 
the beam is plotted as a function of distances 
from  -12mm to +12mm. it is noted that the 
intensity profile follows a Gaussian distribution  
in the free space. As shown in figure 4.2, the 
FWHM is about 4.15mm at z = 0mm, while it is 
about 6.9811mm and 11.09701mm for z = 6mm 
and z = 11mm respectively. 
However, from Figure 4, considering the change 
in the propagation distance, there is notable 
difference between band widths. Thus, FWHM 
is increased by increasing the propagation 
distance due to beam divergence. 
 
CONCLUSION 
It was shown in this work that, a long 
propagation distance in the free space leads to 
low intensity, large beam spot size, radius of 
curvature, divergence and vice versa. 
Considering the computed result, Also, it was 
found that beam with low divergence has 
better beam quality and intensity which can be 
important for applications such as pointing, 
free space optical communications and optical 
pumping of lasers by high power diode arrays.  
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