
Special Conference Edition, November, 2018
 
 

Bayero Journal of Pure and Applied Sciences
ISSN 2006 – 6996 

EFFECTS OF QUARANTINE ON TRANSMISSION DYNAMICS OF LASSA 

Abdurrahman Abdulhamid 
a Department of Mathematical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria

b Department of Statistics, Kano State Polytechnic, P.M.B. 3401, Kano, Nigeria.
Corresponding author

 

INTRODUCTION 
Lassa fever, a viral hemorrhagic
transmitted by rats, is endemic in West Africa 
(Carey et al., 1972; Frase, 1974; Monath et al., 
1973; Monath et al., 1974). After an incubation 
period of 6 to 21 days, an acute illness with 
multi-organ involvement develops. Nonspecific 
symptoms include fever, facial swelling, and 
muscle fatigue, as well as conjunctivitis and 
mucosal bleeding. Its symptoms include muscle 
pain, ulcers of the mucous membranes, 
headache, internal bleeding and inflammation 
of the throat. It also causes the destruction of 
internal tissues; lungs, heart and kidney failure 
(WHO, 2016). Furthermore, it is a
often fatal, viral disease marked by high 
which accounts for up to one-third of deaths in 
hospitals within the affected regions and 10% to 
16% of total cases (CDC, 2014; CDC, 2015). It 
kills approximately 5,000 people per
(Richmond and Baglole, 2003). 
The recognized human arenavirus infection 
history in Africa began in 1969
of two medical missionaries mysteriously and 
the near-fatal illness of a third (Buckley et al., 
1970; Frame et al., 1970; Frame, 1975). An 
arenavirus which was isolated from two of 
these patients is given the name of Lassa virus 
after the town of Lassa, Nigeria, where the 
disease, known as Lassa fever occurred.
Lassa virus is transmitted from animals; 
specifically it spreads to humans from a rodent 
known as natal multimammate mouse 
(Mastomys natalensis) or African rat. This is 
probably the most common mouse in equatorial 
Africa, ubiquitous in human households and 
eaten as a delicacy in some areas (Richmond 
and Baglole, 2003). Infection in the rodent 
population is in a persistent asymptomatic 
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hemorrhagic fever 
transmitted by rats, is endemic in West Africa 
(Carey et al., 1972; Frase, 1974; Monath et al., 
1973; Monath et al., 1974). After an incubation 
period of 6 to 21 days, an acute illness with 

organ involvement develops. Nonspecific 
ude fever, facial swelling, and 

muscle fatigue, as well as conjunctivitis and 
mucosal bleeding. Its symptoms include muscle 
pain, ulcers of the mucous membranes, 
headache, internal bleeding and inflammation 
of the throat. It also causes the destruction of 
internal tissues; lungs, heart and kidney failure 

Furthermore, it is an infectious, 
often fatal, viral disease marked by high fever, 

third of deaths in 
hospitals within the affected regions and 10% to 

cases (CDC, 2014; CDC, 2015). It 
people per year 

The recognized human arenavirus infection 
1969	with the death 

of two medical missionaries mysteriously and 
a third (Buckley et al., 

; Frame et al., 1970; Frame, 1975). An 
arenavirus which was isolated from two of 
these patients is given the name of Lassa virus 
after the town of Lassa, Nigeria, where the 
disease, known as Lassa fever occurred. 

virus is transmitted from animals; 
humans from a rodent 

natal multimammate mouse 
(Mastomys natalensis) or African rat. This is 
probably the most common mouse in equatorial 
Africa, ubiquitous in human households and 

n as a delicacy in some areas (Richmond 
and Baglole, 2003). Infection in the rodent 
population is in a persistent asymptomatic 

state. The virus is probably transmitted by 
contact with the feces or urine of animals 
accessing grain stores in residences (Rich
and Baglole, 2003).  
The possibility that Lassa virus could be used as 
a biological weapon has raised the profile of 
the need for greater understanding of Lassa 
fever and for more effective control and 
treatment programmes (Richmond and Baglole, 
2003). Because of its high case fatality rate, 
ability to spread easily by human
contact, and potential for aerosol release, 
Lassa virus is classified as a Bio
(BSL4) and NIAID Bio-defense category A agent. 
The potential use of Lassa vir
weapon directed against civilian or military 
targets necessitates the development of 
counter-threat measures, such as diagnostic 
assays, vaccines and therapeutics. Moreover, 
the impact of the disease in endemic regions of 
West Africa is immense, and therefore means 
to diagnose, treat and prevent this viral 
hemorrhagic fever will provide a significant 
public health benefit (CDC, 2015; WHO 2016). 
Re-infection occurs in 
strengthened by (Richmond and Baglole, 2003).
Many mathematical models have been designed 
and used to assess the effect of preventive 
measures on the spread of Lassa virus in a given 
community. This study extends the works of 
(James et al., 2015a; James et al., 2015b; Lo 
lacono et al., 2015) by inter alia
[i.] Incorporating environmental contribution 
to the transmission which is not considered in 
(James et al., 2015a; Lo lacono et al., 2015)

[ii.] The environment is considered to be 
saturated; 
[iii.] Incorporating quarantine as control 
measure (James et al., 2015b);
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In this paper, a mathematical model of Lassa fever is formulated. The model includes 
quarantine as a control strategy and allows re-infection. The model is shown to be well
posed. The disease free equilibrium is shown to be locally asymptotically stable whenever 
the basic reproduction number is less than unity and unstable otherwise. Numerical 
simulations have been used to show the impact of the control measure. 
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state. The virus is probably transmitted by 
contact with the feces or urine of animals 
accessing grain stores in residences (Richmond 

The possibility that Lassa virus could be used as 
a biological weapon has raised the profile of 
the need for greater understanding of Lassa 
fever and for more effective control and 

es (Richmond and Baglole, 
. Because of its high case fatality rate, 

ability to spread easily by human-to-human 
contact, and potential for aerosol release, 
Lassa virus is classified as a Bio-safety Level 4 

defense category A agent. 
The potential use of Lassa virus as a biological 
weapon directed against civilian or military 
targets necessitates the development of 

threat measures, such as diagnostic 
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the impact of the disease in endemic regions of 
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to diagnose, treat and prevent this viral 
hemorrhagic fever will provide a significant 
public health benefit (CDC, 2015; WHO 2016). 

s in Lassa fever as 
strengthened by (Richmond and Baglole, 2003). 

atical models have been designed 
and used to assess the effect of preventive 
measures on the spread of Lassa virus in a given 
community. This study extends the works of 
(James et al., 2015a; James et al., 2015b; Lo 

inter alia,  
Incorporating environmental contribution 

to the transmission which is not considered in 
(James et al., 2015a; Lo lacono et al., 2015); 

[ii.] The environment is considered to be 

[iii.] Incorporating quarantine as control 
2015b); 

http://dx.doi.org/10.4314/bajopas.v11i1.64S 

In this paper, a mathematical model of Lassa fever is formulated. The model includes 
infection. The model is shown to be well-

rium is shown to be locally asymptotically stable whenever 
the basic reproduction number is less than unity and unstable otherwise. Numerical 

immunity, reproduction number, stability. 



Special Conference Edition, November, 2018 
 
[iv.] Recovered individuals have temporary 
immunity (Richmond and Baglole, 2003); 
[v.] Latency period is incorporated while it was 
neglected in (James et al., 2015a, James et al., 
2015b); 
[vi.] Using incidence rate for both human 
(constant rate was used in (James et al., 
2015a) and   rodents population (constant rate 
was used in (James et al., 2015a, James et al., 
2015b)). 
The paper is organized as follows. The model 
with quarantine is formulated in Section 2, 
analyzed in Section 3 and numerical simulation 
is presented in Section 4. 
Model Formulation 
The total human population, �H(�), is divided 
into susceptible individuals 	H(�), asymptomatic 
individuals 
H(�), symptomatic individuals 
�H(�)	and individuals in quarantine receiving 
treatment �(�), so that:  
�H(�) = 	H(�) + 
H(�) + �H(�) + �(�).	

Whereas, the total population of rodents, at 
time t denoted by �R(�), is divided into two 
compartments for susceptible rodents and 
infected rodents, such that: 
�R(�) = 	R(�) + �R(�).	

 The susceptible population with risk of Lassa 
virus infection 	H(�) is generated by 
recruitment of humans at a constant rate Π	(all 
humans recruited into the population are 
assumed to be at risk of Lassa-infection), 
infected individuals recover at a rate	�1 and 
quarantine individuals recover at a rate �2. The 
population is decreased by infection at a rate 
�H, moving from the susceptible class to 
exposed class at a rate �H and natural death at 
a rate �H. Thus, 
���

��
= Π + �1�H+�2� − �H	H −�H	H.	

The population of asymptomatic humans 
H is 
generated by Lassa infection at the rate �H. It is 
reduced by the development of clinical 
symptoms of Lassa at a rate �1 and natural 
death at the rate �H. 
���

��
= �H	H – (�1+�H)
H.	

The population of symptomatic individuals is 
increased at the rate �1 and diminished by 
recovery at the rate �1, quarantine at the 
rate	��, natural death at the rate �� and death 
induced by the disease at a rate �. Thus, 
���

��
= �1
H−(�1+�� + � + ��)�� . 

The population of quarantine individuals is 
generated as a result of quarantining the 
symptomatic individuals at the rate �� and 
diminished by recovery of individuals in the 
quarantine at the rate ��, death induced by the 
disease �	and natural death ��. Thus, 
��

��
= ���� − (�� + � + ��)�. 

The population of pathogens   in the 
environment is generated as a result of 
shedding from the infected rodents at a rate	!. 
It is diminished by natural death of the 
pathogens, so that 

" 

"�
= !�# − �$  

The population of susceptible rodents 	# is 
assumed to follow a logistic growth rate	%&(1 −'() ), where %& is the maximum rate of growth of 

rodents and * > �# is the carrying capacity 
(which is related to availability of food and 
space). This shows that the growth of rodents is 
density dependent. The rodents population 	#decreased by Lassa fever infection and 
natural death at the rates �# and	�#, 
respectively. Therefore, ��(�� = %&(1 − '() ) − �#	# − �#	#. 

The population of infected rodents �#	is 
generated following the infection of susceptible 
rodents at the rate �# 	and decreased only 
because of natural death. Hence, ��(�� = �#	# − �#�#. 

The model for the Lassa fever is described by 
the following system of differential equations 
while the flow diagram of the model is shown in 
Figure 1. The parameters and associated 
variables are presented in tables 1 and 2. ����� = Π + �1�H+�2� − �H	H −�H	H.	����� = �H	H – (�1+�H)
H.	����� = �1
H−(�1+�� + � + ��)�� . ���� = ���� − (�� + � + ��)�. " "� = !�# − �$  ��(�� = %&(1 − '() ) − �#	# − �#	#. ��(�� = �#	# − �#�#. 

where,	�� = ,��� + ,�� $-./$ + ,#��# and �# = ,#�# + ,�#��. 
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Figure 1: showing the schematic diagram of the model equations 1-7 where solid arrows indicate 
transitions and dashed arrow indicates interaction. Expressions next to arrows show the per capita 
flow rate between compartments. 
 
Table 1: Description of the state variables of the model 

Variable Interpretation �� Total population of humans 	� Population of susceptible humans with risk of Lassa virus infection 
H Population of humans exposed to Lassa virus �H Population of Lassa-infected humans with symptoms of Lassa fever 
Q Population of individuals in quarantine �R Total population of rodents 
SR Population of susceptible rodents   �R P population of pathogens in the contaminated environment and air 

 
Table 2: Description of parameters of the model. 

Parameter Interpretation 

Π Recruitment rate for humans. �� Rates of Lassa force of infection in humans. �# Rates of Lassa force of infection in rodents. �� , �#, �$ Natural death rates of humans, rodents and pathogens, respectively. 
 ,# , ,#� , ,�� , ,� , ,�#, Transmission rates from infected rodents to susceptible rodents, rodents 

to susceptible humans, contaminated environment and air to susceptible 
humans, infected humans to susceptible humans and from humans to 
susceptible rodents, respectively. ! Rates of shedding from rodent to environment. �1 Recovery rate of infected individuals �2 Recovery rate of individuals in quarantine  �1 Progression rate of expose humans to infected class �2 Progression rate of infected humans to quarantine class * Carrying capacity for rodents � Disease-induced death rate for humans %& Maximum rate of growth of rodents 

 
Some of the main assumptions made in the 
formulation of the model are as follows; 
[i.] Homogeneous mixing of the human and 
rodents populations such that there are equal 
chances of transmitting the virus. Transmission 
patterns which are possible includes: rodent-to-
rodent, rodent-to-human, human-to-human, 
human-to-rodent, environment-to-human and 
rodent contaminate the environment (Lo lacono 
et al., 2015); 

[ii.] Successful treatment against Lassa fever 
does not guarantee permanent immunity 
against Lassa re-infection (Richmond and 
Baglole, 2003); 
[iii.] Natural recovery is possible (Ajayi, 2014); 
[iv.] Infected humans can transmit the disease 
via human-rodent infection (Lo lacono et al., 
2015); 
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[v.] The virus does not kill the vector (i.e. they 
die naturally (James et al., 2015a); 
The model (1) extends the works in (James et 
al., 2015a; James et al., 2015b; Lo lacono et 
al., 2015) by inter alia, 
[i.] Incorporating environmental contribution to 
the transmission; 
[ii.] The environment is considered to be 
saturated; 
[iii.] Incorporating quarantine as control 
measure (James et al., 2015b); 
[iv.] The contribution of individuals is 
considered negligible; 
[v.] The population of the reservoir (rodents) is 
divided into susceptible and infected classes; 
[vi.] Recovered individuals have temporary 
immunity (Richmond and Baglole, 2003); 
[viii.] Latency period is incorporated while it 
was neglected in (James et al., 2015a, James 
et al., 2015b); 
[viii.] Using a logistic rate for susceptible 
rodents (constant rate was used in (James et 
al., 2015a, James et al., 2015b)); 

[ix.] Using incidence rate for both human 
(constant rate was used in (James et al., 
2015a) and rodents population (constant rate 
was used in (James et al., 2015a, James et al., 
2015b)); 
2.1 Basic properties of the model. 
Here, we first prove that a solution to the 
initial-value problem of system (1) exists and in 
fact, the solution is unique. 
Theorem 2.1 
Let(	�0, 
�0, ��0, �0,  0, 	#0, �#0) ∈ ℝ be given.  
There exist,�0 and continuously differentiable 
functions (	�(t), 
�(t), ��(t),�(�),  (�),	#(t),�#(t): [0, �0) → ℝ) such that the 
ordered heptads (	�(t), 
�(t), ��(t),�(�),  (�),	#(t),�#(t)) satisfies model (1) and(	�(t), 
�(t), ��(t),�(�),  (�),	#(t),�#(t))(0) =(	�0, 
�0, ��0, �0,  0, 	#0, �#0). 
Proof 
The Classical Picard-Lindelof theorem will be 
utilized to prove the result. Since the system of 
ordinary differential equations is autonomous, 

it is enough to show that the function 6:ℝ7 →ℝ7 is defined by 

6(7) =
899
999
99:
; + �<7= + ��7> − ��7<– ��7<��7<– (�< + ��)7��<7� − (�< + �� + � + ��)7=��7= − (�� + � + ��)7>!7? − �7@%& A1 − �#* B − �#7C − �#7C�#7C − �#7? DEE

EEE
EEF
 

where,	�� = ,�7= + ,�� GH-I/GH + ,#�7?	and �# = ,#7? + ,�#7=	is locally Lipchitz in its 7 argument. In 

fact, it is enough to show that the Jacobian matrix ∇6(7) = KL MN OP 
where, 

L = Q−RλS + µST 0 τ< − βHy1
λS −Rγ< + µST βHy10 γ< −Rτ< + γ� + δ+ µSTY,	M = 899

:τ� − Z[�-IG\(-I/GH)]0 Z[�-IG\(-I/GH)]0 0
0 βRHy10 βRHy10 0 DEE

F
 

N = Q0 0 γ�0 0 α00 00 0
βS_yCY , O =

899
99:
−(τ< + δ+ µS) 0 0														 							0			0 −µ` 		0							 														0

00 00 −(%&* + �# + µ_)�# −%&* + β_yC−µ_ + βS_yCDEE
EEF 

is linear in 7 and therefore locally bounded for 
every y∈ ℝ? and so 6is locally Lipschitz in 7. By 
the Picard-Lindelop Theorem, there exists a 
unique solution,	7(t), to the ordinary 
differential equation 7′(�) = 6(7(�)) with initial 
value 7(0) = 7b on [0, �b] for some time �b > 0. 
Moreover, for positive initial data it can be 
shown that solutions remain positive as long as 
they exist. A lucky by product of the result 
above is that the obtained solutions are also 
bounded. 

Theorem 2.2 (Boundedness and Positivity). 
Suppose the initial conditions of the model (1)	satisfy (	�0 > 0, 
�0 > 0, ��0 > 0, �0 > 0,  0 >0, 	#0 > 0, �#0 > 0). If the unique solution 

obtained by Theorem 2.1 on the interval [0, �b] 
exist for some �b > 0, then the functions 	�(t), 
�(t), ��(t),�(�),  (�), 	#(t), �#(t) will be 

bounded and remain positive for all � ∈ [0, �b]. 
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Proof 
Let		�(t), 
�(t), ��(t), �(�),  (�), 	#(t),�#(t) initially have positive values. From Theorem 2.1 there 
exists at �∗ such that the solution exists on [0, �∗]. 
Assuming f∗is denoted as the largest time, for which all populations remain positive, that is, f∗ = supj� ∈ [0, �∗] : 	�(s), 
�(s), ��(s), �(k),  (k), 	#(s), �#(s) > 0,∀k ∈ [0, �b]} 
Now on the interval [0, f∗] we can estimate the population values knowing that all constants in the 
system are positive. Using this and the positivity of solutions on [0, f∗], we can place lower bounds 

on 
����� , ����� , ���� . �$�� , ��(��  since ����� = �H	H – (�1+�H)
H≥– (�1+�H)
H ����� = �1
H−(�1+�� + � + ��)�� ≥ −(�1+�� + � + ��)�� 	"�"� = ���� − (�� + � + ��)� ≥ −(�� + � + ��)�	" "� = !�# − �$ ≥ −�$P	"�#"� = �#	# − �#�# ≥ −�#�# 	

Using separation of variables the populations above at � ∈ [0, f∗] have their solutions obtained 
respectively as 
�(�) ≥ 
�(0)p–(q</r�)�, ��(�) ≥ ��(0)p–(s\/q]/t/r�)�, �(�) ≥ �(0)p–(s]/t/r�)� ,  (�) ≥  (0)purv� �#(�) ≥ �#(0)pur(� 
Similarly, we can place upper bound on 

�����  and 
��(��  so that ����� = Π + �1�H+�2� − �H	H −�H	H≤ Π+ �1�H+�2� 	�(t) ≤ x<(1 + t),	where the constant x< satisfies x< ≥ max	[Π, *<], *< = 	�(0) + s\��(b)(s\/q]/t/r�) +s]�(b)(s]/t/r�). "	#"� = %&(1 − �#* ) − �#	# − �#	# ≤ %&(1 − �#* ) ≤ %& 	#(t) ≤ 	#(0) + %&�, 	#(t) ≤ N�(1 + t), where the constant N� satisfies N� ≥ max	[%& , 	#(0)] 

Now, summing some of the equations 
����� , ����� , �$�� , ��(��  and place bounds on this sum, we have  "(
� + �� +  + �#)"� ≤ ��	� + �<
� + !�# + �#	# 

There is a bound on 	� and 	#, simplifying after substituting �� and �# we have, "(
� + �� +  + �#)"� ≤ N=(1 + �)�� + (N>(1 + �) + !)�# + �<
� + ,�� , 
where the constants N= and N> are, respectively, (N<,� + N�,�#) and (N<,#� + N�,#) also (|} +  > ), N@ satisfies N@ ≥ max	[N>	, !] and NC satisfies NC ≥ max	[N=	, N@, �<, ,��]. Consequently, the 
inequality becomes "(
� + �� +  + �#)"� ≤ NC(1 + �)(
� + �� +  + �#) (
� + �� +  + �#)(�) ≤ N?p�] 
for � ∈ [0, f∗] where N? > 0 depends on NC > 0, 
�0, ��0,  0, 	#0	and	�#0 only. Since 
�(�) is positive, 
we can place an upper bound on ��(�),  (�), �#(�) N?p�] ≥ (
� + �� +  + �#) ≥ ��(�) N?p�] ≥ (
� + �� +  + �#) ≥  (�) N?p�] ≥ (
� + �� +  + �#) ≥ �#(�) 
Moreover, since ��(�),  (�) and �#(�) are positive it follows that 
�(�) is as well, hence N?p�] ≥ (
� + �� +  + �#) ≥ 
�(�) 
Furthermore, adding the first four equations gives: "��"� = Π − ���� − �(�� + �) 
Then,    Π− ���� − �(�� + �) ≤ �'��� ≤ Π− ���� 

so that  
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This implies that, ��(�) is bounded which shows the individual classes including �(�) is bounded. 
Hence, 	�(�) and 	#(�) can be examined and bound each from below, using ����� = Π + �1�H+�2� − �H	H −�H	H≥ −��	� − ��	� . 
Substituting �H and the bound on ��(�),  (�), �#(�) that is, p�]

, it becomes "	�"� ≥ −N�(1 + p�])	� 

for � ∈ [0, f∗] where N� satisfies N� ≥ max [�� , N�] and N� ≥ max [,� , ,�� , ,#], so  
����� + N�(1 + p�])	� ≥ 0. It is known that 

�
�� (	�(�) + p�� � �</��]��s�� ) ≥ 0 

hence for � ∈ [0, f∗], 	�(�) > 	�(0)pu�� � �</��]��s��  
Now for 	#(�) "	#"� = %& A1 − �#* B − �#	# − �#	# ≥ −%& A	# + �#* B − �#	# − �#	# 

≥ −%& A	#* B − %& A�#*B − �#	# − �#	# 

Substituting �# with the bounds established earlier on �� and �#, gives   ��(�� ≥ −N<�(1 + p�])	#, for � ∈ [0, f∗] 
where N<� satisfies N<� ≥ max [N<b, N<<], and N<b = ���) + �#�, N<< = N?,# + N�,�# 

hence,   
��(�� +N<�R1 + p�]T	# ≥ 0   and it follows that 

�
�� A	#(�) + p�\] � �</��]��s�� B ≥ 0     hence for � ∈ [0, f∗], 
	#(�) > 	#(0)pu�\] � �</��]��s��  
Thus the values of 	�, 
�, ��,�,  ,	# and �# remain strictly positive for all [0, f∗], including at time f∗. By continuity, there must exist a � > f∗such that 	�, 
�, ��, �,  , 	# and �#  are still positive. 

This contradicts the definition of f∗ 
(f∗ = supj� [0, �∗] : 	�(s), 
�(s), ��(s), �(k),  (k), 	#(s), �#(s) > 0,∀k ∈ [0, �b]}) 
 
 

and shows that the model (1) are strictly 
positive on the entire interval [0, �∗]. 
Furthermore, on the same interval, all of the 
functions remain bounded, so the interval of 
existence can be extended further. In fact, the 
bounds on 	�, 
�, ��, �,  , 	# and �# derived 
above hold on a compact time interval. Thus, 
the time interval may be extended on which 
the solution exists to [0, �b] for any �b > 0 and 
from the above argument, the solutions remain 
bounded and positive on [0, �b]. 
With this, a general idea that the model is 
sound was obtained and can stay with certainty 
that it remains biologically valid as long as it 
begins with biologically-reasonable (i.e, 
positive) initial data. Following (Hethcote, 
2000), the model is mathematically well-posed 
and epidemiologically realistic, since all the 
variables remain nonnegative for all � >  0. 
Hence, it is sufficient to consider the dynamics 
of the model (1) in D. 
Lemma 2.3. fℎp 6�������� %������x���7 6p�k�%�p �p���� �6  �ℎp ��"p� p������� (1) O = (	� , 
� , �� , �,  ,  	# , �# ∈ ℝ/?: 	� + 
� + �� + � ≤ �

�  :  	# + �# ≤  ���¡ ) 
�k ¢�k���£p�7 ��£������ ��" �����x����. 

Proof. It follows from the fact that �'�(�)
�� = Π − ����(�) and 

�'((�)
�� = %& −

���¤ + μ_� �#(�) ≥ %& − μ_�#(�)   
so, that 

�'�(�)
�� < 0, and 

�'((�)
�� < 0 if  ��(�) > �

�  

and �#(�) > ���¡   

Thus, a standard comparison theorem as in 
(Lakshmikantham et al., 2015) can be used to 
show that ��(�) ≤ ��(0)pu� (§) + �

�  (1 − eu� (§)) and 

�#(�) ≤ �#(0)pu�¡(§) + ���¡ R1 − eu�¡(§)T. 
In particular, ��(�) ≤ �

�  and �#(�) ≤ ���¡ if 

��(0) ≤ �
�  and �#(0) ≤ ���¡ respectively. Thus, 

O is positively-invariant. 

Furthermore, if ��(�) > �
�  and �#(�) > ���¡ then 

either the solution enters O infinite time, or ��(�) approaches 
�

�  and �#(�) approaches 
���¡ 

and the infected variables approaches zero. 
Here O is attracting (i.e. all solutions in ℝ/?eventually approach, enter or stay in O). 
Hence the model (1) is epidemiologically well-
posed in O as in (Hethcote, 2000). 
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Analysis of the model 
It is instructive, however, to analyze system (1) 
first of all. This is done below. 
Local asymptotic stability of disease-free 
equilibrium (DFE) 
The human-rodent model (1) has a DFE, 
obtained by setting the right-hand sides of the 
equations in the model to zero, given by  ©b& = (	� ∗, 
� ∗, �� ∗, �∗,  ∗,  	#∗, �#∗) =( �

r� , 0,0,0,0, ��)
��/)r( , 0). 

The linear stability of ©b& will be investigated 
using the next generation operator method on 

the system (1). The matrices ª (for the new 
infection terms) and « (for the remaining 
transition terms) associated with the model are 

given, respectively, by (noting that 	� ∗ = �
r�  

and  	#∗ = ��)
��/)r( 

The ª and « matrix were obtained using the 
notation of (vanden and Watmough, 2002) for 
the new infection terms and the remaining 
transfer terms respectively, and used to 
compute the spectral radius ℛb as 

 

ª =

®®̄

0 ,�	�∗                       0 Z[�-. 	�∗ ,#�	� ∗
0 0 0 0 0000

00,�#	#∗   000
000

00,#	#∗ °
±±², V=


®̄

³< 0 0 0 0−�< ³� 0 0 0000
−��00

³=00
0�$0

0−!�# °
±² 

 

ℛb = ´ + √¶� + ·2  

Where 

´ = �Z�q\¸\¸]
�

r� + Z(r(
��)

��/)r(� , ¶ = �Z�q\¸\¸]
�

r� − Z(r(
��)

��/)r(�,· = �Z�(q\¸\¸]
��)

��/)r(� (Z(�r(
�

r� + Z[�¹
-.rºr(

�
r�) 

³< = (�< + ��), ³� = (�< + �� + � + ��), ³= = (�� + � + ��) 
 
The threshold quantity ℛb is the basic 
reproduction number for Lassa fever (Anderson 
and May, 1982; Anderson and May 1991; 
Hethcote, 2000). It represents the average 
number of secondary cases that one infectious 
human (or rodent) would generate over the 
duration of the infectious period if introduced 
into a completely susceptible human (rodent) 
population. 
Lemma 3.1 
The DFE ©b&, of system (1) is locally 
asymptotically stable (LAS) if ℛb < 1 and 
unstable if ℛb > 1. 
 
 
 

Simulations 
The numerical simulation was conducted using »O
15k in-built in ½Lf¾LM where averted 
cases were computed for ℛb < 1  and ℛb > 1, 
also four graphs were obtained; graph of 
infected humans with and without quarantine 
when ℛb = 0.8764 as depicted in Figure 2; 
graph of averted cases when ℛb < 1   and 

AVERTION=4.7128× 10� labeled Figure 3. 
Moreover, graph of infected humans with and 
without quarantine when ℛb = 3.1481 labelled 
Figure 4 and graph of averted cases, 
AVERTION=4.7128× 10� label Figure 5. The 
parameter values in table 4were used to get 
the figures below.  
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Table 4: Description of parameters of the model 

Parameter 
 

 Interpretation 
 

 Range/Baseline value 
 

Reference 
 Π 

 
Recruitment rate for humans  64,787, 478 (Richmond and 

Baglole, 2003) 
 �� , �#, �$ 

 
Natural death rates of humans, 
rodents and pathogens respectively  
 

0.018182, 0.1858,	 16248.088819 

(CIA, 2008; Oliff, 
2003; Stephenson, 
1984) 
 ,#, ,#� 	, ,��, ,� 

and ,�# . 

Transmission rates from infected 
rodents to susceptible rodents, 
rodents to susceptible humans, 
ingesting pathogens from the 
contaminated environment and air 
to susceptible humans, infected 
humans to susceptible humans and 
from humans to susceptible 
rodents, respectively,  

0.43, 0.43, Estimate, 0.4, 
Estimate. Dimensionless 

(Elizabeth et al., 
2014; Elizabeth et 
al., 2014; Estimate; 
Elizabeth et al., 
2014; Estimate;) 

! Rates of shedding from rodent to 
environment  
 

10= − 10@(TCID)@b/ÉÊ (McCormick, 1987) 
 

 |}  
Concentration of the pathogens in 
the contaminated environment and 
air  
 

10= − 10@(TCID)@b/ÉÊ (McCormick, 1987) 
 

�< Re-infection rate of humans from 
infected  
 

[0.01,0.18] 
 

(Richmond and 
Baglole, 2003) 
 �� Re-infection rate of humans from 

isolated humans  
[0.01,0.18] 

 
(Richmond and 
Baglole, 2003) 
 �< Progression rate of expose humans 

to infected class  
 

0.7869		
 

(Richmond and 
Baglole, 2003) 
 �� Progression rate of infected 

humans to isolated class  
 

[0.05,0.08]	
 

(McCormick, 1987) 

* Carrying capacity for rodents  946	
 

(McCormick, 1987) 

� Disease-induced death rate for 
humans  
 

[0.0452,0.1133] (NCDC, 2018)  

%& Maximum rate of growth of rodent 
population  

1.502	¢p�	ℎp�"	 ¢p�	28	"�7k		
 

(Oliff, 1953)  
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Figure 2. Graph of infected humans with and without intervention when ℛb < 1 at ,� = 4 × 10u<<

 
Figure 3. Graph of averted cases, ËÌÍÎÏÐÑÒ = Ó. ÔÕÖ× × ÕØÙ 
 

 
Figure 4. Graph of infected humans with and without quarantine when ÚØ > 1 at ,� = 4 × 10u<> 
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Figure 5. Graph of averted cases, ÛÜÝÞßàáâ = Ó. ÔÕÖ× × ÕØÙ 
 
CONCLUSION 
In this work, a mathematical model is 
developed and analyzed to study the 
transmission and control of Lassa fever. 
Mathematically we modeled Lassa fever as 7-
dimensional system of non-linear ordinary 
differential equation. We first show that there 
exists a domain where our model is well posed 
mathematically and epidemiologically. The 
model incorporates quarantine and re-infection 
parameters. The DFE point of the model is 
obtained and analyzed for stability. We 
obtained an important threshold parameter 
called basic reproductive number ℛb. 

Numerical simulations, using the parameter 
values in table 4 show that the associated 
reproduction number ℛb 	< 1, and decrease 
when quarantine is implemented as shown in 
Figure 2.  Thus, the outlook of the effective 
control of Lassa virus is greatly enhanced if a 
control strategy based on using quarantine of 
the infected and infectious human is 
implemented, which shows the averted cases in 
Figure 3. But when ℛb. > 1, the Figure 4 and 
Figure 5 shows the infected humans with and 
without quarantine when ℛb > 1 at ,� = 4 ×10u<>, and the averted cases respectively. 
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