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INTRODUCTION 
Most chemical process plants including refinery 
are operated in such a way that operators set 
decision variables as set points and with the aid 
of proportional integral der
controllers the set points are kept at their 
desired values. To satisfy requirements set by 
environmental laws, operate within safety 
limits, survive market competition and to meet 
tighter quality specifications of products; 
plants must operate near optimal. Self
optimizing control (SOC) as a strategy helps to 
achieve the aforementioned objectives by 
selecting appropriate control variables (CVs) so 
that when they are maintained at their set 
point values, the overall plant operation is 
optimal or near optimal even in the p
disturbances (Skogestad, 2000). 
When a disturbance is introduced into a 
chemical plant, measurements are taken and 
control actions are implemented to compensate 
for the effects of the disturbance
decades, several techniques for CV selections 
have been reported. Most of these techniques 
require process models to determine CVs 
offline and largely depend on the ability to 
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plants including refinery 
are operated in such a way that operators set 
decision variables as set points and with the aid 
of proportional integral derivative (PID) 

set points are kept at their 
desired values. To satisfy requirements set by 
environmental laws, operate within safety 
limits, survive market competition and to meet 
tighter quality specifications of products; 
plants must operate near optimal. Self-

as a strategy helps to 
achieve the aforementioned objectives by 
selecting appropriate control variables (CVs) so 
that when they are maintained at their set 
point values, the overall plant operation is 

in the presence of 
 

disturbance is introduced into a 
chemical plant, measurements are taken and 
control actions are implemented to compensate 

r the effects of the disturbance. In the past 
decades, several techniques for CV selections 
have been reported. Most of these techniques 
require process models to determine CVs 
offline and largely depend on the ability to 

linearize nonlinear models around their nominal 
operating points. This procedure is time
consuming which results in the plant operation 
being locally optimal and become impractical 
where no process model is available 
2007; Alstad and Skogestad, 2007)
Despite the benefits of applying SOC, there are 
challenges emanating from the CV selection. 
The selected CVs must be such that they
acceptable loss and therefore 
need to re-optimize set points when 
disturbances are introduced into the system. 
Difficulty arising from using model for SOC has 
been overcome by incorporating measurements 
in the optimization framework
measurements or combination of measurements 
may be used as CVs. Halvorsen et al. (2003)
introduced methods for finding subset or 
combination of measurements as controlled 
variables. Controlling these subset or 
combination of measurement at constant set 
points implies operating the plant at desired 
economic condition. Overcoming challenges 
due to model linearization requires a global 
approach.    

http://dx.doi.org/10.4314/bajopas.v11i1.73S

Problem formulation as mixed integer nonlinear programming (MINLP) is one of the most 
challenging task in refinery scheduling optimization. In most of the work reported in refinery 
scheduling, uncertainties from design point of view predominate. However, t
need to consider operational uncertainties (disturbances) as they affect the accuracy and 
robustness of the overall schedule. This study proposed a novel approach under 

framework to deal with multi-period refinery scheduling problems 
under uncertain conditions. The goal is to maintain global optimum by controlling the 
gradient of the cost function at zero via approximating necessary conditions of optimality 
(NCO) over the whole uncertain parameter space. A regression model for the plant expected 
revenue (profit) as a function of independent variables using optimal operation data was 
obtained and a feedback input (manipulated variable) was derived. The performance of the 
proposed approach was tested using case studies. The first case assumed a system with no 
disturbance with the base case model giving an optimal profit of $56,696,407 while the 
proposed approach yields $50,523,054, translating to 10.888 % loss. The percentage loss 
for the second, third and fourth cases with disturbances are 5.807 %, 4.409% and 7.898% 

The results obtained have shown that the idea presented was able to 
effectively deal with the situation at hand with percentage loss within a reasonable degree
Keywords: Refinery scheduling, MINLP formulation, Operational uncertainty (disturbances), 
Necessary condition of optimality, Feedback control  
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linearize nonlinear models around their nominal 
. This procedure is time-

consuming which results in the plant operation 
being locally optimal and become impractical 
where no process model is available (Kariwala, 
2007; Alstad and Skogestad, 2007). 
Despite the benefits of applying SOC, there are 
challenges emanating from the CV selection. 
The selected CVs must be such that they give 

ceptable loss and therefore able to avoid any 
ize set points when 

s are introduced into the system. 
Difficulty arising from using model for SOC has 
been overcome by incorporating measurements 
in the optimization framework. Single 
measurements or combination of measurements 

Halvorsen et al. (2003) 
introduced methods for finding subset or 
combination of measurements as controlled 
variables. Controlling these subset or 
combination of measurement at constant set 
points implies operating the plant at desired 

ondition. Overcoming challenges 
due to model linearization requires a global 
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need to consider operational uncertainties (disturbances) as they affect the accuracy and 
robustness of the overall schedule. This study proposed a novel approach under self-

ry scheduling problems 
under uncertain conditions. The goal is to maintain global optimum by controlling the 
gradient of the cost function at zero via approximating necessary conditions of optimality 

sion model for the plant expected 
revenue (profit) as a function of independent variables using optimal operation data was 
obtained and a feedback input (manipulated variable) was derived. The performance of the 

The first case assumed a system with no 
disturbance with the base case model giving an optimal profit of $56,696,407 while the 
proposed approach yields $50,523,054, translating to 10.888 % loss. The percentage loss 
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The results obtained have shown that the idea presented was able to 

effectively deal with the situation at hand with percentage loss within a reasonable degree. 
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Necessary condition of optimality (NCO) is a 
viable complementary method that seeks to 
overcome the local shortcomings of the existing 
SOC methodologies (Jäschke and Skogestad, 
2011). François et al. (2005) are of the view 
that measurements can be used to enforce NCO 
in the presence of disturbance variables 
(uncertain parameters) where the NCO are 
separated into active constraints and cost 
sensitivities (gradients). Owing to the fact that 
some NCO components are non-measurable 
online due to the presence of disturbance (s) in 
the objective function, Ye et al. (2012b) 
proposed that CVs can be selected in such a 
way that they approximate unmeasured NCO 
over the whole uncertain parameter space. The 
CVs can then be obtained through regression 
methods. The CV selection problem is therefore 
transformed into a regression problem and does 
not need a model to be a priori (Ye et al., 
2012a). The difficulty using NCO lies in the 
inability to compute the gradient online. 
Recently, a methodology was developed by 
Girei et al. (2014) that computes CVs as 
function of measurements from real plant or 
simulated data using finite difference 
approximation. Grema and Cao (2014) extended 
the methodology to dynamical systems where 
the gradient is approximated using Taylor series 
expansion. Their approach is not directly 
applicable for problems involving mixed integer 
programming with multiple time periods and 
therefore a new methodology has to be 
developed. Development of methodology to 
handle mixed integer problems is the 
motivation behind this paper. 
Therefore in this study, a multi-period data 
driven approach involving mixed integer 
problems to determine CV as a function of 
measurements is presented. The methodology 
is then applied to refinery scheduling problem 
with uncertainties in crude oil composition.              
1. Data Driven Self-optimizing Control 
for Scheduling 
Although the methodology is developed to deal 
with mixed integer problems, the discussion 
here will be mainly on refinery production 
scheduling.  Generally, scheduling is a static 
mixed integer optimization problem with 
uncertainties in model parameters. The 
problem can be formulated as: 

minu	�(u, d) (1) 
subject to 

�(u, d) ≤ 0														�	: (�, ) (2) 
Where � is an objective function to be 
minimized (cost or negative profit). As the 
problem is mixed integer, the control inputs 
are separated into continuous manipulated 
variables �� and integer manipulated variables 
�� with ��, �� ∈ 	ℝ��. The integer manipulated 
variables range from 0 to 1 and � ∈ 	ℝ�� are the 

uncertain parameters or disturbances. 
�:ℝ�� 	�		ℝ�� 	→ 		ℝ�� are the constraints to be 
satisfied, which are usually related to unit 
capacities, mass balance, inventory, and 
storage. The variables �� here are typically 
chosen to control the continuous variables such 
as flowrates by either forcing one or more 
variables to be in between 0 and 1. For 
simplicity, a single manipulated variable that is 
varying with time periods is assumed. For �  
time periods and � measurements, the 
objective function in Equation 1 can be 
transformed into 

� = ���(�� , � , ! )
�

																∀	� (3) 

Where �� is the contribution of � in each time 
period or event point �. �� , � ,	and	!  are 
manipulated variables, measurements, and 
disturbances at time period � respectively. The 
scheduling horizon # is discretized into time 
periods �� ($	 = 1, 2, 3, … , )) of variable lengths 
*+�. Variable time discretization is based on 
the fact that events or activities do not always 
happened at the time boundaries. i.e. for 
scheduling horizon of 10 days discretized into 
10 time periods, some task can take less or 
more than 1 day to complete. To obtain CVs, 
the following procedures are followed.  
i. Manipulated variables � are identified 
along with flow streams � that disturbances will 
have an impact upon. The flow streams are the 
measurements. The scheduling model is then 
solved to obtain solution vector  

• �,,� = �,,-, �,,., �,,/, … , �,,0 for the 
manipulated variables, 
• ��, = ��,, ��,1, ��,2, … , ��,3 for the 
measurements and 
• �, as profit (or cost).  
The solution from the first simulation run 
represents the nominal schedule. 
ii. The manipulated variables are then 
slightly but randomly perturbed for the whole 
time periods or event points to have 

�4,� = �4,-, �4,., �4,/, … , �4,0 ,           5 =
1, 2, 3, . . . , 7 

     
(4) 

and the scheduling model is simulated for 5 
trajectories to obtain measurements 

�8, = �8,, �8,1, �8,2, … , �8,3      
(5) 

and (cost or negative profit)   .  
 	� is a vector because at each time period there 
may be more than one measurement (9	 =
	1, 2, 3, . . . , :) with the manipulated variable 
included as one of the measurements. 
iii. The gradient (change in objective 
function with respect to manipulated variables) 
is the CV and approximated using Taylor series 
expansion.  
The detail derivation is presented in the 
Appendix section. 
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Case study 
The refinery scheduling model and operational 
data in Hamisu (2015) are adopted here to show 
the applicability of the proposed solution 
approach. However; here the binary variable 
�;<=,� is allowed to take any value between 0 
and 1. The optimal profit �, in this case was 
obtained as $56,696,407. The optimal values of 
the variables �;<=,�  are used as parameters in 
the SOC model. The optimal parameter values 

of crude 2 (manipulated variables) are then 
perturbed slightly but randomly around their 
nominal operating points to form sequence of 
solutions to be used for regression analysis. 
20x9 (180) data points were generated in 
accordance with Equation 11 (see Appendix) 
from which 8 regression coefficients are 
obtained. The regression coefficients 
determined are presented in Table 1. 

 
Table 1: Parameter values from regression 

 
 
This gives the optimal feedback control law: 
�>	,� = (1/5.9679)[6.7996	 + 	0.1396�-,� 	+
	0.4154�.,� 	+ 	0.0430�/,� 	− 			0.2164�H,� 	−
																																			0.1722�I,� 	− 	0.1252�J,�] 

(6) 

The measurements �1 − 	�6 are straight run 
(SR) fuel gas, SR gasoline, SR naphtha, SR 
distillate, SR gas oil, and SR residuum streams 
of crude 1 respectively. Cases with and without 
disturbances are considered to illustrate the 
capability of the proposed approach.  
Case 1 
This first case considered a problem with no 
disturbance introduced into the system. The 
optimal objective value of the base case model 
with nominal values of the manipulated 
variables is compared with the objective value 
obtained after feedback implementation. The 
optimal profit for the base case model was 
obtained as $56,696,407. Implementing 
Equation 17 for the base case model gives an 

optimal profit of $50,523,054. The loss was 
computed in accordance with Equation 16 to 
obtain a value of 10.888%. Scenarios in the next 
case will better illustrate the advantage of the 
proposed SOC methodology.       
Case 2  
Scenario A 
This scenario considered a change in 
composition of crude 1 by 5% for the whole 
scheduling horizon. The measurements 
representing cut fractions from crude 1 are 
taken and the optimal manipulated variable is 
computed and implemented in the SOC model 
to obtain optimal profit �(u>	, d) of 
$53,403,869. Compared with the optimal value 
of $56,696,407, a loss of 5.807 % was obtained. 
The production levels of the cut fractions using 
SOC are compared with the actual amounts 
produced at the nominal operating conditions. 
These are shown in Figures 1 to 6.
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With the exception of SR fuel gas and SR 
distillate streams from the figures above, other 
cut fractions have their production levels 
approaching minimal values at the end of the 
scheduling horizon. Deviations from true 
optimal values due to feedback control for the 
cut fractions is not unconnected with the fact 
that refinery production has so many 
constraints to be satisfied. The amount 
produced depends on the CDU processing 
capabilities. Setting the upper limit for the 
crudes to be processed in CDU is an industrial 
practice that cannot be ignored. Mandating the 
plant to operate within this limit will therefore 
have an impact on the maximum permissible 
tuning that will allow the feedback 
implementation to restore the plant profit. 
Considering this limitation, the loss of 5.807% 
obtained is still a reasonable value. 
Scenario B 
In this scenario, a 3% change in composition is 
considered with the other information exactly 
same as in Scenario A. The profit due to 
feedback implementation strategy was 

obtained to be $54,196,473 against $56,696,407 
for the true optimal value. This translates to 
4.409% loss which is better compared to 
Scenario A. This improvement is due the 
magnitude of the disturbance being smaller in 
this scenario. Again, based on the reasons 
mentioned in the preceding scenario, this loss 
value of 4.409% is still within the acceptable 
range.    
Scenario C 
Here, there is an increase in composition by 9% 
on the first period then a drop of 4% is recorded 
on the fifth period. This scenario is more 
common in refineries where fluctuation do 
occur from one time period to another. The 
profit recorded due to SOC is $52,218,634. 
Comparing with the true optimal value gives a 
loss of 7.898%. For the first two time periods, 
the �>	 values are -0.0919 and -0.0444 
respectively. These cannot be implemented 
because LM must be between 0 and 1. 
Saturation is therefore applied here forcing the 
two values to be zero.  
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The loss value in this scenario is greater than 
those obtained in Scenarios A and B due to fact 
that fluctuation is more intense here with an 
abrupt change by 9% at the initial stage and a 
sudden drop by 4% on the fifth period.  
In summary, the loss values are greater than 1% 
in all scenarios because the refinery plant is a 
complex with a multiple number of units 
interconnected and hence the units cannot be 
treated independently. Even though decisions 
from scheduling are implemented on a day-to-
day basis, the schedule generation does not 
follow the same pattern. All schedules 
decisions no matter the length of the horizon 
have to be obtained at the same time instance 
for implementation at later dates. 
CONCLUSION 
One of the challenges in refinery scheduling is 
the generation of schedules with consideration 
to uncertainty in process parameters. 
Fluctuation in product demand, change in crude 
oil composition, and other uncertainties do 
manifest during execution of the schedules. In 

the presence of these uncertainties, the 
schedule generated under deterministic 
conditions may become infeasible, suboptimal 
or difficult to implement. This paper presents 
an efficient methodology under self-optimizing 
control framework to deal with disturbances for 
process plants with optimization model posed 
as mixed integer nonlinear programming 
formulation. The methodology computes CVs as 
function of measurements from simulated data 
using Taylor series expansion. The procedure 
went beyond addressing feasibility issues due to 
the influence of uncertain parameters but also 
ensure optimal or near optimal operation is 
maintained. The methodology was applied to 
refinery scheduling problem with uncertainties 
in crude oil compositions to come up with a 
feedback control law that compensates for the 
effect of the uncertainties. Through case 
studies, the idea presented was able to 
effectively deal with the situation at hand with 
percentage loss within a reasonable degree.      
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Appendix 
Considering that the objective function is changing with respects to multiple manipulated variables 
corresponding to different time periods, the following equation holds true: 

�- − �, = ;N-,-∆�-,- + ;N-,.∆�-,. + ;N-,/∆�-,/+			. . .					+	;N-,0∆�-,0 	 
�. − �, = ;N.,-∆�.,- + ;N.,.∆�.,. + ;N.,/∆�.,/+			. . .					+	;N.,0∆�.,0	 
�/ − �, = ;N/,-∆�/,- + ;N/,.∆�/,. + ;N/,/∆�/,/+			. . .					+	;N/,0∆�/,0	 

       ⋮                  ⋮                     ⋮                  ⋮            …              ⋮ 
�Q − �, = ;NQ,-∆�Q,- + ;NQ,.∆�Q,. + ;NQ,/∆�Q,/+			. . .					+;NQ,0 	∆�Q,0	 

 

(7) 

Where, 
∆�-,- = (�- − �,)-	, 	∆�-,. = (�- − �,).	, . . . , 	∆�-,0 = (�- − �,)0 
∆�.,- = (�. − �,)-	, 	∆�.,. = (�. − �,).	, . . . , 	∆�.,0 = (�. − �,)0 
∆�/,- = (�/ − �,)-	, 	∆�/,. = (�/ − �,).	, . . . , 	∆�/,0 = (�/ − �,)0 

        ⋮                ⋮             ⋮                ⋮                   …    ⋮                ⋮ 
∆�Q,- = (�Q − �,)-	, 	∆�Q,. = (�Q − �,).	, . . . , 	∆�Q,0 = (�Q − �,)0 

(8) 

 The control variables 

R
S
S
S
T;N-,-, 				;N-,., 					;N-,/,			. . .				 	;N-,0;N.,-, 				;N.,., 					;N.,/,			. . .				 	;N.,0
;N/,-, 				;N/,., 					;N/,/,			. . .				 	;N/,0

				⋮
;NQ,-, 				;NQ,., 					;NQ,/,			. . .				 	;NQ,0 U

V
V
V
W
 

are non-measurable online and therefore can be replaced with measurement functions. Thus, 
;N-,- = (X, + X-�-,- + X.�-,. + X/�-,/+. . . +XY�-,Y)- 
;N-,. = 	 (X, + X-�-,- + X.�-,. + X/�-,/+. . . +XY�-,Y). 
;N.,- =	 (X, + X-�.,- + X.�.,. + X/�.,/+. . . +XY�.,Y)- 

⋮ 
;NQZ-,0 = 	 (X, + X-�QZ-,- + X.�QZ-,. + X/�QZ-,/+. . . +XY�QZ-,Y)0 

;NQ,0Z- = 	 (X, + X-�Q,- + X.�Q,. + X/�Q,/+. . . +XY�Q,Y)0Z- 
;NQ,0 = 	 (X, + X-�Q,- + X.�Q,. + X/�Q,/+. . . +XY�Q,Y)0 

(9) 

Substituting Equation 8 into Equation 6 gives 
�- − �, = X,([,)- + X-([-)- + X.([.)-+			. . .					+XY([Y)- 
�. − �, = X,([,). + X-([-). + X.([.).+			. . .					+XY([Y). 
�/ − �, = X,([,)/ + X-([-)/ + X.([.)/+			. . .					+XY([Y)/ 

⋮ 
�Q − �, = X,([,)Q + X-([-)Q + X.([.)Q+			. . .					+XY([Y)Q 

(10) 

Where, 
([,)- = (∆�-,- + ∆�-,. + ∆�-,/+. . . +∆�-,0)- 

([-)- = (�-,-∆�-,- + �-,.∆�-,. + �-,/∆�-,/+. . . +�-,0∆�-,0)- 
([.)/ = (�.,-∆�.,- + �.,.∆�.,. + �.,/∆�.,/+. . . +�.,0∆�.,0)/ 

⋮ 
([Y)Q = (�Y,-∆�Q,- + �Y,.∆�Q,. + �Y,/∆�Q,/+. . . +�Y,0∆�Q,0)Q 

(11) 

Equation 9 can be re-arranged to 
∆�4 = \4] (12) 

 Equation 11 can then be re-written as 
^ = _] (13) 

Implying that  ∆�4 is represented by vector ^  and \4 by vector _.   
Using regression ] can be determined. 

]̀ = (_a_)Z_a^ (14) 

Using the rule of thumb, the data points for regression should be at least ten times the number of coefficients 
to be estimated. 
 By analogy, Equation 8 can be represented in condensed form as  

;N = X, + X-�- + X.�. + X/�/+. . . +XY�Y (15) 

Controlling gradient at zero implies the LHS of Equation 14 equal to zero. It is important to note that �Y,� is 
the manipulated variable as mentioned in step 2 of the solution procedure. 
Therefore at each time period, the optimal feedback control input is obtained as:  

�>	,� = − 1
XY

[X, + X-�- + X.�. + X/�/+. . . +XYZ-�YZ-] (16) 

Some values of the integer manipulated variables may be slightly below 0 or above 1. In such a case the 
variables are said to be ‘saturated’ and a constraint has to be imposed, forcing the saturated variables to be 
equal to their corresponding nearest value (0 or 1).  
Implementing this feedback strategy in a close loop fashion will incur loss. The loss can be computed as 

* = �, − �bu>	, dc
�, 	× 100 

(17) 

Where �, is the true optimal �, while �bu>	, dc is the objective function corresponding to 
implementing Equation 15 to maintain the CV at zero.   
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